1
|
Kao SK, Yu YT, Tsai MH. Risk of adverse cardiovascular events following spinal cord injury in patients with osteoporosis: Real-world evidence. Am J Prev Cardiol 2025; 21:100938. [PMID: 39995848 PMCID: PMC11847749 DOI: 10.1016/j.ajpc.2025.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction Spinal cord injury (SCI) is associated with increased cardiovascular risks, and cardiovascular disease (CVD) remains a leading cause of death for individuals with SCI. Osteoporosis, a condition associated with SCI, has been linked to CVD. However, the cardiovascular risk profile of individuals with SCI with osteoporosis remains unclear. Methods We conducted a retrospective cohort study by using data from the TriNetX Research Network. We included adults with osteoporosis with or without a diagnosis of SCI between 2015 and 2020: case (SCI group, N = 7,308) and control (non-SCI group, N = 843,235) cohorts. Propensity score matching was performed to balance baseline characteristics between the cohorts (N = 7,296 in each group). A Cox regression model was employed to estimate the hazard ratio (HR) for the primary outcomes: the development of acute myocardial infarction (AMI), atrial fibrillation (AF), or heart failure (HF). Results Individuals with SCI with osteoporosis have a significantly higher risk of cardiovascular events (HR: 1.15, 95 % confidence interval [CI]: 1.08-1.22)-including AMI (HR: 1.17 95 % CI: 1.02-1.33), AF (HR: 1.14, 95 % CI: 1.04-1.24), and HF (HR: 1.14, 95 % CI: 1.05-1.24)-than do those without SCI. Furthermore, mortality risk is higher in individuals with SCI, particularly those with pathological fracture. Subgroup analyses based on sex and age supported these findings. Conclusion The complex interplay between SCI, osteoporosis, and cardiovascular health underscores the requirement for comprehensive management strategies for individuals with SCI who also have osteoporosis.
Collapse
Affiliation(s)
- Shih-Kai Kao
- Department of General Medicine, Shin Kong Wu Huo-Shih Memorial Hospital, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Ting Yu
- Department of General Medicine, Shin Kong Wu Huo-Shih Memorial Hospital, Taipei, Taiwan
- Division of Family Medicine, Department of Community Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Ming-Hsien Tsai
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Fu-Jen Catholic University School of Medicine, Taipei, Taiwan
| |
Collapse
|
2
|
Kim TH, Kim H, Lee HH, Sang JH. Vitamin K: Calcium Metabolism Modulator for Menopausal Women. J Menopausal Med 2024; 30:152-163. [PMID: 39829192 PMCID: PMC11745727 DOI: 10.6118/jmm.24023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Vitamin K (VitK) exists in multiple forms, with Vitamin K1 (VitK1) and Vitamin K2 (VitK2) being the most prominent. VitK1 primarily regulates clotting factors in the liver, whereas VitK2 plays a crucial role in activating extrahepatic proteins involved in various physiological processes. VitK plays a pivotal role in various physiological functions, including vascular health, bone metabolism, neuroprotection, hepatoprotection, immune response modulation, dental health, and glucose control. Particularly, activation of the matrix Gla protein and osteocalcin through VitK2 inhibits vascular calcification (VC) and promotes bone mineralization. This review provides an overview of the physiological functions of VitK2, underscoring its role in calcium metabolism modulation and its diverse effects on health. Additionally, this article provides a comprehensive overview of the beneficial functions of VitK, and discusses the significance of adequate dietary intake and oral supplementation of VitK. Particularly, emphasizing on the need for VitK2 supplementation owing to its relatively limited availability in Western diets. VitK2 supplementation effectively counters VC, enhances bone density, and offers neuroprotective, hepatoprotective, and anti-inflammatory benefits. Thus, the supplementation of VitK2, alongside dietary intake, is essential for preventive healthcare, particularly in the prevention of osteoporosis and vascular diseases. Incorporating adequate VitK2 intake highlights its significance in promoting overall well-being. Illustrated summary of the role of VitK in menopausal women.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hayeon Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hae Hyeog Lee
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| | - Jae Hong Sang
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
3
|
Chen Y, Ding Y, Jin S, Zhang Y. Association between a body shape index and cognitive impairment among US older adults aged 40 years and above from a cross-sectional survey of the NHANES 2011-2014. Front Endocrinol (Lausanne) 2024; 15:1411701. [PMID: 39377074 PMCID: PMC11456444 DOI: 10.3389/fendo.2024.1411701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/29/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose This research aimed to assess the correlation between the Adjusted Body Shape Index (ABSI) and the presence of abdominal aortic calcification (AAC) among middle-aged and older American adults. Methods Employing a cross-sectional design, this study analyzed data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES), focusing on 3077 participants aged 40 and above. AAC detection was conducted using dual-energy X-ray absorptiometry (DXA). ABSI was determined based on waist circumference (WC), weight, and height data. The association between ABSI and AAC was examined through multiple linear regression, smoothed curve analysis, threshold effect evaluation, subgroup analysis, and interaction testing. Results The study encompassed 3077 individuals aged 40 and above. Findings indicated a noteworthy positive relationship between ABSI and AAC when adjusting various covariates. Analysis of threshold effects identified a K-point at 0.0908, showing no significant effect to its left but a significant effect to its right. Further, subgroup and interaction analyses highlighted the ABSI-AAC connection specifically within different age groups and among individuals with diabetes. Conclusion Higher ABSI was correlated with higher AAC score.
Collapse
Affiliation(s)
| | | | - Shanliang Jin
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanwei Zhang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Chen C, Zhong W, Zheng H, Dai G, Zhao W, Wang Y, Dong Q, Shen B. The role of uromodulin in cardiovascular disease: a review. Front Cardiovasc Med 2024; 11:1417593. [PMID: 39049957 PMCID: PMC11267628 DOI: 10.3389/fcvm.2024.1417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein exclusively synthesized by the kidneys and represents the predominant urinary protein under normal physiological conditions. It assumes a pivotal role within the renal system, contributing not only to ion transport and immune modulation but also serving as a critical factor in the prevention of urinary tract infections and kidney stone formation. Emerging evidence indicates that uromodulin may serve as a potential biomarker extending beyond renal function. Recent clinical investigations and Mendelian randomization studies have unveiled a discernible association between urinary regulatory protein levels and cardiovascular events and mortality. This review primarily delineates the intricate relationship between uromodulin and cardiovascular disease, elucidates its predictive utility as a novel biomarker for cardiovascular events, and delves into its involvement in various physiological and pathophysiological facets of the cardiovascular system, incorporating recent advancements in corresponding genetics.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Gaoying Dai
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Qi Dong
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Cui HJ, Wu YF. Bioresorbable Scaffolds for Below-the-Knee Arterial Disease: A Literature Review of New Developments. Rev Cardiovasc Med 2024; 25:133. [PMID: 39076564 PMCID: PMC11264025 DOI: 10.31083/j.rcm2504133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 07/31/2024] Open
Abstract
This review aimed to explore the therapeutic effect of bioabsorbable stents in the inferior genicular artery, from the emergence of absorbable bare metal stents to the latest technology in polymer and anti-proliferative eluting drugs mixed with coated bioresorbable vascular stents (BVSs). Currently, there are conflicting data regarding the safety and effectiveness of BVSs in infrapopliteal artery interventions, especially compared to the current generation of drug-eluting stents (DESs). This review will cover the existing data on BVSs in reconstructing the infrapopliteal arterial blood flow and active clinical trials for future iterations of BVSs. In terms of primary patency rate and target lesion revascularization rate, the available research on the effectiveness of BVSs in reconstructing the infrapopliteal arterial blood flow suggests that a BVS is compatible with current DESs within 3-12 months; long-term data have not yet been reported. The ABSORB BVS is the most studied BVS in cardiovascular disease (CAD). Initially, the ABSORB BVS showed promising results. Managing intricate regions in peripheral artery disorders, such as branching or lengthy lesions, continues to be a formidable undertaking. In contrast to the advanced narrowing of arteries seen in standard permanent stent procedures, bioabsorbable stents have the potential to promote the expansion and beneficial merging of blood channels in the latter stages. Furthermore, incorporating stents and re-establishing the endothelial function can diminish the probability of restenosis or thrombosis. Nevertheless, the extent to which bioabsorbable stents may simultaneously preserve arterial patency and guarantee their structural integrity remains uncertain. The powerful and intricate mechanical stresses exerted by the blood in the superficial femoral artery and popliteal artery can cause negative consequences on any implant inserted into the vessel, regardless of its composition, even metal. Furthermore, incorporating stents is advantageous for treating persistent occlusive lesions since it does not impact later treatments, including corrective bypass operations. Evidence is scarce about the use of bioabsorbable stents in treating infrapopliteal lesions. Utilizing bioabsorbable stents in minor infrapopliteal lesions can successfully maintain the patency of the blood vessel lumen, whereas balloon angioplasty cannot offer this benefit. The primary focus of testing these materials is determining whether bioabsorbable scaffolds can provide adequate radial force in highly calcified elongated lesions. Indeed, using "-limus" medication elution technology in conjunction with bioabsorbable stents has previously offered clinical benefits in treating the popliteal artery, as evidenced by limited trials.BVSs for peripheral arterial disease (PAD) show promise and have the potential to offer a less inflammatory and more vessel-friendly option compared to permanent metallic stents. However, current evidence does not yet allow for a universal recommendation for their use. Thus, ongoing, and future studies, such as those examining the newer generation of bioresorbable scaffolds (BRSs) with improved mechanical properties and resorption profiles, will be crucial in defining the role of BRSs in managing PAD.
Collapse
Affiliation(s)
- Hong-Jie Cui
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical
University, 100053 Beijing, China
| | - Ying-Feng Wu
- Department of Vascular Surgery, Luhe Hospital Affiliated to Capital
Medical University, 101199 Beijing, China
| |
Collapse
|
6
|
Luo Y, He F, Zhang Y, Li S, Lu R, Wei X, Huang J. Transcription Factor 21: A Transcription Factor That Plays an Important Role in Cardiovascular Disease. Pharmacology 2024; 109:183-193. [PMID: 38493769 DOI: 10.1159/000536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.
Collapse
Affiliation(s)
- Yaqian Luo
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China,
| | - Fangzhou He
- Department of Anaesthesia, Chuanshan College, University of South China, Hengyang, China
| | - Yifang Zhang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Shufan Li
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Wei
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Ji Huang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Dawood M, Elwany M, Abdelgawad H, Sanhoury M, Zaki M, Elsharkawy E, Nawar M. Coronary calcifications, the Achilles heel in coronary interventions. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2024; 20:1-17. [PMID: 38616941 PMCID: PMC11008515 DOI: 10.5114/aic.2024.136415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 04/16/2024] Open
Abstract
Percutaneous coronary intervention in severely calcified coronaries has been associated with higher rates of procedural complications, including myocardial infarction and death in addition to increased frequency of coronary revascularization on an intermediate and long-term basis. The SYNTAX score, which is designed to assess the complexity of coronary artery disease and aids in choosing a revascularization method, allocates two points per lesion when there is heavy calcification present on fluoroscopy. With the advent of novel multimodality imaging technologies, the detection and evaluation of coronary calcifications improved significantly over the last decade. Several tools are now available for modifying calcified lesions including different types of dedicated balloons and atherectomy devices, which may create some degree of confusion regarding the suitable application of each instrument. The aim of this review is to cover this vital topic from different aspects. First, we tried to provide an overview on the pathophysiology and types of coronary calcification and its risk factors. Then, we outlined the available imaging modalities for the evaluation of calcified coronary lesions, highlighting the points of strength and weakness of each of them. A comprehensive discussion of calcium-modifying techniques was elaborated, summarizing their mechanism of action, pros and cons, and possible complications. Finally, an integrated algorithm was proposed for the best management of calcified coronary lesions.
Collapse
Affiliation(s)
- Moustafa Dawood
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Moustafa Elwany
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda Abdelgawad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
- King’s College Hospital NHS Trust, London, UK
| | | | - Moataz Zaki
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eman Elsharkawy
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Moustafa Nawar
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Kadoglou NPE, Stasinopoulou M, Velidakis N, Khattab E, Christodoulou E, Gkougkoudi E, Valsami G. The Complex Mechanisms and the Potential Effects of Statins on Vascular Calcification: A Narrative Review. Rev Cardiovasc Med 2024; 25:51. [PMID: 39077343 PMCID: PMC11263155 DOI: 10.31083/j.rcm2502051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 07/31/2024] Open
Abstract
Vascular calcification (VC) is a complex process of calcium deposition on the arterial wall and atherosclerotic plaques and involves interaction between vascular smooth muscle cells, inflammatory and VC mediators. The latter are independent predictors of cardiovascular morbidity and mortality and potential targets of pharmaceutical therapy. This paper is a narrative review of the complex mechanisms of VC development and in this context the potential anti-atherosclerotic effects of statins. At the initial stages of atherosclerosis VC correlates with atherosclerosis burden and in the long-term with cardiovascular morbidity and mortality. A plethora of animal and clinical studies have proposed statins as the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Based on coronary computed tomography data, high doses of statins may have negligible or even positive effects on the progression of coronary artery calcification. Growing data support an increase in atherosclerotic plaque calcification in peripheral arteries (e.g., carotids), after long-term, statin-therapy. Despite the paradox of increasing VC, those effects of statins have been associated with higher plaque stability, reducing the risk of consequent adverse events. Statins seem to promote a "favorable" atherosclerotic calcification, suppressing atherosclerotic lesion expansion and their vulnerability. More studies are required to clarify the underlying mechanisms.
Collapse
Affiliation(s)
| | - Marianna Stasinopoulou
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Elina Khattab
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
9
|
Antignani PL, Jezovnik MK, Blinc A, Mikhailidis DP, Anagnostis P, Schernthaner GH, Jensterle M, Studen KB, Sabovic M, Poredos P. Hyperparathyroidism and Peripheral Arterial Disease. Curr Vasc Pharmacol 2024; 22:88-94. [PMID: 38284694 DOI: 10.2174/0115701611280905231227045826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Primary hyperparathyroidism (PHPT) is presented in various forms, including classic PHPT, characterised by increased parathyroid hormone (PTH) secretion, normohormonal PHPT, and normocalcaemic PHPT. Secondary hyperparathyroidism is characterised by increased PTH secretion triggered by factors such as vitamin D deficiency and kidney failure. This review aims to discuss the involvement of hyperparathyroidism (HPT) in atherosclerosis, including peripheral arterial disease (PAD). The increased level of PTH is involved in developing subclinical and overt vascular diseases, encompassing endothelial dysfunction, vascular stiffness, hypertension, and coronary and peripheral arterial diseases. It has been consistently associated with an augmented risk of cardiovascular morbidity and mortality, independent of classical risk factors for atherosclerosis. Chronic hypercalcemia associated with increased levels of PTH contributes to the development of calcification of vessel walls and atherosclerotic plaques. Vascular calcification can occur in the intima or media of the arterial wall and is associated with stiffness of peripheral arteries, which the formation of atherosclerotic plaques and narrowing of the vessel lumen can follow. For treating hyperparathyroidism, particularly SHPT, calcimimetics, novel phosphorus binders and novel vitamin D receptor activators are used. However, they are ineffective in severe PHPT. Therefore, parathyroidectomy remains the primary therapeutic option of PHPT.
Collapse
Affiliation(s)
| | - Mateja K Jezovnik
- Department of Advanced, Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ales Blinc
- Department of Vascular Disease, University Medical Centre, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Dimitri P Mikhailidis
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London Medical School, University College London (UCL) and Department of Clinical Biochemistry, Royal Free Hospital Campus (UCL), London, UK
| | - Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical, School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Mojca Jensterle
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre, Ljubljana, Slovenia
| | - Katica Bajuk Studen
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Slovenia
- Department of Nuclear Medicine, University Medical Centre, Ljubljana, Slovenia
| | - Miso Sabovic
- Department of Vascular Disease, University Medical Centre, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Pavel Poredos
- Department of Vascular Disease, University Medical Centre, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Slovenia
| |
Collapse
|
10
|
Evenepoel P, Stenvinkel P, Shanahan C, Pacifici R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat Rev Nephrol 2023; 19:646-657. [PMID: 37488276 DOI: 10.1038/s41581-023-00736-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Herestraat, Leuven, Belgium.
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Catherine Shanahan
- British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory Microbiome Research Center, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Zhao XK, Zhu MM, Wang SN, Zhang TT, Wei XN, Wang CY, Zheng J, Zhu WY, Jiang MX, Xu SW, Yang XX, Duan YJ, Zhang BC, Han JH, Miao QR, Hu H, Chen YL. Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs. Acta Pharmacol Sin 2023; 44:1625-1636. [PMID: 36997664 PMCID: PMC10374894 DOI: 10.1038/s41401-023-01077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1β and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21ECKO) mice, VD3 and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification. TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiao-Kang Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Meng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Sheng-Nan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ting-Ting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Ning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng-Yi Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juan Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wen-Ya Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mei-Xiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, 330031, China
| | - Suo-Wen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Jun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Bu-Chun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qing R Miao
- Diabetes and Obesity Research Center, New York University Long Island School of Medicine, New York, NY, USA
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
12
|
Lu CW, Lee CJ, Hsieh YJ, Hsu BG. Empagliflozin Attenuates Vascular Calcification in Mice with Chronic Kidney Disease by Regulating the NFR2/HO-1 Anti-Inflammatory Pathway through AMPK Activation. Int J Mol Sci 2023; 24:10016. [PMID: 37373164 DOI: 10.3390/ijms241210016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular calcification (VC) is associated with increased cardiovascular risks in patients with chronic kidney disease (CKD). Sodium-glucose cotransporter 2 inhibitors, such as empagliflozin, can improve cardiovascular and renal outcomes. We assessed the expression of Runt-related transcription factor 2 (Runx2), interleukin (IL)-1β, IL-6, AMP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor (Nrf2), and heme oxygenase 1 (HO-1) in inorganic phosphate-induced VC in mouse vascular smooth muscle cells (VSMCs) to investigate the mechanisms underlying empagliflozin's therapeutic effects. We evaluated biochemical parameters, mean artery pressure (MAP), pulse wave velocity (PWV), transcutaneous glomerular filtration rate (GFR), and histology in an in vivo mouse model with VC induced by an oral high-phosphorus diet following a 5/6 nephrectomy in ApoE-/- mice. Compared to the control group, empagliflozin-treated mice showed significant reductions in blood glucose, MAP, PWV, and calcification, as well as increased calcium and GFR levels. Empagliflozin inhibited osteogenic trans-differentiation by decreasing inflammatory cytokine expression and increasing AMPK, Nrf2, and HO-1 levels. Empagliflozin mitigates high phosphate-induced calcification in mouse VSMCs through the Nrf2/HO-1 anti-inflammatory pathway by activating AMPK. Animal experiments suggested that empagliflozin reduces VC in CKD ApoE-/- mice on a high-phosphate diet.
Collapse
Affiliation(s)
- Chia-Wen Lu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan
| | - Yi-Jen Hsieh
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
13
|
Bechelli C, Macabrey D, Deglise S, Allagnat F. Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. Int J Mol Sci 2023; 24:9955. [PMID: 37373103 DOI: 10.3390/ijms24129955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide. PAD patients suffer from reduced quality of life and are at increased risk of vascular complications and all-cause mortality. Despite its prevalence, impact on quality of life and poor long-term clinical outcomes, PAD remains underdiagnosed and undertreated compared to myocardial infarction and stroke. PAD is due to a combination of macrovascular atherosclerosis and calcification, combined with microvascular rarefaction, leading to chronic peripheral ischemia. Novel therapies are needed to address the increasing incidence of PAD and its difficult long-term pharmacological and surgical management. The cysteine-derived gasotransmitter hydrogen sulfide (H2S) has interesting vasorelaxant, cytoprotective, antioxidant and anti-inflammatory properties. In this review, we describe the current understanding of PAD pathophysiology and the remarkable benefits of H2S against atherosclerosis, inflammation, vascular calcification, and other vasculo-protective effects.
Collapse
Affiliation(s)
- Clémence Bechelli
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Diane Macabrey
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Sebastien Deglise
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| |
Collapse
|
14
|
LaFavers K, Garimella PS. Uromodulin: more than a marker for chronic kidney disease progression. Curr Opin Nephrol Hypertens 2023; 32:271-277. [PMID: 36912260 DOI: 10.1097/mnh.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Uromodulin, a protein that is highly conserved across several species through evolution, functions to maintain homeostasis and prevent disease development and progression. Historically, the role of uromodulin has been thought to be limited to the kidney and genitourinary tract. This review highlights developments indicating a broader role of uromodulin in human health. RECENT FINDINGS Although initially discovered in the urine and found to have immunomodulatory properties, recent findings indicate that serum uromodulin (sUMOD) is distinct from urine uromodulin (uUMOD) in its structure, function, and regulation. uUMOD binds pathogenic bacteria in the urine preventing infection and is also upregulated in kidneys undergoing repair after injury. Uromodulin knockout mice exhibit higher mortality in the setting of sepsis which is also associated with upregulation of sUMOD. sUMOD lowers calcification risk but this may be influenced by presence of kidney disease. SUMMARY Uromodulin is an evolutionarily conserved protein produced exclusively in the kidney tubule cells with evolving roles being reported both in the kidney and systemically. Further research should be focused at harnessing its use as a potential therapeutic.
Collapse
Affiliation(s)
- Kaice LaFavers
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pranav S Garimella
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| |
Collapse
|
15
|
Choi BE, Shin S, Evans S, Singh BB, Bandyopadhyay BC. Ablation of TRPC3 disrupts Ca 2+ signaling in salivary ductal cells and promotes sialolithiasis. Sci Rep 2023; 13:5772. [PMID: 37031239 PMCID: PMC10082769 DOI: 10.1038/s41598-023-32602-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Clinical studies and structural analyses of salivary stones strongly suggest a linkage between higher saliva calcium (Ca2+) and salivary stone formation, sialolithiasis; however, the process and the mechanism leading to Ca2+ overload during sialolithiasis is not well understood. Here, we show that TRPC3 null (-/-) mice presented with a reduction in Ca2+ entry and current in ductal cells with higher saliva [Ca2+] suggesting diminished transepithelial Ca2+ flux across the salivary ductal cells, leaving more Ca2+ in ductal fluid. Significantly, we found that TRPC3 was expressed in mice and human salivary ductal cells, while intraductal stones were detected in both mice (TRPC3-/-) and patient (sialolithiasis) salivary glands. To identify the mechanism, we found that TRPC3 was crucial in preventing the expression of calcification genes (BMP2/6, Runx2) in ductal cells which may be due to higher extracellular Ca2+ in SMG tissues. Similarly, inflammatory (IL6, NLRP3), fibrotic (FN1, TGFβ1) and apoptotic (Bax1/Bcl2) markers were also elevated, suggesting that the loss of TRPC3 induces genetic changes that leads to salivary gland cell death and induction of inflammatory response. Overall, ablation of TRPC3-/- leads to higher saliva [Ca2+], along with elevated detrimental gene expressions, altogether contributing to salivary gland stone formation.
Collapse
Affiliation(s)
- Bok-Eum Choi
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
| | - Samuel Shin
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, 20064, USA
| | - Sade Evans
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA
| | - Brij B Singh
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, 151 Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC, 20422, USA.
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC, 20064, USA.
| |
Collapse
|
16
|
Ding X, An Q, Zhao W, Song Y, Tang X, Wang J, Chang CC, Zhao G, Hsiai T, Fan G, Fan Y, Li S. Distinct patterns of responses in endothelial cells and smooth muscle cells following vascular injury. JCI Insight 2022; 7:e153769. [PMID: 36278486 PMCID: PMC9714785 DOI: 10.1172/jci.insight.153769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/02/2022] [Indexed: 01/27/2025] Open
Abstract
Vascular smooth muscle cells (SMCs) are heterogeneous, and their differential responses to vascular injury are not well understood. To address this question, we performed single-cell analysis of vascular cells to a ligation injury in mouse carotid arteries after 3 days. While endothelial cells had a homogeneous activation of mesenchymal genes, less than 30% of SMCs responded to the injury and generated 2 distinct clusters - i.e., proinflammatory SMCs and stress-responsive SMCs. Proinflammatory SMCs were enriched with high levels of inflammatory markers such as vascular cell adhesion molecule-1 while stress-responsive SMCs overexpressed heat shock proteins. Trajectory analysis suggested that proinflammatory SMCs were potentially derived from a specific subpopulation of SMCs. Ligand-receptor pair analysis showed that the interaction between macrophages and proinflammatory SMCs was the major cell-cell communication among all cell types in the injured arteries. In vitro coculture demonstrated that VCAM1+ SMCs had a stronger chemotactic effect on macrophage recruitment than VCAM1- SMCs. Consistently, the number of VCAM1+ SMCs significantly increased in injured arteries and atherosclerotic lesions of ApoE-/- mice and human arteries. These findings provide insights at the single-cell level on the distinct patterns of endothelial cells and SMC responses to vascular injury.
Collapse
Affiliation(s)
- Xili Ding
- Department of Bioengineering, University of California, Los Angeles, California, USA
- School of Engineering Medicine and
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Qin An
- Department of Human Genetics, David Geffen School of Medicine
| | - Weikang Zhao
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Yang Song
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Xiaokai Tang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Gexin Zhao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, and
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine
| | - Yubo Fan
- School of Engineering Medicine and
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
17
|
Ceccherini E, Cecchettini A, Gisone I, Persiani E, Morales MA, Vozzi F. Vascular Calcification: In Vitro Models under the Magnifying Glass. Biomedicines 2022; 10:biomedicines10102491. [PMID: 36289753 DOI: 10.3390/biomedicines10102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular calcification is a systemic disease contributing to cardiovascular morbidity and mortality. The pathophysiology of vascular calcification involves calcium salt deposition by vascular smooth muscle cells that exhibit an osteoblast-like phenotype. Multiple conditions drive the phenotypic switch and calcium deposition in the vascular wall; however, the exact molecular mechanisms and the connection between vascular smooth muscle cells and other cell types are not fully elucidated. In this hazy landscape, effective treatment options are lacking. Due to the pathophysiological complexity, several research models are available to evaluate different aspects of the calcification process. This review gives an overview of the in vitro cell models used so far to study the molecular processes underlying vascular calcification. In addition, relevant natural and synthetic compounds that exerted anticalcifying properties in in vitro systems are discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Gisone
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Elisa Persiani
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Maria Aurora Morales
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
18
|
Collins MT, Marcucci G, Anders HJ, Beltrami G, Cauley JA, Ebeling PR, Kumar R, Linglart A, Sangiorgi L, Towler DA, Weston R, Whyte MP, Brandi ML, Clarke B, Thakker RV. Skeletal and extraskeletal disorders of biomineralization. Nat Rev Endocrinol 2022; 18:473-489. [PMID: 35578027 DOI: 10.1038/s41574-022-00682-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The physiological process of biomineralization is complex and deviation from it leads to a variety of diseases. Progress in the past 10 years has enhanced understanding of the genetic, molecular and cellular pathophysiology underlying these disorders; sometimes, this knowledge has both facilitated restoration of health and clarified the very nature of biomineralization as it occurs in humans. In this Review, we consider the principal regulators of mineralization and crystallization, and how dysregulation of these processes can lead to human disease. The knowledge acquired to date and gaps still to be filled are highlighted. The disorders of mineralization discussed comprise a broad spectrum of conditions that encompass bone disorders associated with alterations of mineral quantity and quality, as well as disorders of extraskeletal mineralization (hyperphosphataemic familial tumoural calcinosis). Included are disorders of alkaline phosphatase (hypophosphatasia) and phosphate homeostasis (X-linked hypophosphataemic rickets, fluorosis, rickets and osteomalacia). Furthermore, crystallopathies are covered as well as arterial and renal calcification. This Review discusses the current knowledge of biomineralization derived from basic and clinical research and points to future studies that will lead to new therapeutic approaches for biomineralization disorders.
Collapse
Affiliation(s)
- Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA.
| | - Gemma Marcucci
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of the University of Munich, Ludwig-Maximilians University, Munich, Germany
| | - Giovanni Beltrami
- Department Paediatric Orthopedic Oncology, Careggi and Meyer Children Hospital, Florence, Italy
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Rajiv Kumar
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Agnès Linglart
- APHP, Endocrinologie et diabète de l'enfant, Paris, France
| | - Luca Sangiorgi
- Medical Genetics and Skeletal Rare Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dwight A Towler
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ria Weston
- Cardiovascular Research Group, Manchester Metropolitan University, Manchester, UK
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St Louis, MO, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Lan Z, Chen A, Li L, Ye Y, Liang Q, Dong Q, Wang S, Fu M, Li Y, Liu X, Zhu Z, Ou JS, Qiu X, Lu L, Yan J. Downregulation of HDAC9 by the ketone metabolite β-hydroxybutyrate suppresses vascular calcification. J Pathol 2022; 258:213-226. [PMID: 35894849 DOI: 10.1002/path.5992] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/07/2022]
Abstract
Vascular calcification is an actively regulated process resembling bone formation and contributes to the cardiovascular morbidity and mortality of chronic kidney disease (CKD). However, effective therapy for vascular calcification is still lacking. The ketone body β-hydroxybutyrate (BHB) has been demonstrated to have health-promoting effects including anti-inflammation and cardiovascular protective effects. However, whether BHB protects against vascular calcification in CKD remains unclear. In this study, Alizarin Red staining and calcium content assay showed that BHB reduced calcification of vascular smooth muscle cells (VSMCs) and arterial rings. Of note, compared with CKD patients without thoracic calcification, serum BHB levels were lower in CKD patients with thoracic calcification. Supplementation with 1,3-butanediol (1,3-B), the precursor of BHB, attenuated aortic calcification in CKD rats and VitD3-overloaded mice. Furthermore, RNA-Seq analysis revealed that BHB downregulated HDAC9, which was further confirmed by RT-qPCR and western blot analysis. Both pharmacological inhibition and knockdown of HDAC9 attenuated calcification of human VSMCs, while overexpression of HDAC9 exacerbated calcification of VSMCs and aortic rings, indicating that HDAC9 promotes vascular calcification under CKD conditions. Of note, BHB treatment antagonized HDAC9-induced vascular calcification. In addition, HDAC9 overexpression activated NF-κB signaling pathway and inhibition of NF-κB attenuated HDAC9-induced VSMC calcification, suggesting that HDAC9 promotes vascular calcification via activation of NF-κB. In conclusion, our study demonstrates that BHB supplementation inhibits vascular calcification in CKD via modulation of the HDAC9-dependent NF-κB signaling pathway. Moreover, we unveil a crucial mechanistic role of HDAC9 in vascular calcification under CKD conditions, thus nutritional intervention or pharmacological approaches to enhance BHB levels could act as promising therapeutic strategies to target HDAC9 for the treatment of vascular calcification in CKD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, PR China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, PR China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Zhenyu Zhu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Shock and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, PR China
| |
Collapse
|
20
|
Syu DK, Hsu SH, Yeh PC, Kuo YF, Huang YC, Jiang CC, Chen M. The association between coronary artery disease and osteoporosis: a population-based longitudinal study in Taiwan. Arch Osteoporos 2022; 17:91. [PMID: 35804272 PMCID: PMC9270282 DOI: 10.1007/s11657-022-01128-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/09/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE This large population-based study is the first to analyze the association between coronary artery disease (CAD) and osteoporosis (OP) from the National Health Insurance Research Database (NHIRD) in Taiwan to determine if CAD is associated with OP. METHODS Data from NHIRD, a national, population-based, retrospective, matched cohort study of 23 million patients, were collected to recruit two matched cohorts: with (n = 192,367) and without (n = 192,367) CAD. The Cox model was used to compare the incidence rate ratio and crude hazard ratio (HR) between the two cohorts for osteoporotic fracture and OP. RESULTS The CAD cohort had a significantly increased risk for vertebral compression fracture, with an adjusted HR of 1.74 (95% CI, 1.60-1.89). The cumulative incidence of OP was also statistically higher in the cohort versus without CAD (11.6% vs. 5.6%; p ≤ 0.0001, log-rank) during the 10-year follow-up period. The Cox model showed a 2.04-fold increase in the incidence of OP in the CAD cohort, with an adjusted HR of 2.04 (95% confidence interval [CI], 1.99-2.08). CONCLUSIONS A positive association exists between CAD and development of subsequent osteoporotic fracture and OP. Patients with CAD have a significantly increased risk of developing vertebral compression fracture and a higher incident rate ratio of OP. TRIAL REGISTRATION IRB approval number: No. C108094 on February 19, 2020.
Collapse
Affiliation(s)
- De-Kai Syu
- Department of Orthopedics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd., Taishan Dist., New Taipei City, 24352, Taiwan, Republic of China
| | - Shu-Hua Hsu
- Department of Family Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd., Taishan Dist., New Taipei City, 24352, Taiwan, Republic of China
| | - Ping-Chun Yeh
- Department of Orthopedics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd., Taishan Dist., New Taipei City, 24352, Taiwan, Republic of China
| | - Yu-Feng Kuo
- Department of Orthopedics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd., Taishan Dist., New Taipei City, 24352, Taiwan, Republic of China
| | - Yen-Chun Huang
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan, Republic of China.,Artificial Intelligence Development Center, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan, Republic of China
| | - Ching-Chuan Jiang
- Department of Orthopedics, Fu Jen Catholic University Hospital, Fu Jen Catholic University, No. 69, Guizi Rd., Taishan Dist., New Taipei City, 24352, Taiwan, Republic of China.
| | - Mingchih Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan, Republic of China. .,Artificial Intelligence Development Center, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan, Republic of China.
| |
Collapse
|
21
|
Kusumi K, Kremsdorf R, Kakajiwala A, Mahan JD. Pediatric Mineral and Bone Disorder of Chronic Kidney Disease and Cardiovascular Disease. Adv Chronic Kidney Dis 2022; 29:275-282. [PMID: 36084974 DOI: 10.1053/j.ackd.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease is common and causes significant morbidity including shortened lifespans and decrease in quality of life for patients. The major cause of mortality in chronic kidney disease is cardiovascular disease. Cardiovascular disease within the chronic kidney disease population is closely tied with disordered calcium and phosphorus metabolism and driven in part by renal bone disease. The complex nature of renal, bone, and cardiovascular diseases was renamed as mineral and bone disorder of chronic kidney disease to encompass how bone disease drives vascular calcification and contributes to the development of long-term cardiovascular disease, and recent data suggest that managing bone disease well can augment and improve cardiovascular disease status. Pediatric nephrologists have additional obstacles in optimal mineral and bone disorder of chronic kidney disease management such as linear growth and skeletal maturation. In this article, we will discuss cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.
Collapse
Affiliation(s)
- Kirsten Kusumi
- Department of Pediatric Nephrology, Akron Children's Hospital, Akron, OH.
| | - Robin Kremsdorf
- Pediatric Nephrology and Hypertension, Hasbro Children's Hospital, Providence, RI
| | - Aadil Kakajiwala
- Departments of Pediatric Critical Care Medicine and Nephrology, Children's National Hospital, Washington, DC
| | - John D Mahan
- Division of Nephrology and Hypertension at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
22
|
Czerwińska K, Poręba M, Prokopowicz A, Januszewska L, Jaremków A, Markiewicz-Górka I, Martynowicz H, Mazur G, Poręba R, Pawlas K, Gać P. Association Between Serum Selenium Concentration and OPG/RANKL/RANK Axis in Patients with Arterial Hypertension. Cardiovasc Toxicol 2022; 22:620-630. [PMID: 35412194 DOI: 10.1007/s12012-022-09741-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022]
Abstract
The aim of the study was to determine the relationship between the serum selenium concentration (Se-S) and the blood concentrations of osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL) and the OPG/RANKL ratio in patients with arterial hypertension. The study group comprised 138 patients with arterial hypertension (age: 56.04 ± 11.59 years). Se-S was determined in all the subjects. Based on the Se-S, the following subgroups were distinguished: a subgroup of patients with a lower Se-S ("low-Se", Se-S < median) and a subgroup of patients with a higher Se-S ("high-Se", Se-S ≥ median). Moreover, the blood concentrations of the parameters of bone metabolism and extraskeletal calcification were assessed: OPG and RANKL. The OPG/RANKL ratio was calculated. In the "low-Se" subgroup, the RANKL concentration was statistically significantly lower, and the OPG/RANKL ratio was statistically significantly higher than in the patients in the "high-Se" subgroup. The correlation analysis showed the negative linear relationships between Se-S and OPG (r = - 0.25, p < 0.05) and between Se-S and OPG/RANKL (r = - 0.47, p < 0.05). Moreover, Se-S positively correlated with RANKL (r = 0.33, p < 0.05). In regression analysis, higher body mass index (BMI), smoking and lower Se-S were independently associated with a higher OPG/RANKL ratio, while lower BMI, use of diuretics, β-blockers and ACE inhibitors and lower OPG/RANKL ratio with effective blood pressure control. In summary, in the group of patients with arterial hypertension, lower Se-S is associated with an unfavourable prognostic panel of parameters of bone metabolism and extraskeletal calcification. Lower Se-S is an independent risk factor for a higher OPG/RANKL ratio, which is an independent prediction factor of ineffective blood pressure control in patients with hypertension.
Collapse
Affiliation(s)
- Karolina Czerwińska
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Małgorzata Poręba
- Department of Paralympic Sports, Wroclaw University of Health and Sport Sciences, Witelona 25a, 51-617, Wrocław, Poland
| | - Adam Prokopowicz
- Institute of Occupational Medicine and Environmental Health in Sosnowiec, Kościelna 13, 41-200, Sosnowiec, Poland
| | - Lidia Januszewska
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Aleksandra Jaremków
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Iwona Markiewicz-Górka
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Krystyna Pawlas
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Paweł Gać
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland.
| |
Collapse
|
23
|
Li X, Liu C, Li Y, Xiong W, Zuo D. Inflammation promotes erythropoietin induced vascular calcification by activating p38 pathway. Bioengineered 2022; 13:5277-5291. [PMID: 35168476 PMCID: PMC8974085 DOI: 10.1080/21655979.2022.2038430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The current research aimed to verify the effects of erythropoietin (EPO) on vascular calcification under inflammatory conditions and the molecular regulator of vascular calcification induced by EPO. To induce vascular calcification and systemic chronic inflammation in SD rats, EPO was administered intraperitoneally, and 10% casein was injected subcutaneously. The administration period lasted for 20 consecutive weeks. Blood samples were subsequently collected to detect inflammatory factors and vascular calcification. Additionally, high-dose EPOs were applied to stimulate primary vascular smooth muscle cells (VSMCs), and vascular calcification was measured using alizarin red staining, alkaline phosphatase (ALP) activity, and calcium salt quantification. The probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) was employed to detect cellular reactive oxygen species (ROS) levels. The expressions of bone formation-related protein and anti-calcification protein matrix gla protein (MGP) were determined via Western blot. Compared with the control group, calcium deposits and vascular calcification were increased in the EPO group, tumor necrosis factor-alpha (TNF-α) group and TNF-α+ EPO group, whereas MGP was significantly reduced. Moreover, under the stimulation of TNF-α and EPO+TNF-α, pp38/p38 was increased substantially, the addition of p38 inhibitor SB203580 could significantly reduce calcium deposits and vascular calcification. In vivo experiment, compared with the EPO group, calcium salt deposition and vascular calcification were elevated in the EPO+casein group. The present results revealed that high-dose EPO could cause calcification of the abdominal aorta in rats. The inflammatory response aggravated the vascular calcification induced by EPO via activating p38 and ROS levels.
Collapse
Affiliation(s)
- Xunjia Li
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chengxuan Liu
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ying Li
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Weijian Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
24
|
Parel PM, Berg AR, Hong CG, Florida EM, O'Hagan R, Sorokin AV, Mehta NN. Updates in the Impact of Chronic Systemic Inflammation on Vascular Inflammation by Positron Emission Tomography (PET). Curr Cardiol Rep 2022; 24:317-326. [PMID: 35171444 DOI: 10.1007/s11886-022-01651-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW In this review, we focus on the clinical and epidemiological studies pertaining to systemic and vascular inflammation by positron emission tomography (PET) in patients with chronic inflammatory conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), human immunodeficiency virus (HIV), and psoriasis to highlight the importance of chronic systemic inflammation on vascular inflammation by PET in these disease states. RECENT FINDINGS Recent clinical and translation advancements have demonstrated the durable relationship between chronic systemic inflammation and cardiovascular disease (CVD). In chronic inflammatory states, this relationship is robustly evident in the form of increased vascular inflammation, yet traditional risk estimates often underestimate the subclinical cardiovascular risk conferred by chronic inflammation. PET has emerged as a novel, non-invasive imaging modality capable of both quantifying the degree of systemic and vascular inflammation and detecting residual inflammation prior to cardiovascular events. We begin by demonstrating the role of inflammation in the pathogenesis of atherosclerosis, discussing how PET has been utilized to measure systemic and vascular inflammation and their effect on subclinical atherosclerosis, and finally reviewing recent applications of PET in constructing improved risk stratification for patients at high risk for stroke and CVD.
Collapse
Affiliation(s)
- Philip M Parel
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Alexander R Berg
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Christin G Hong
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Elizabeth M Florida
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Ross O'Hagan
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Alexander V Sorokin
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Nehal N Mehta
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| |
Collapse
|
25
|
Lee GL, Liao TL, Wu JY, Wu KK, Kuo CC. Restoration of 5-methoxytryptophan protects against atherosclerotic chondrogenesis and calcification in ApoE -/- mice fed high fat diet. J Biomed Sci 2021; 28:74. [PMID: 34749728 PMCID: PMC8573875 DOI: 10.1186/s12929-021-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Background Toll-like receptor-2 (TLR2) promotes vascular smooth muscle cell (VSMC) transdifferentiation to chondrocytes and calcification in a p38 MAPK-dependent manner. Vascular 5-methoxytryptophan (5-MTP) is a newly identified factor with anti-inflammatory actions. As 5-MTP targets p38 MAPK for its actions, we postulated that 5-MTP protects against vascular chondrogenesis and calcification. Methods High-fat diet-induced advanced atherosclerosis in mice were performed to investigate the effect of 5-MTP on atherosclerotic lesions and calcification. VSMCs were used to determine the role of 5-MTP in VSMC chondrogenic differentiation and calcification. Alizarin red S and Alcian blue staining were used to measure VSMC calcification and chondrogenic differentiation, respectively. Results 5-MTP was detected in aortic tissues of ApoE−/− mice fed control chow. It was reduced in ApoE−/− mice fed high-fat diet (HFD), but was restored in ApoE−/−Tlr2−/− mice, suggesting that HFD reduces vascular 5-MTP production via TLR2. Intraperitoneal injection of 5-MTP or its analog into ApoE−/− mice fed HFD reduced aortic atherosclerotic lesions and calcification which was accompanied by reduction of chondrogenesis and calcium deposition. Pam3CSK4 (Pam3), ligand of TLR2, induced SMC phenotypic switch to chondrocytes. Pretreatment with 5-MTP preserved SMC contractile proteins and blocked Pam3-induced chondrocyte differentiation and calcification. 5-MTP inhibited HFD-induced p38 MAPK activation in vivo and Pam3-induced p38 MAPK activation in SMCs. 5-MTP suppressed HFD-induced CREB activation in aortic tissues and Pam3-induced CREB and NF-κB activation in SMCs. Conclusions These findings suggest that 5-MTP is a vascular arsenal against atherosclerosis and calcification by inhibiting TLR2–mediated SMC phenotypic switch to chondrocytes and the consequent calcification. 5-MTP exerts these effects by blocking p38 MAPK activation and inhibiting CREB and NF-κB transactivation activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00771-1.
Collapse
Affiliation(s)
- Guan-Lin Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Lien Liao
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Yiing Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan. .,College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan. .,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
26
|
Eliseev MS, Novikova DS, Novikova AM, Blank LM, Zhelyabina OV, Cherkasova MV, Nasonov EL. Calcification of coronary arteries in patients with calcium pyrophosphate crystal deposition disease and knee osteoarthritis. RHEUMATOLOGY SCIENCE AND PRACTICE 2021; 59:411-417. [DOI: 10.47360/1995-4484-2021-411-417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The frequency of vascular calcification in patients with osteoarthritis (OA) and calcium pyrophosphate crystal deposition disease (CPPD) has not yet been studied, and the role of calcium crystals (basic and pyrophosphates) in the development of calcification is also unknown.Objective. Determine the presence and degree of calcification of the coronary vessels in patients with calcium pyrophosphate crystal deposition disease and osteoarthritis of the knee joints with no clinical signs of cardiovascular diseases.Materials and methods. One-stage, single-center study, performed by the “case – control” method. The main group – 20 patients with CPPD, the comparison group – 20 patients with OA of the knee joints. Inclusion criteria: age from 18 to 65 years; absence of clinical signs of cardiovascular disease at the time of examination and indications of a history of cardiovascular accidents. Exclusion criteria: unsigned informed consent; pregnancy; breastfeeding; other rheumatic disease; cancer; high and very high cardiovascular risk on the SCORE scale. The survey included an assessment of anthropometric data, blood pressure (BP), lipid profile, serum levels of glucose, creatinine, uric acid, C-reactive protein, vitamin D, osteoprotegerin, parathyroid hormone, and the levels of magnesium, phosphorus, and total calcium were studied. All patients underwent multispiral computed tomography with determination of calcium count and the number of affected arteries. To calculate the coronary score, the A.S. Agatston et al.Results and discussion. Most of the parameters in the compared groups did not differ. When assessing the calcification of the coronary arteries according to the A.S. Agatston et al. 9 (45%) patients with CPPD and 8 (40%) patients with OA had a coronary calcium score >1. Quantitative indicators of calcium score can correspond to coronary artery stenosis ≥20% in 8 (40%) patients with CPPD and in 5 (25%) patients with OA according to J.A. Rumberger et al. The serum level of osteoprotegerin was significantly higher in patients with a calcium score ≥27 according to J.A. Rumberger et al. (p=0.04). Calcification was detected in 9 (56%) of 16 patients with serum vitamin D levels <30 ng/ml and in 8 (33%) of 24 patients with serum vitamin D levels >30 ng/ml.Conclusions. In patients with an initially low cardiovascular risk, the probability of a combination of chondrocalcinosis and cardiovascular calcification is 45%, in OA it is 40%. The risk factors for coronary calcification in patients with CPPD and OA should be studied further.
Collapse
Affiliation(s)
| | | | | | - L. M. Blank
- V.A. Nasonova Research Institute of Rheumatology
| | | | | | - E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University of the Ministry of Health Care of Russian Federation (Sechenov University)
| |
Collapse
|
27
|
Yang X, Chen A, Liang Q, Dong Q, Fu M, Liu X, Wang S, Li Y, Ye Y, Lan Z, Ou JS, Lu L, Yan J. Up-regulation of heme oxygenase-1 by celastrol alleviates oxidative stress and vascular calcification in chronic kidney disease. Free Radic Biol Med 2021; 172:530-540. [PMID: 34174395 DOI: 10.1016/j.freeradbiomed.2021.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Vascular calcification is very commonly observed in patients with chronic kidney disease (CKD), but there is no efficient therapy available. Oxidative stress plays critical roles in the progression of vascular calcification. Celastrol (Cel), a natural constituent derived from Chinese herbals, exhibits anti-oxidative stress activity. Here, we investigated the effect of celastrol on vascular calcification using vascular smooth muscle cells (VSMCs), arterial rings and CKD rats. Alizarin red staining and gene expression analysis showed that Cel dose-dependently inhibited rat VSMC calcification and osteogenic differentiation. Similarly, ex vivo study revealed that Cel inhibited calcification of rat and human arterial rings. In addition, micro-computed tomography, alizarin red staining and calcium content analysis confirmed that Cel inhibited aortic calcification in CKD rats. Interestingly, Cel treatment increased the mRNA and protein levels of heme oxygenase-1 (HMOX-1), and reduced the levels of reactive oxygen species (ROS) in VSMCs. Furthermore, both pharmacological inhibition of HMOX-1 and knockdown of HMOX-1 by siRNA independently counteracted the inhibitory effect of Cel on vascular calcification. Moreover, knockdown of HMOX-1 prevented Cel treatment-mediated reduction in ROS levels. Finally, Cel treatment reduced Vitamin D3-induced aortic calcification in mice and this effect was blocked by HMOX-1 inhibitor ZnPP9. Collectively, our results suggest that up-regulation of HMOX-1 is required for the inhibitory effect of Cel on vascular calcification. Modulation of HMOX-1 may provide a novel strategy for the treatment of vascular calcification in CKD.
Collapse
Affiliation(s)
- Xiulin Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China.
| |
Collapse
|
28
|
Amer AE, Shehatou GSG, El-Kashef HA, Nader MA, El-Sheakh AR. Flavocoxid Ameliorates Aortic Calcification Induced by Hypervitaminosis D 3 and Nicotine in Rats Via Targeting TNF-α, IL-1β, iNOS, and Osteogenic Runx2. Cardiovasc Drugs Ther 2021; 36:1047-1059. [PMID: 34309798 DOI: 10.1007/s10557-021-07227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This research was designed to investigate the effects and mechanisms of flavocoxid (FCX) on vascular calcification (VC) in rats. METHODS Vitamin D3 and nicotine were administered to Wistar rats, which then received FCX (VC-FCX group) or its vehicle (VC group) for 4 weeks. Control and FCX groups served as controls. Systolic (SBP) and diastolic (DBP) blood pressures, heart rate (HR), and left ventricular weight (LVW)/BW were measured. Serum concentrations of calcium, phosphate, creatinine, uric acid, and alkaline phosphatase were determined. Moreover, aortic calcium content and aortic expression of runt-related transcription factor (Runx2), osteopontin (OPN), Il-1β, α-smooth muscle actin (α-SMA), matrix metalloproteinase-9 (MMP-9), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) were assessed. Oxidative status in aortic homogenates was investigated. RESULTS Compared to untreated VC rats, FCX treatment prevented body weight loss, reduced aortic calcium deposition, restored normal values of SBP, DBP, and HR, and attenuated LV hypertrophy. FCX also improved renal function and ameliorated serum levels of phosphorus, calcium, and ALP in rats with VC. FCX abolished aortic lipid peroxidation in VC rats. Moreover, VC-FCX rats showed marked reductions in aortic levels of Il-1β and osteogenic marker (Runx2) and attenuated aortic expression of TNF-α, iNOS, and MMP-9 proteins compared to untreated VC rats. The expression of the smooth muscle lineage marker α-SMA was greatly enhanced in aortas from VC rats upon FCX treatment. CONCLUSION These findings demonstrate FCX ability to attenuate VDN-induced aortic calcinosis in rats, suggesting its potential for preventing arteiocalcinosis in diabetic patients and those with chronic kidney disease.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt.
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| |
Collapse
|
29
|
Dong Q, Liang Q, Chen Y, Li J, Lu L, Huang X, Zhou Q. Bibliometric and Visual Analysis of Vascular Calcification Research. Front Pharmacol 2021; 12:690392. [PMID: 34335257 PMCID: PMC8319769 DOI: 10.3389/fphar.2021.690392] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Extensive studies related to vascular calcification (VC) were conducted in recent years. However, no bibliometric analysis has systematically investigated this topic. Our study aimed to determine the hotspots and frontiers of VC research in the past decade and provide a reference for future scientific research directions and decision-making in the VC field. Methods: VC studies were acquired from the Web of Science Core Collection. Bibliometric and visual analyses were performed using CiteSpace, VOSviewer, and Microsoft Excel software. Results: A total of 8,238 English articles on VC research published in 2011–2020 were obtained. In the past decade, annual publications and citations showed a significant growth trend, especially in 2018–2020. The most productive country, institution, journal and author are the United States, the University of California System, PLOS ONE, and Budoff MJ, respectively. The most frequently cited country, journal, and author are the United States, Journal of the American College of Cardiology, and Floege J, respectively. “Vascular calcification,” “atherosclerosis,” “chronic kidney disease,” and “cardiovascular disease” are the primary keywords. The burst keywords “revascularization,” “calciprotein particle,” “microRNA,” and “microcalcification” are speculated to be the research frontiers. Conclusion: The main research hotspots in the VC field are the molecular mechanisms and prognosis of VC in patients with chronic kidney disease or cardiovascular disease. In addition, endovascular therapy and the development of new drugs targeting signal pathways for VC will become the focus of future research. Moreover, non-coding RNAs related to the diagnosis and treatment of VC are great research prospects.
Collapse
Affiliation(s)
- Qian Dong
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinhe Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiongqing Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Tasbulak O, Duran M, Aktemur T, Guler A, Kahraman S, Ulutas AE, Erturk M, Yalcin AA. Impact of iliac arterial calcification on procedure success and long-term outcomes among patients undergoing endovascular intervention. Vascular 2021; 30:490-499. [PMID: 34098814 DOI: 10.1177/17085381211020958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Vascular calcification is a well-known phenomenon and affects coronary and carotid arteries as well as other arterial beds. Presence of arterial calcification is associated with major adverse events in patients undergoing percutaneous coronary artery or carotid artery intervention. Even though there is a clear association between worse outcome and coronary-carotid calcification, there is no research that interrogated the relationship between iliac arterial calcification and clinical outcomes because of lack of data. Therefore, in this study, we aimed to investigate the impact of iliac arterial calcification on procedure success rates and long-term outcomes among patients undergoing endovascular intervention. METHODS The records of 453 consecutive patients who underwent endovascular intervention due to symptomatic peripheral artery disease were analyzed. Patients were divided into two groups based on the presence or absence of heavy calcification of iliac arteries. For each group, technical aspects of procedures and subsequent clinical outcomes were analyzed. RESULTS According to our study, the rate of restenosis following endovascular intervention at 6 and 12 months were similar between two groups. On the other hand, long-term restenosis was significantly higher in patients with heavy calcification of iliac arteries as compared to patients with low calcification on iliac arteries (32.2% vs. 12.8%, p < 0.05). CONCLUSIONS Our data showed that there was a strong association between heavy calcification of iliac arteries and long-term restenosis in patients undergoing endovascular intervention.
Collapse
Affiliation(s)
- Omer Tasbulak
- Department of Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Duran
- Department of Cardiology, Konya Training and Research Hospital, Konya, Turkey
| | - Tugba Aktemur
- Department of Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Arda Guler
- Department of Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Serkan Kahraman
- Department of Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Emir Ulutas
- Department of Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Erturk
- Department of Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Arif Yalcin
- Department of Cardiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
31
|
Jan YT, Tsai PS, Longenecker CT, Lin DC, Yun CH, Sung KT, Liu CC, Kuo JY, Hung CL, Wu TH, Lin JL, Hou CJY, Tsai CT, Chien CY, So A. Thoracic Aortic Calcification and Pre-Clinical Hypertension by New 2017 ACC/AHA Hypertension Guidelines. Diagnostics (Basel) 2021; 11:diagnostics11061027. [PMID: 34205037 PMCID: PMC8226485 DOI: 10.3390/diagnostics11061027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023] Open
Abstract
The recently revised 2017 American College of Cardiology/American Heart Association (ACC/AHA) hypertension (HTN) guidelines employ a lower blood pressure threshold to define HTN, aiming for earlier prevention of HTN-related cardiovascular diseases (CVD). Thoracic aortic calcification (TAC), a new surrogate marker of aging and aortic medial layer degeneration, and different stages of HTN, according to the 2017 ACC/AHA HTN guidelines, remain unknown. We classified 3022 consecutive asymptomatic individuals enrolled into four HTN categories using the revised 2017 ACC/AHA guidelines: normal blood pressure (NBP), elevated blood pressure (EBP), and stage 1 (S1) and stage 2 (S2) HTN. The coronary artery calcification score and TAC metrics (total Agaston TAC score, total plaque volume (mm3), and mean density (Hounsfield units, HU)) were measured using multi-detector computed tomography. Compared to NBP, a graded and significant increase in the TAC metrics was observed starting from EBP and S1 and S2 HTN, using the new 2017 ACC/AHA guidelines (NBP as reference; all trends: p < 0.001). These differences remained consistent after being fully adjusted. Older age (>50 years), S1 and S2 HTN, prevalent diabetes, and chronic kidney disease (<60 mL/min/1.73 m2) are all independently contributing factors to higher TAC risk using multivariate stepwise logistic regressions (all p ≤ 0.001). The optimal cutoff values of systolic blood pressure, diastolic blood pressure, and pulse pressure were 121, 74, and 45 mmHg, respectively, for the presence of TAC after excluding subjects with known CVD and ongoing HTN medication treatment. Our data showed that the presence of TAC starts at a stage of elevated blood pressure not categorized as HTN from the updated 2017 ACC/AHA hypertension guidelines.
Collapse
Affiliation(s)
- Ya-Ting Jan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-T.J.); (P.-S.T.); (K.-T.S.)
- Department of Radiology, MacKay Memorial Hospital, Taipei 104, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 112, Taiwan
| | - Pei-Shan Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-T.J.); (P.-S.T.); (K.-T.S.)
- Department of Radiology, MacKay Memorial Hospital, Taipei 104, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 112, Taiwan
| | | | - Dao-Chen Lin
- Division of Endocrine and metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Department of Radiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Ho Yun
- Department of Radiology, MacKay Memorial Hospital, Taipei 104, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 112, Taiwan
| | - Kuo-Tzu Sung
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-T.J.); (P.-S.T.); (K.-T.S.)
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Chuan-Chuan Liu
- Graduate Institute of Health Care Organization Administration, College of Public Health National Taiwan University, Taipei 100, Taiwan;
- Health Evaluation Center, MacKay Memorial Hospital, Taipei 104, Taiwan
- Department of Medical Technology, Yuanpei University of Science and Technology, Hsin-Chu City 306, Taiwan
| | - Jen-Yuan Kuo
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Chung-Lieh Hung
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
- Graduate Institute of Health Care Organization Administration, College of Public Health National Taiwan University, Taipei 100, Taiwan;
| | - Tung-Hsin Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-T.J.); (P.-S.T.); (K.-T.S.)
- Correspondence: (T.-H.W.); (C.-Y.C.)
| | - Jiun-Lu Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan;
| | - Charles Jia-Yin Hou
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Cheng-Ting Tsai
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Chen-Yen Chien
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan; (J.-Y.K.); (C.-L.H.); (C.J.-Y.H.); (C.-T.T.)
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 112, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan
- Correspondence: (T.-H.W.); (C.-Y.C.)
| | - Aaron So
- Imaging Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada;
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
32
|
Birişik F, Bilgin Y, Bayram S, Öztürkmen Y. Does Presence of Femoral Arterial Calcification Have an Effect on Postoperative Complication and Mortality in Patients With Hip Fracture? Cureus 2021; 13:e14878. [PMID: 34113507 PMCID: PMC8177717 DOI: 10.7759/cureus.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction In this study, we investigated the relationship between femoral arterial calcification on preoperative hip radiography and post-operative complications and all-time mortality rates in patients with hip fracture >65 years old. Methods This retrospective study was conducted by evaluating the records of patients who were operated for hip fractures. All patients were divided into two groups according to the presence of lower extremity arterial calcification (LEAC) at the femoral artery which was diagnosed using the hip radiograph. The patients with and without the presence of LEAC were assigned as groups 1 and 2, respectively. A multivariate Cox algorithm was applied to recognize whether this radiological factor is independently associated with survival. Results The study included 530 patients (540 hips; 191 males and 339 females) with an average age of 80.8 ± 7.6 years. In the study after 24.8±19.9 months (range:0-65 months) follow-up period, 336 (63.3%) patients had expired. Conversely, 194 (36.7%) patients are surviving. Survival rates at one month and one year after surgery were 89.5% and 65.7%, respectively. 234 of 540 hips (230 patients) have LEAC on the femoral artery. The survival rate at one month, one year, and overall survival were significantly higher in patients with LEAC. The postoperative infection rate was also two times higher in patients with LEAC than without LEAC (p = 0.021). Multivariate analysis demonstrated that age, treatment modality (hemiarthroplasty), and the presence of femoral arterial calcification were independently associated with poor overall survival. Conclusions In our study, we found that the presence of femoral arterial calcification on the affected side of the hip identified on hip radiograph was independently associated with poor one month, one year, and overall survival as the patients had 1.5 times higher mortality rate. Additionally, a significant correlation was found between age and survival of patients with hip fracture, especially patients >80 years old.
Collapse
Affiliation(s)
- Fevzi Birişik
- Orthopaedics and Traumatology, Istanbul Training and Research Hospital, Istanbul, TUR
| | - Yücel Bilgin
- Orthopaedics and Traumatology, Istanbul Training and Research Hospital, Istanbul, TUR
| | - Serkan Bayram
- Orthopaedics and Traumatology, Istanbul University School of Medicine, Istanbul, TUR
- Orthopaedics, Istanbul University, Istanbul, TUR
| | - Yusuf Öztürkmen
- Orthopaedics and Traumatology, Istanbul Training and Research Hospital, Istanbul, TUR
| |
Collapse
|
33
|
Prevention of Vascular Calcification by Magnesium and Selected Polyphenols. Adv Prev Med 2021; 2021:6686597. [PMID: 33927901 PMCID: PMC8053061 DOI: 10.1155/2021/6686597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Arterial vascular calcification (VC) represents formation of calcium phosphate deposits on the interior of arteries, which could restrict blood flow leading to heart health problems, including morbidity and mortality. VC is a complex and tightly regulated process that involves transformation of vascular smooth muscle cells (VSMCs) to bone-like cells and subsequent deposition of calcium as hydroxyapatite. Natural bioactives, including quercetin (Q), curcumin (C), resveratrol (R), and magnesium (Mg), have been reported to inhibit VC. Thus, we conducted an in vitro study using rat vascular smooth muscle cells (rVSMCs) to evaluate the protective effect of natural bioactives found in OptiCel, that is, Mg combined with polyphenols (PPs), Q, C, and R. Calcification was induced by culturing rVSMCs in a high phosphate (HP) medium. The addition of Mg and Q + C + R separately decreased the HP-induced calcium deposition by 37.55% and 42.78%, respectively. In contrast, when Mg was combined with Q, C, and R, the inhibition of calcium deposition was decreased by 92.88%, which is greater than their calculated additive inhibition (80.33%). These results demonstrate that the combination of Mg with selected PPs (Q, C, and R) is more effective than when used separately. The findings also suggest the combination has a synergistic effect in inhibiting VC, which is a risk factor for cardiovascular disease. Thus, regular consumption of these natural bioactives could have a beneficial effect in reducing the development of heart diseases.
Collapse
|
34
|
Qin Z, Liao R, Xiong Y, Jiang L, Li J, Wang L, Han M, Sun S, Geng J, Yang Q, Zhang Z, Li Y, Du H, Su B. A narrative review of exosomes in vascular calcification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:579. [PMID: 33987277 DOI: 10.21037/atm-20-7355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular calcification (VC) is the abnormal deposition of calcium, phosphorus, and other minerals in the vessel wall and can be commonly observed in diabetes, chronic kidney disease, and chronic inflammatory disease. It is closely associated with mortality from cardiovascular events. Traditionally, calcification is considered as a degenerative disease associated with the aging process, while increasing evidence has shown that the occurrence and development of calcification is an active biological process, which is highly regulated by multiple factors. The molecular mechanisms of VC have not yet been fully elucidated. Exosomes, as important transporters of substance transport and intercellular communication, have been shown to participate in VC. The regulation of VC by exosomes involves a number of complex biological processes, which occur through a variety of interaction mechanisms. However, the specific role and mechanism of exosomes in the process of VC are still not fully understood and require further study. This review will briefly describe the roles of exosomes in the process of VC including in the promotion of extracellular mineral deposits, induction of phenotypic conversion of vascular smooth muscle cells (VSMCs), transport of microRNA between cells, and regulation on autophagy and oxidative stress, with the aim of providing novel ideas for the clinical diagnosis and treatment of VC.
Collapse
Affiliation(s)
- Zheng Qin
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yuqin Xiong
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiameng Li
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liya Wang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Han
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Si Sun
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiwen Geng
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qinbo Yang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuyun Zhang
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yupei Li
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Heyue Du
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Baihai Su
- Department of nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Predictive value of lower extremity color doppler ultrasonography before knee arthroplasty on a postoperative cardiovascular event. Knee 2021; 28:266-272. [PMID: 33453515 DOI: 10.1016/j.knee.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The study intended to determine the presence of lower limb arterial calcification (LLAC) in lower extremity color Doppler ultrasonography (CDUS) before primary total knee arthroplasty (TKA) and its relation with cardiovascular events (CVE) during knee arthroplasty and the postoperative period, as well as to investigate its effect on surgical risk estimation. METHODS We designed this study as a retrospective cohort study. The study comprised 467 patients who met the inclusion criteria and had surgery for a primary gonarthrosis diagnosis between January 2005 and December 2015 were included. In the study group, patients with arterial calcification in the lower extremity CDUS were included; however, those reported not to have it were included in the control group. The research data were obtained from preoperative anesthesia records and patient medical records. RESULTS 72% of the sample had preoperative cardiovascular comorbidity. There was no difference between the groups in terms of comorbidities, except for congestive heart failure (CHF) and peripheral artery disease (PAD). The groups did not differ in terms of ASA scores, either. Both pre- and post-operative CVEs, i.e., ischemic heart disease, dysrhythmia, and CHF, were statistically high in the study group. In terms of postoperative mortality, there was no statistical difference between the groups. CONCLUSION The study demonstrates that the presence of LLAC in CDUS is associated with increased risk of perioperative cardiovascular events (CVEs). Ultrasonographic detection of LLAC may give some idea the surgeon about the requirement for additional preoperative cardiac examinations.
Collapse
|
36
|
The Crosstalk between Calcium Ions and Aldosterone Contributes to Inflammation, Apoptosis, and Calcification of VSMC via the AIF-1/NF- κB Pathway in Uremia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3431597. [PMID: 33343805 PMCID: PMC7732390 DOI: 10.1155/2020/3431597] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Vascular calcification is a major complication of maintenance hemodialysis patients. Studies have confirmed that calcification mainly occurs in the vascular smooth muscle cells (VSMC) of the vascular media. However, the exact pathogenesis of VSMC calcification is still unknown. This study shows that the crosstalk between calcium and aldosterone via the allograft inflammatory factor 1 (AIF-1) pathway contributes to calcium homeostasis and VSMC calcification, which is a novel mechanism of vascular calcification in uremia. In vivo results showed that the level of aldosterone and inflammatory factors increased in calcified arteries, whereas no significant changes were observed in peripheral blood. However, the expression of inflammatory factors markedly increased in the peripheral blood of uremic rats without aortic calcification and gradually returned to normal levels with aggravation of aortic calcification. In vitro results showed that there was an interaction between calcium ions and aldosterone in macrophages or VSMC. Calcium induced aldosterone synthesis, and in turn, aldosterone also triggered intracellular calcium content upregulation in macrophages or VSMC. Furthermore, activated macrophages induced inflammation, apoptosis, and calcification of VSMC. Activated VSMC also imparted a similar effect on untreated VSMC. Finally, AIF-1 enhanced aldosterone- or calcium-induced VSMC calcification, and NF-κB inhibitors inhibited the effect of AIF-1 on VSMC. These in vivo and in vitro results suggest that the crosstalk between calcium ions and aldosterone plays an important role in VSMC calcification in uremia via the AIF-1/NF-κB pathway. Local calcified VSMC induced the same pathological process in surrounding VSMC, thereby contributing to calcium homeostasis and accelerating vascular calcification.
Collapse
|
37
|
Mansour A, Darwiche W, Yaker L, Da Nascimento S, Gomila C, Rossi C, Jung V, Sonnet P, Kamel S, Guerrera IC, Boullier A, Ausseil J. GFOGER Peptide Modifies the Protein Content of Extracellular Vesicles and Inhibits Vascular Calcification. Front Cell Dev Biol 2020; 8:589761. [PMID: 33330469 PMCID: PMC7734313 DOI: 10.3389/fcell.2020.589761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Vascular calcification (VC) is an active process during which vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and release extracellular vesicles (EVs). In turn, the EVs serve as calcification foci via interaction with type 1 collagen (COL1). We recently showed that a specific, six-amino-acid repeat (GFOGER) in the sequence of COL1 was involved in the latter's interaction with integrins expressed on EVs. Our main objective was to test the GFOGER ability to inhibit VC. APPROACH We synthesized the GFOGER peptide and tested its ability to inhibit the inorganic phosphate (Pi)-induced calcification of VSMCs and aortic rings. Using mass spectrometry, we studied GFOGER's effect on the protein composition of EVs released from Pi-treated VSMCs. RESULTS Calcification of mouse VSMCs (MOVAS-1 cells), primary human VSMCs, and rat aortic rings was lower in the presence of GFOGER than with Pi alone (with relative decreases of 66, 58, and 91%, respectively; p < 0.001 for all) (no effect was observed with the scramble peptide GOERFG). A comparative proteomic analysis of EVs released from MOVAS-1 cells in the presence or absence of Pi highlighted significant differences in EVs' protein content. Interestingly, the expression of some of the EVs' proteins involved in the calcification process (such as osteogenic markers, TANK-binding kinase 1, and casein kinase II) was diminished in the presence of GFOGER peptide (data are available via ProteomeXchange with identifier PXD018169∗). The decrease of osteogenic marker expression observed in the presence of GFOGER was confirmed by q-RT-PCR analysis. CONCLUSION GFOGER peptide reduces vascular calcification by modifying the protein content of the subsequently released EVs, in particular by decreasing osteogenicswitching in VSMCs.
Collapse
Affiliation(s)
- Ali Mansour
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
| | - Walaa Darwiche
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
| | - Linda Yaker
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
| | - Sophie Da Nascimento
- AGIR, UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Cathy Gomila
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
| | - Claire Rossi
- Alliance Sorbonne Université, Université de Technologie de Compiègne, UMR7025 CNRS Enzyme and Cell Engineering Laboratory, Compiègne, France
| | - Vincent Jung
- Plateforme protéomique Necker, Faculté de Médecine Paris Descartes, Université de Paris – Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Pascal Sonnet
- AGIR, UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Saïd Kamel
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire d’ Amiens, Amiens, France
| | - Ida Chiara Guerrera
- Plateforme protéomique Necker, Faculté de Médecine Paris Descartes, Université de Paris – Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Agnès Boullier
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire d’ Amiens, Amiens, France
| | - Jérôme Ausseil
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Amiens, France
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR1043 – CNRS UMR5282 – Université Toulouse III, Toulouse, France
- CHU Toulouse – Institut Fédératif de Biologie, Laboratoire de Biochimie, Toulouse, France
| |
Collapse
|
38
|
Ciceri P, Tettamanti G, Galassi A, Magagnoli L, Fabresse N, Alvarez JC, Massy ZA, Messa P, Cozzolino M. Pro-calcifying analysis of uraemic serum from patients treated with medium cut-off membrane in a prospective, cross-over study. Clin Kidney J 2020; 14:1798-1807. [PMID: 34221387 PMCID: PMC8243281 DOI: 10.1093/ckj/sfaa216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Background The retention of a large number of solutes that are normally excreted or metabolized by the kidney is responsible for the symptoms typical in uraemic patients. These molecules are defined as uraemic toxins and can be classified into three groups: small water-soluble molecules, middle molecules and protein-bound toxins. Recently, efforts were put towards developing dialysis membranes that allow the removal of large middle molecules without clinically relevant albumin loss. These membranes are the medium cut-off (MCO) membranes that allow the removal of middle molecules up to ∼50 000 Da. Methods We performed a prospective, open-label, controlled, cross-over pilot study comparing expanded haemodialysis (HDx) (novel MCO membrane Theranova 400) and conventional haemodialysis (HD) in 20 prevalent HD patients. Ten patients used conventional HD high-flux dialyser and 10 patients used HDx for 3 months; later the patients switched and received the other treatment for a further 3 months. We then analysed the pro-calcifying effect of uraemic serum in a model of high phosphate(Pi)-induced calcification in vascular smooth muscle cells (VSMCs). Results In this study, every patient was the control of himself and, interestingly, we found a tendency of less pro-calcifying potential from HDx-treated patients' serum compared with HD. Studying pathogenetic processes involved in high Pi-induced calcium deposition, we found that uraemic serum of HDx-treated patients induced less VSMC necrosis compared with uraemic serum of HD patients. Nevertheless, no differences were found between the different dialytic treatments in the serum potential to induce apoptosis and to modulate the expression of a panel of genes involved in VSMC simil-osteoblastic differentiation such as bone morphogenetic protein 2, runt-related transcription factor 2, osteocalcin, matrix Gla protein, osteopontin, elastin and collagen I α1. In an effort to characterize the difference in uraemic toxin profile during the two different dialytic treatments, we measured a panel of 10 uraemic toxins and 3 precursors, finding a significant increased removal during HDx of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, tryptophane and some of its metabolites, such as 3-indoxyl sulphate, indole 3-acetic acid and kynurenine. Conclusions These preliminary data are promising, although larger patients' groups are needed to better understand the effects of HDx on vascular calcification.
Collapse
Affiliation(s)
- Paola Ciceri
- Department of Nephrology, Dialysis and Renal Transplant, Renal Research Laboratory, Fondazione Ca' Granda IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgia Tettamanti
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Galassi
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Nicolas Fabresse
- Laboratory of Pharmacology and Toxicology, CHU Raymond Poincare, Garches, France
| | - Jean-Claude Alvarez
- Laboratory of Pharmacology and Toxicology, CHU Raymond Poincare, Garches, France.,INSERM U-1173, UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), Montigny le Bretonneux, France
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt/Paris, Paris, France.,Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin (UVSQ), Villejuif, France
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplant, Renal Research Laboratory, Fondazione Ca' Granda IRCCS, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Neutel CHG, Hendrickx JO, Martinet W, De Meyer GRY, Guns PJ. The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review. Int J Mol Sci 2020; 21:E8933. [PMID: 33255685 PMCID: PMC7728070 DOI: 10.3390/ijms21238933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autophagy is a highly conserved catabolic homeostatic process, crucial for cell survival. It has been shown that autophagy can modulate different cardiovascular pathologies, including vascular calcification (VCN). OBJECTIVE To assess how modulation of autophagy, either through induction or inhibition, affects vascular and valvular calcification and to determine the therapeutic applicability of inducing autophagy. DATA SOURCES A systematic review of English language articles using MEDLINE/PubMed, Web of Science (WoS) and the Cochrane library. The search terms included autophagy, autolysosome, mitophagy, endoplasmic reticulum (ER)-phagy, lysosomal, calcification and calcinosis. Study characteristics: Thirty-seven articles were selected based on pre-defined eligibility criteria. Thirty-three studies (89%) studied vascular smooth muscle cell (VSMC) calcification of which 27 (82%) studies investigated autophagy and six (18%) studies lysosomal function in VCN. Four studies (11%) studied aortic valve calcification (AVCN). Thirty-four studies were published in the time period 2015-2020 (92%). CONCLUSION There is compelling evidence that both autophagy and lysosomal function are critical regulators of VCN, which opens new perspectives for treatment strategies. However, there are still challenges to overcome, such as the development of more selective pharmacological agents and standardization of methods to measure autophagic flux.
Collapse
Affiliation(s)
| | | | | | | | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Antwerp, Belgium; (C.H.G.N.); (J.O.H.); (W.M.); (G.R.Y.D.M.)
| |
Collapse
|
40
|
Chao CT, Yeh HY, Tsai YT, Yuan TH, Liao MT, Huang JW, Chen HW. Astaxanthin Counteracts Vascular Calcification In Vitro Through an Early Up-Regulation of SOD2 Based on a Transcriptomic Approach. Int J Mol Sci 2020; 21:ijms21228530. [PMID: 33198315 PMCID: PMC7698184 DOI: 10.3390/ijms21228530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is a critical contributor to the rising cardiovascular risk among at-risk populations such as those with diabetes or renal failure. The pathogenesis of VC involves an uprising of oxidative stress, for which antioxidants can be theoretically effective. However, astaxanthin, a potent antioxidant, has not been tested before for the purpose of managing VC. To answer this question, we tested the efficacy of astaxanthin against VC using the high phosphate (HP)-induced vascular smooth muscle cell (VSMC) calcification model. RNAs from treated groups underwent Affymetrix microarray screening, with intra-group consistency and inter-group differential expressions identified. Candidate hub genes were selected, followed by validation in experimental models and functional characterization. We showed that HP induced progressive calcification among treated VSMCs, while astaxanthin dose-responsively and time-dependently ameliorated calcification severities. Transcriptomic profiling revealed that 3491 genes exhibited significant early changes during VC progression, among which 26 potential hub genes were selected based on closeness ranking and biologic plausibility. SOD2 was validated in the VSMC model, shown to drive the deactivation of cellular senescence and enhance antioxidative defenses. Astaxanthin did not alter intracellular reactive oxygen species (ROS) levels without HP, but significantly lowered ROS production in HP-treated VSMCs. SOD2 knockdown prominently abolished the anti-calcification effect of astaxanthin on HP-treated VSMCs, lending support to our findings. In conclusion, we demonstrated for the first time that astaxanthin could be a potential candidate treatment for VC, through inducing the up-regulation of SOD2 early during calcification progression and potentially suppressing vascular senescence.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan; (C.-T.C.); (Y.-T.T.)
- Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei 11102, Taiwan;
| | - You-Tien Tsai
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan; (C.-T.C.); (Y.-T.T.)
| | - Tzu-Hang Yuan
- Genome and Systems Biology Degree Program, Academia Sinica, Taipei 11529, Taiwan;
| | - Min-Tser Liao
- Department of Pediatrics, Armed Force Taoyuan General Hospital, Taoyuan County 32551, Taiwan;
| | - Jenq-Wen Huang
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital YunLin Branch, YunLin County 640203, Taiwan
- Correspondence: ; Tel.: +886-5-5323911 (ext. 5675)
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan;
| |
Collapse
|
41
|
Holmar J, de la Puente-Secades S, Floege J, Noels H, Jankowski J, Orth-Alampour S. Uremic Toxins Affecting Cardiovascular Calcification: A Systematic Review. Cells 2020; 9:2428. [PMID: 33172085 PMCID: PMC7694747 DOI: 10.3390/cells9112428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular calcification is highly prevalent and associated with increased morbidity in chronic kidney disease (CKD). This review examines the impact of uremic toxins, which accumulate in CKD due to a failing kidney function, on cardiovascular calcification. A systematic literature search identified 41 uremic toxins that have been studied in relation to cardiovascular calcification. For 29 substances, a potentially causal role in cardiovascular calcification was addressed in in vitro or animal studies. A calcification-inducing effect was revealed for 16 substances, whereas for three uremic toxins, namely the guanidino compounds asymmetric and symmetric dimethylarginine, as well as guanidinosuccinic acid, a calcification inhibitory effect was identified in vitro. At a mechanistic level, effects of uremic toxins on calcification could be linked to the induction of inflammation or oxidative stress, smooth muscle cell osteogenic transdifferentiation and/or apoptosis, or alkaline phosphatase activity. For all middle molecular weight and protein-bound uremic toxins that were found to affect cardiovascular calcification, an increasing effect on calcification was revealed, supporting the need to focus on an increased removal efficiency of these uremic toxin classes in dialysis. In conclusion, of all uremic toxins studied with respect to calcification regulatory effects to date, more uremic toxins promote rather than reduce cardiovascular calcification processes. Additionally, it highlights that only a relatively small part of uremic toxins has been screened for effects on calcification, supporting further investigation of uremic toxins, as well as of associated post-translational modifications, on cardiovascular calcification processes.
Collapse
Affiliation(s)
- Jana Holmar
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| | - Sofia de la Puente-Secades
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| | - Jürgen Floege
- Division of Nephrology, RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany;
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Setareh Orth-Alampour
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| |
Collapse
|
42
|
Li H, Pan K, Meng Y, Deng J, Zhang P, Song W, Li S. Mutual promotions between periodontitis and vascular calcification by rat animal model. J Periodontal Res 2020; 55:810-820. [PMID: 32996601 DOI: 10.1111/jre.12757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 03/09/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE AND BACKGROUND To study the relationship between periodontitis and vascular calcification by establishing rat model of chronic periodontitis and vascular calcification. METHODS Forty male Wistar rats were divided into four groups randomly: control group, periodontitis group, vascular calcification group, and compound periodontitis and calcification group. Each group rats accepted the corresponding manages to establish the animal model. Clinical examinations and hematoxylin and eosin staining of periodontal tissue were taken to test the periodontal model; calcium assay, alkaline phosphatase activity, expression of mineral-related factors including osteopontin, alkaline phosphatase, core-binding factor-α1 and bone sialoprotein, hematoxylin and eosin staining and von Kossa staining of vascular tissue were taken to test the vascular calcification model; inflammatory factors including C-reactive protein, interleukin-1β, tumor necrosis factor-α, interleukin-6, prostaglandin E2, and serum lipid in serum were also detected at the same time. RESULTS The rat model was established. Inflammation of periodontal tissue and alveolar bone resorption in compound group and periodontitis group were more obvious than those in control group and vascular calcification group (P < .05). However, the calcium assay, alkaline phosphatase activity, and mineralized deposition in vascular calcification group and compound group were higher than those in control group and periodontitis group (P < .05), and compound group were the highest (P < .05); as for serum lipid, the level of total cholesterol and low-density lipoprotein-cholesterol in compound group and vascular calcification group were higher than that in control group and periodontitis group (P < .05), and compound group was the highest (P <.05); but the level of high-density lipoprotein cholesterol was higher in control group and periodontitis group. Inflammatory factors expression in serum were higher in compound group and periodontitis group, while mineral-related factors expression were higher in compoundgroup and vascular calcification group. CONCLUSION There are some mutual promotions between periodontitis and vascular calcification, which might be related to the increasing inflammatory factors, lipids level, and mineral-related factors.
Collapse
Affiliation(s)
- Huixu Li
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Department of Endodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, TianJin, China
| | - Keqing Pan
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Yun Meng
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Department of Stomatology, The Traditional Chinese Medicine Hospital of Tianjin Dongli District, Tianjin, China
| | - Jing Deng
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Pengmei Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Department of Stomatology, The Huikang Hospital, Qingdao, China
| | - Wenbin Song
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Shu Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
43
|
Amer AE, El-Sheakh AR, Hamed MF, El-Kashef HA, Nader MA, Shehatou GSG. Febuxostat attenuates vascular calcification induced by vitamin D3 plus nicotine in rats. Eur J Pharm Sci 2020; 156:105580. [PMID: 33010420 DOI: 10.1016/j.ejps.2020.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 11/30/2022]
Abstract
This study was undertaken to investigate the possible ameliorative influences of febuxostat (FEB) on vitamin D3 plus nicotine (VDN)-induced vascular calcification (VC) in Wistar rats. VDN rats received a single dose of vitamin D3 (300.000 IU/kg, I.M) and two oral doses of nicotine (25 mg/kg) on day 1. They were then administrated FEB, in two doses (10 and 15 mg/kg/day, orally), or the drug vehicle, for 4 weeks. Age-matched normal rats served as control. At the end of the experiment, body weight, kidney function parameters, serum ionic composition, cardiovascular measures, aortic calcium deposition and aortic levels of oxidative stress markers, interleukin 1β (IL-1β), runt-related transcription factor 2 (Runx2) and osteopontin (OPN) were determined. Aortic immunoexpressions of tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), matrix metalloproteinase-9 (MMP-9) and α-smooth muscle actin (α-SMA) were evaluated. FEB significantly restored body weight loss, ameliorated kidney function and diminished serum disturbances of calcium and phosphorus in VDN rats. Moreover, FEB reduced VDN-induced elevations in aortic calcium deposition, SBP and DBP. FEB (15 mg/kg) markedly decreased left ventricular hypertrophy and bradycardia in VDN group. Mechanistically, FEB dose-dependently improved oxidative damage, decreased levels of IL-1β and Runx2, lessened expression of TNF-α, iNOS and MMP-9 and enhanced expression of OPN and α-SMA in VDN aortas relative to controls. These findings indicate that FEB, mainly at the higher administered dose (15 mg/kg), successfully attenuated VDN-induced VC. FEB may be useful in reducing VC in patients at high risk, including those with chronic kidney disease and diabetes mellitus.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt.
| |
Collapse
|
44
|
Nakama C, Kadowaki T, Choo J, El-Saed A, Kadota A, Willcox BJ, Fujiyoshi A, Shin C, Leader JK, Miura K, Masaki K, Ueshima H, Kuller LH, Bon J, Sekikawa A. Cross-sectional association of bone mineral density with coronary artery calcification in an international multi-ethnic population-based cohort of men aged 40-49: ERA JUMP study. IJC HEART & VASCULATURE 2020; 30:100618. [PMID: 32904231 PMCID: PMC7452517 DOI: 10.1016/j.ijcha.2020.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022]
Abstract
Significant association of atherosclerosis and bone mineral density has been reported. The association has been reported in postmenopausal women and elderly men. This study reported the association in an international cohort of middle-aged men. Coronary artery calcification was used as a biomarker of coronary atherosclerosis. Vertebral bone density was used as a surrogate marker of bone mineral density.
Introduction Inverse associations of cardiovascular disease (CVD) and atherosclerosis with osteoporosis and bone mineral density (BMD) have been reported in post-menopausal women and elderly men. We aimed to investigate an association between vetebral bone density (VBD) and coronary artery cacification (CAC) in an international multi-ethnic cohort of middle-aged men in the EBCT and Risk Factor Assessment among Japanese and US Men in the Post-World-War-II birth cohort (ERA JUMP). Methods ERA JUMP examined 1134 men aged 40–49 (267 white, 84 black, and 242 Japanese Americans, 308 Japanese in Japan, and 233 Koreans in South Korea) free from CVD for CAC, and VBD, biomarkers of coronary atherosclerosis and BMD, respectively, with electron-beam computed tomography, and other risk factors. CAC was quantified with the Agatston method and VBD by computing the mean Hounsfield Unit (HU) value of the T12 to L3 vertebrae. To examine multivariable-adjusted associations of CAC with VBD, we used robust linear and logistic regressions. Results The mean VBD and median CAC were 175.4 HU (standard deviation: 36.3) and 0 (interquartile range: (0, 4.5)), respectively. The frequency of CAC was 19.0%. There was no significant interaction by race. VBD had a significant inverse association with CAC score (β = −0.207, p-value = 0.005), while a 10-unit increase in VBD was significantly associated with the frequency of CAC (odds ratio (95% confidence interval) = 0.929 (0.890–0.969)). Both associations remained significant after adjusting for covariates. Conclusions VBD had a significant inverse association with CAC in this international multi-ethnic cohort of men aged 40–49.
Collapse
Affiliation(s)
- Chikako Nakama
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Kadowaki
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jina Choo
- Department of Community Health Nursing, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Aiman El-Saed
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aya Kadota
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Bradley J Willcox
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.,Kuakini Medical Center, Honolulu, HI, USA.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akira Fujiyoshi
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Hygiene, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Chol Shin
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Joseph K Leader
- Department of Radiology, Imaging Research Division, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Katsuyuki Miura
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kamal Masaki
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.,Kuakini Medical Center, Honolulu, HI, USA
| | - Hirotsugu Ueshima
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Lewis H Kuller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Bon
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Medical Center, Pittsburgh, PA, USA
| | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Dong Q, Chen Y, Liu W, Liu X, Chen A, Yang X, Li Y, Wang S, Fu M, Ou JS, Lu L, Yan J. 25-Hydroxycholesterol promotes vascular calcification via activation of endoplasmic reticulum stress. Eur J Pharmacol 2020; 880:173165. [PMID: 32423869 DOI: 10.1016/j.ejphar.2020.173165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Vascular calcification is a highly regulated process similar to osteogenesis involving phenotypic change of vascular smooth muscle cells (VSMCs). 25-Hydroxycholesterol (25-HC), one of oxysterols synthesized by the enzyme cholesterol 25-hydroxylase, has been shown to promote bovine calcifying vascular cells (CVC) calcification. However, whether and how 25-HC regulates vascular calcification are not completely understood. In this study, in vitro and ex vivo models of vascular calcification were used to determine whether 25-HC regulates vascular calcification. Alizarin red staining and calcium content assay showed that 25-HC treatment promoted calcification of rat and human VSMCs in a dose-dependent manner. Similarly, ex vivo study further confirmed that 25-HC accelerated calcification of rat aortic rings. In addition, western blot analysis showed that 25-HC significantly up-regulated the expression of endoplasmic reticulum stress (ERS) signaling molecules including ATF4 and CHOP in VSMCs and flow cytometry analysis revealed that 25-HC increased apoptosis of VSMCs. Moreover, knockdown of CHOP by siRNA blocked 25-HC-induced mineral deposition in VSMCs. Collectively, this study for the first time demonstrates that 25-HC promotes vascular calcification via ATF4/CHOP signaling using in vitro and ex vivo models, suggesting that ERS is involved in the regulation of 25-HC-induced vascular calcification.
Collapse
MESH Headings
- Activating Transcription Factor 4/metabolism
- Animals
- Aorta, Thoracic/cytology
- Apoptosis/drug effects
- Calcium/metabolism
- Cells, Cultured
- Endoplasmic Reticulum Stress/drug effects
- Humans
- Hydroxycholesterols/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- RNA, Small Interfering/genetics
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Transcription Factor CHOP/genetics
- Vascular Calcification/chemically induced
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yanting Chen
- Department of Pathophysiolgy, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Wantao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Xiulin Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-Sen University, China
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan School of Medicine, Sun Yat-Sen University, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China.
| |
Collapse
|
46
|
Park HJ, Kim Y, Kim MK, Hwang JJ, Kim HJ, Bae SK, Bae MK. Inhibition of Gastrin-Releasing Peptide Attenuates Phosphate-Induced Vascular Calcification. Cells 2020; 9:cells9030737. [PMID: 32192106 PMCID: PMC7140688 DOI: 10.3390/cells9030737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular calcification is the pathological deposition of calcium/phosphate in the vascular system and is closely associated with cardiovascular morbidity and mortality. Here, we investigated the role of gastrin-releasing peptide (GRP) in phosphate-induced vascular calcification and its potential regulatory mechanism. We found that the silencing of GRP gene and treatment with the GRP receptor antagonist, RC-3095, attenuated the inorganic phosphate-induced calcification of vascular smooth muscle cells (VSMCs). This attenuation was caused by inhibiting phenotype change, apoptosis and matrix vesicle release in VSMCs. Moreover, the treatment with RC-3095 effectively ameliorated phosphate-induced calcium deposition in rat aortas ex vivo and aortas of chronic kidney disease in mice in vivo. Therefore, the regulation of the GRP-GRP receptor axis may be a potential strategy for treatment of diseases associated with excessive vascular calcification.
Collapse
Affiliation(s)
- Hyun-Joo Park
- Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (H.-J.P.); (Y.K.); (M.-K.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea;
| | - Yeon Kim
- Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (H.-J.P.); (Y.K.); (M.-K.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea;
| | - Mi-Kyoung Kim
- Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (H.-J.P.); (Y.K.); (M.-K.K.)
| | - Jae Joon Hwang
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan 50610, Korea;
| | - Hyung Joon Kim
- Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (H.-J.P.); (Y.K.); (M.-K.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea;
| | - Soo-Kyung Bae
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea;
- Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50610, Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (H.-J.P.); (Y.K.); (M.-K.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea;
- Correspondence: ; Tel.: +82-51-510-8239
| |
Collapse
|
47
|
Zhang X, Li Y, Yang P, Liu X, Lu L, Chen Y, Zhong X, Li Z, Liu H, Ou C, Yan J, Chen M. Trimethylamine-N-Oxide Promotes Vascular Calcification Through Activation of NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome and NF-κB (Nuclear Factor κB) Signals. Arterioscler Thromb Vasc Biol 2020; 40:751-765. [DOI: 10.1161/atvbaha.119.313414] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives:
Vascular calcification is highly prevalent in patients with chronic kidney disease. Increased plasma trimethylamine N-oxide (TMAO), a gut microbiota-dependent product, concentrations are found in patients undergoing hemodialysis. However, a clear mechanistic link between TMAO and vascular calcification is not yet established. In this study, we investigate whether TMAO participates in the progression of vascular calcification using in vitro, ex vivo, and in vivo models.
Approach and Results:
Alizarin red staining revealed that TMAO promoted calcium/phosphate-induced calcification of rat and human vascular smooth muscle cells in a dose-dependent manner, and this was confirmed by calcium content assay. Similarly, TMAO upregulated the expression of bone-related molecules including Runx2 (Runt-related transcription factor 2) and BMP2 (bone morphogenetic protein-2), suggesting that TMAO promoted osteogenic differentiation of vascular smooth muscle cells. In addition, ex vivo study also showed the positive regulatory effect of TMAO on vascular calcification. Furthermore, we found that TMAO accelerated vascular calcification in rats with chronic kidney disease, as indicated by Mico-computed tomography analysis, alizarin red staining and calcium content assay. By contrast, reducing TMAO levels by antibiotics attenuated vascular calcification in chronic kidney disease rats. Interestingly, TMAO activated NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals during vascular calcification. Inhibition of NLRP3 inflammasome and NF-κB signals attenuated TMAO-induced vascular smooth muscle cell calcification.
Conclusions:
This study for the first time demonstrates that TMAO promotes vascular calcification through activation of NLRP3 inflammasome and NF-κB signals, suggesting the potential link between gut microbial metabolism and vascular calcification. Reducing the levels of TMAO could become a potential treatment strategy for vascular calcification in chronic kidney disease.
Collapse
Affiliation(s)
- Xiuli Zhang
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Yining Li
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Pingzhen Yang
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Xiaoyu Liu
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, China (L.L., Y.C.)
| | - Yanting Chen
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, China (L.L., Y.C.)
| | - Xinglong Zhong
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Zehua Li
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Hailin Liu
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Caiwen Ou
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Jianyun Yan
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| | - Minsheng Chen
- From the Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China (X.Z., Y.L., P.Y., X.L., X.Z., Z.L., H.L., C.O., J.Y., M.C.)
| |
Collapse
|
48
|
Mayer O, Seidlerová J, Kučera R, Kučerová A, Černá V, Gelžinský J, Mateřánková M, Mareš Š, Kordíková V, Pešta M, Topolčan O, Cífková R, Filipovský J. Synergistic effect of sclerostin and angiotensin II receptor 1 polymorphism on arterial stiffening. Biomark Med 2020; 14:173-184. [PMID: 32057249 DOI: 10.2217/bmm-2019-0249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: We aimed to establish the association between sclerostin (a glycoprotein involved in bone metabolism) and development of pulse wave velocity (PWV) in the general population. Methods: A prospective cohort study with a total of 522 subjects. Aortic PWV was measured twice (at baseline and after approximately 8 years of follow-up) and intraindividual change in PWV per year (ΔPWV/year) was calculated. Results: ΔPWV/year increased across the sclerostin quintiles, but generally in a strong age-dependent manner. However, a significant independent positive association between sclerostin and ΔPWV/year was observed exclusively in C allele carriers of rs5186 polymorphism for the angiotensin II receptor 1 (n = 246). Conclusion: Sclerostin concentrations were associated with an accelerated natural course of arterial stiffening, but only in interaction with renin-angiotension system.
Collapse
Affiliation(s)
- Otto Mayer
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic.,Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Jitka Seidlerová
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic.,Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Radek Kučera
- Department of Immunodiagnostics, University Hospital, Pilsen, Czech Republic
| | - Alena Kučerová
- Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic.,Department of Biology, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Václava Černá
- Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic.,Department of Biology, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Július Gelžinský
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic.,Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Markéta Mateřánková
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic.,Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Štěpán Mareš
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic.,Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Veronika Kordíková
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic.,Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Martin Pešta
- Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic.,Department of Biology, Medical Faculty of Charles University, Pilsen, Czech Republic
| | - Ondřej Topolčan
- Department of Immunodiagnostics, University Hospital, Pilsen, Czech Republic
| | - Renata Cífková
- Centre for Cardiovascular Prevention of the First Faculty of Medicine, Charles University and Thomayer's Hospital, Prague, Czech Republic
| | - Jan Filipovský
- 2nd Department of Internal Medicine, Medical Faculty of Charles University and University Hospital, Pilsen, Czech Republic.,Biomedical Center, Medical Faculty of Charles University, Pilsen, Czech Republic
| |
Collapse
|
49
|
Desai MY, Cremer PC, Schoenhagen P. Thoracic Aortic Calcification: Diagnostic, Prognostic, and Management Considerations. JACC Cardiovasc Imaging 2019; 11:1012-1026. [PMID: 29976300 DOI: 10.1016/j.jcmg.2018.03.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/26/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Thoracic aortic calcification (TAC) is associated with adverse cardiovascular outcomes, and for the cardiovascular imager, is predominantly encountered in 4 settings: 1) incidentally, for example, during a coronary artery calcium scan; 2) as part of dedicated screening; 3) in the evaluation of an embolic event; or 4) in procedural planning. This review focuses on TAC in these contexts. Within atherosclerosis, TAC is common, variable in extent, and begins in the intima with a patchy distribution. In metabolic disorders, aortitis, and radiation-associated cardiovascular disease, calcification preferentially involves the media and is often more concentric. As an incidental finding, atherosclerotic TAC provides limited incremental discriminative value, and current data do not support screening. After an embolic event, the demonstration of thoracic atheroma provides diagnostic clarity, but has limited treatment implications. Before any procedure, the plan often changes if the most severe form of TAC, a porcelain aorta, is discovered.
Collapse
Affiliation(s)
- Milind Y Desai
- Department of Cardiovascular Imaging, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Paul C Cremer
- Department of Cardiovascular Imaging, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Paul Schoenhagen
- Department of Cardiovascular Imaging, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio; Cardiovascular Section, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
50
|
Wallace TC, Weaver CM. Calcium Supplementation and Coronary Artery Disease: A Methodological Confound? J Am Coll Nutr 2019; 39:383-387. [PMID: 31684833 DOI: 10.1080/07315724.2019.1681202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Taylor C Wallace
- Think Healthy Group, Inc, Washington, DC, USA.,Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
| | | |
Collapse
|