1
|
Bakhos JJ, Saliba Y, Hajal J, Achkouty G, Oskaridjian H, Albuquerque M, Azevedo C, Semaan A, Suffee N, Balse E, Hatem SN, Fares N. Inhibiting atrial natriuretic peptide clearance reduces myocardial fibrosis and improves cardiac function in diabetic rats. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf031. [PMID: 40201591 PMCID: PMC11977460 DOI: 10.1093/ehjopen/oeaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025]
Abstract
Aims Natriuretic peptides (NPs) exert pleiotropic effects through the recruitment of cyclic guanosine monophosphate (cGMP) signalling pathways depending on their bioavailability, which is regulated by clearance receptors and peptidases. Here, we tested the hypothesis that increasing myocardial bioavailability of NP has a beneficial effect on heart failure. We studied the effects of a mutated NP, M-atrial natriuretic peptide (MANP), resistant to neprilysin in a model of diabetic cardiomyopathy characterized by marked myocardial fibrosis. Methods and results Natriuretic peptides as well as sacubitril were delivered via osmotic mini-pumps to high-fat/streptozotocin-induced Type 2 diabetic (T2D) rats. Cardiac function was evaluated by echocardiography. Myocardial remodelling was studied by histological approaches, collagen phenotype, and atrial natriuretic peptide (ANP)/cGMP concentrations. Live-cell cGMP biosensing was conducted on cultured rat cardiac fibroblasts to investigate the biological effects of NP. Cyclic guanosine monophosphate signalling pathway was studied using multiple antibody arrays and biochemical assays in cardiac tissue and cultured fibroblasts. M-atrial natriuretic peptide exhibits superior efficacy than ANP in reducing left ventricular dysfunction and myocardial fibrosis with less extracellular matrix deposition. In vitro, MANP and ANP similarly generated cGMP and activated the protein kinase G (PKG) signalling pathway in cardiac fibroblasts, attenuating Mothers against decapentaplegic homolog 2 (SMAD) activation, collagen secretion, and cell proliferation. Nevertheless, in vivo, MANP specifically enhanced cardiac cGMP accumulation and was more potent than ANP in activating myocardial cGMP/PKG signalling and inhibiting the profibrotic SMAD, extracellular signal-regulated kinases 1/2, and nuclear factor of activated T cells 3 pathways. Endopeptidase inhibition using sacubitril also led to cardiac ANP/cGMP accumulation and reduced myocardial fibrosis. Conclusion Myocardial bioavailability of ANP is a major determinant of peptide efficacy in reducing cardiac fibrosis and improving pump function during diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jules Joel Bakhos
- Laboratory of Research in Physiology and Pathophysiology, Faculty of Medicine, Saint-Joseph University of Beirut, 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon
| | - Youakim Saliba
- Laboratory of Research in Physiology and Pathophysiology, Faculty of Medicine, Saint-Joseph University of Beirut, 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon
| | - Joelle Hajal
- Laboratory of Research in Physiology and Pathophysiology, Faculty of Medicine, Saint-Joseph University of Beirut, 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon
| | - Guy Achkouty
- Laboratory of Research in Physiology and Pathophysiology, Faculty of Medicine, Saint-Joseph University of Beirut, 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon
| | - Hrag Oskaridjian
- Laboratory of Research in Physiology and Pathophysiology, Faculty of Medicine, Saint-Joseph University of Beirut, 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon
| | - Miguel Albuquerque
- INSERM, Centre de Recherche sur L'inflammation, UMR 1149, Université Paris-Cité, 45 Rue des Saints-Pères 75006 Paris, France
- Service d'Anatomie Pathologique, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, 100 Bd du Général Leclerc, 92110 Clichy, France
| | - Chloé Azevedo
- Institute of Cardiometabolism and Nutrition, IHU ICAN, Sorbonne University, INSERM UMR_S1166 Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| | - Albert Semaan
- Laboratory of Research in Physiology and Pathophysiology, Faculty of Medicine, Saint-Joseph University of Beirut, 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon
| | - Nadine Suffee
- Institute of Cardiometabolism and Nutrition, IHU ICAN, Sorbonne University, INSERM UMR_S1166 Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| | - Elise Balse
- Institute of Cardiometabolism and Nutrition, IHU ICAN, Sorbonne University, INSERM UMR_S1166 Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| | - Stéphane N Hatem
- Institute of Cardiometabolism and Nutrition, IHU ICAN, Sorbonne University, INSERM UMR_S1166 Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital, 75013 Paris, France
| | - Nassim Fares
- Laboratory of Research in Physiology and Pathophysiology, Faculty of Medicine, Saint-Joseph University of Beirut, 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon
| |
Collapse
|
2
|
Li XC, Wang CH, Hassan R, Katsurada A, Sato R, Zhuo JL. Deletion of AT 1a receptors selectively in the proximal tubules of the kidney alters the hypotensive and natriuretic response to atrial natriuretic peptide via NPR A/cGMP/NO signaling. Am J Physiol Renal Physiol 2024; 327:F946-F956. [PMID: 39361722 PMCID: PMC11687850 DOI: 10.1152/ajprenal.00160.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
In the proximal tubules of the kidney, angiotensin II (ANG II) binds and activates ANG II type 1 (AT1a) receptors to stimulate proximal tubule Na+ reabsorption, whereas atrial natriuretic peptide (ANP) binds and activates natriuretic peptide receptors (NPRA) to inhibit ANG II-induced proximal tubule Na+ reabsorption. These two vasoactive systems play important counteracting roles to control Na+ reabsorption in the proximal tubules and help maintain blood pressure homeostasis. However, how AT1a and NPRA receptors interact in the proximal tubules and whether natriuretic effects of NPRA receptor activation by ANP may be potentiated by deletion of AT1 (AT1a) receptors selectively in the proximal tubules have not been studied previously. The present study used a novel mouse model with proximal tubule-specific knockout of AT1a receptors, PT-Agtr1a-/-, to test the hypothesis that deletion of AT1a receptors selectively in the proximal tubules augments the hypotensive and natriuretic responses to ANP. Basal blood pressure was about 16 ± 3 mmHg lower (P < 0.01), fractional proximal tubule Na+ reabsorption was significantly lower (P < 0.05), whereas 24-h urinary Na+ excretion was significantly higher, in PT-Agtr1a-/- mice than in wild-type mice (P < 0.01). Infusion of ANP via osmotic minipump for 2 wk (0.5 mg/kg/day ip) further significantly decreased blood pressure and increased the natriuretic response in PT-Agtr1a-/- mice by inhibiting proximal tubule Na+ reabsorption compared with wild-type mice (P < 0.01). These augmented hypotensive and natriuretic responses to ANP in PT-Agtr1a-/- mice were associated with increased plasma and kidney cGMP levels (P < 0.01), kidney cortical NPRA and NPRC mRNA expression (P < 0.05), endothelial nitric oxide (NO) synthase (eNOS) and phosphorylated eNOS proteins (P < 0.01), and urinary NO excretion (P < 0.01). Taken together, the results of the present study provide further evidence for important physiological roles of intratubular ANG II/AT1a and ANP/NPRA signaling pathways in the proximal tubules to regulate proximal tubule Na+ reabsorption and maintain blood pressure homeostasis.NEW & NOTEWORTHY This study used a mutant mouse model with proximal tubule-selective deletion of angiotensin II (ANG II) type 1 (AT1a) receptors to study, for the first time, important interactions between ANG II/AT1 (AT1a) receptor/Na+/H+ exchanger 3 and atrial natriuretic peptide (ANP)/natriuretic peptide receptor (NPRA)/cGMP/nitric oxide signaling pathways in the proximal tubules. The results of the present study provide further evidence for important physiological roles of proximal tubule ANG II/AT1a and ANP/NPRA signaling pathways in the regulation of proximal tubule Na+ reabsorption and blood pressure homeostasis.
Collapse
MESH Headings
- Animals
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/drug effects
- Cyclic GMP/metabolism
- Atrial Natriuretic Factor/metabolism
- Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/deficiency
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Mice, Knockout
- Signal Transduction
- Nitric Oxide/metabolism
- Blood Pressure/drug effects
- Male
- Natriuresis/drug effects
- Sodium/metabolism
- Sodium/urine
- Hypotension/metabolism
- Hypotension/genetics
- Hypotension/physiopathology
- Renal Reabsorption/drug effects
- Mice
- Nitric Oxide Synthase Type III/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Akemi Katsurada
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Ryosuke Sato
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
3
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Ma X, McKie PM, Iyer SR, Scott C, Bailey K, Johnson BK, Benike SL, Chen H, Miller WL, Cabassi A, Burnett JC, Cannone V. MANP in Hypertension With Metabolic Syndrome: Proof-of-Concept Study of Natriuretic Peptide-Based Therapy for Cardiometabolic Disease. JACC Basic Transl Sci 2024; 9:18-29. [PMID: 38362338 PMCID: PMC10864980 DOI: 10.1016/j.jacbts.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 02/17/2024]
Abstract
Hypertension and metabolic syndrome frequently coexist to increase the risk for adverse cardiometabolic outcomes. To date, no drug has been proven to be effective in treating hypertension with metabolic syndrome. M-atrial natriuretic peptide is a novel atrial natriuretic peptide analog that activates the particulate guanylyl cyclase A receptor. This study conducted a double-blind, placebo-controlled trial in 22 patients and demonstrated that a single subcutaneous injection of M-atrial natriuretic peptide was safe, well-tolerated, and exerted pleiotropic properties including blood pressure-lowering, lipolytic, and insulin resistance-improving effects. (MANP in Hypertension and Metabolic Syndrome [MANP-HTN-MS]; NCT03781739).
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul M. McKie
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Seethalakshmi R. Iyer
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher Scott
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Kent Bailey
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Bradley K. Johnson
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Sherry L. Benike
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Horng Chen
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wayne L. Miller
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aderville Cabassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - John C. Burnett
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Goetze JP, Rehfeld JF. Natriuretic Peptides and Metabolic Hypertension: A Match Made in Heaven? JACC Basic Transl Sci 2024; 9:30-32. [PMID: 38362343 PMCID: PMC10864954 DOI: 10.1016/j.jacbts.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Affiliation(s)
- Jens P. Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Ajay A, Rasoul D, Abdullah A, Lee Wei En B, Mashida K, Al-Munaer M, Ajay H, Duvva D, Mathew J, Adenaya A, Lip GYH, Sankaranarayanan R. Augmentation of natriuretic peptide (NP) receptor A and B (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) signalling as a therapeutic strategy in heart failure. Expert Opin Investig Drugs 2023; 32:1157-1170. [PMID: 38032188 DOI: 10.1080/13543784.2023.2290064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Heart failure is a complex, debilitating condition and despite advances in treatment, it remains a significant cause of morbidity and mortality worldwide. Therefore, the need for alternative treatment strategies is essential. In this review, we explore the therapeutic strategies of augmenting natriuretic peptide receptors (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) in heart failure. AREAS COVERED We aim to provide an overview of the evidence of preclinical and clinical studies on novel heart failure treatment strategies. Papers collected in this review have been filtered and screened following PubMed searches. This includes epigenetics, modulating enzyme activity in natriuretic peptide (NP) synthesis, gene therapy, modulation of downstream signaling by augmenting soluble guanylate cyclase (sGC) and phosphodiesterase (PDE) inhibition, nitrates, c-GMP-dependent protein kinase, synthetic and designer NP and RNA therapy. EXPERT OPINION The novel treatment strategies mentioned above have shown great potential, however, large randomized controlled trials are still lacking. The biggest challenge is translating the results seen in preclinical trials into clinical trials. We recommend a multi-disciplinary team approach with cardiologists, geneticist, pharmacologists, bioengineers, researchers, regulators, and patients to improve heart failure outcomes. Future management can involve telemedicine, remote monitoring, and artificial intelligence to optimize patient care.
Collapse
Affiliation(s)
- Ashwin Ajay
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Debar Rasoul
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Alend Abdullah
- General Medicine, The Dudley Group NHS Foundation Trust Dudley, Dudley, United Kingdom
| | - Benjamin Lee Wei En
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Knievel Mashida
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| | | | - Hanan Ajay
- General Medicine, Southport and Ormskirk Hospital NHS Trust, Southport, United Kingdom
| | - Dileep Duvva
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Jean Mathew
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Adeoye Adenaya
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Cedar House, University of Liverpool, Liverpool, United Kingdom
- Cardiology Department, Liverpool Heart & Chest Hospital NHS Trust, Liverpool, United Kingdom
- Cardiology Department, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rajiv Sankaranarayanan
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Blazek O, Bakris GL. Novel Therapies on the Horizon of Hypertension Management. Am J Hypertens 2023; 36:73-81. [PMID: 36201204 DOI: 10.1093/ajh/hpac111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The rates of uncontrolled hypertension, along with downstream cardiovascular outcomes, has been worsening in this country. Despite the plethora of antihypertensive medications on the market, the prevalence of resistant hypertension (RH) is estimated to be 13.7%. Therefore in addition to increased clinical education and focus on lifestyle management of hypertension and medication compliance, new therapies are needed to address this rise in hypertension. METHODS A systematic review of the available medical literature was performed to identify emerging treatment options for RH. RESULTS Six different pharmacologic classes and 2 procedural interventions were identified as being appropriate for review in this paper. The pharmacologic classes to be explored are non-steroidal mineralocorticoid receptor antagonists, aminopeptidase A inhibitors, dual endothelin antagonists, aldosterone synthetase inhibitors, atrial natriuretic peptide inhibitors, and attenuators of hepatic angiotensinogen. Discussion of procedural interventions to lower blood pressure will focus on renal denervation and devices that increase carotid baroreceptor activity. CONCLUSIONS Promising medication and procedural interventions are being developed and studied to expand our treatment arsenal for patients with uncontrolled essential hypertension and RH.
Collapse
Affiliation(s)
- Olivia Blazek
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL 60637, USA
| | - George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Sangaralingham SJ, Kuhn M, Cannone V, Chen HH, Burnett JC. Natriuretic peptide pathways in heart failure: further therapeutic possibilities. Cardiovasc Res 2022; 118:3416-3433. [PMID: 36004816 PMCID: PMC9897690 DOI: 10.1093/cvr/cvac125] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the heart as an endocrine organ resulted in a remarkable recognition of the natriuretic peptide system (NPS). Specifically, research has established the production of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) from the heart, which exert pleiotropic cardiovascular, endocrine, renal, and metabolic actions via the particulate guanylyl cyclase A receptor (GC-A) and the second messenger, cGMP. C-type natriuretic peptide (CNP) is produced in the endothelium and kidney and mediates important protective auto/paracrine actions via GC-B and cGMP. These actions, in part, participate in the efficacy of sacubitril/valsartan in heart failure (HF) due to the augmentation of the NPS. Here, we will review important insights into the biology of the NPS, the role of precision medicine, and focus on the phenotypes of human genetic variants of ANP and BNP in the general population and the relevance to HF. We will also provide an update of the existence of NP deficiency states, including in HF, which provide the rationale for further therapeutics for the NPS. Finally, we will review the field of peptide engineering and the development of novel designer NPs for the treatment of HF. Notably, the recent discovery of a first-in-class small molecule GC-A enhancer, which is orally deliverable, will be highlighted. These innovative designer NPs and small molecule possess enhanced and novel properties for the treatment of HF and cardiovascular diseases.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic 200 1st St SW, Rochester MN 55905, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Wuerzburg, Roentgenring 9, D-97070 Wuerzburg, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - John C Burnett
- Corresponding author. Tel: 507 284-4343; fax: 507 266-4710; E-mail:
| |
Collapse
|
9
|
Chen Y, Iyer SR, Nikolaev VO, Naro F, Pellegrini M, Cardarelli S, Ma X, Lee HC, Burnett JC. MANP Activation Of The cGMP Inhibits Aldosterone Via PDE2 And CYP11B2 In H295R Cells And In Mice. Hypertension 2022; 79:1702-1712. [PMID: 35674049 PMCID: PMC9309987 DOI: 10.1161/hypertensionaha.121.18906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aldosterone is a critical pathological driver for cardiac and renal diseases. We recently discovered that mutant atrial natriuretic peptide (MANP), a novel atrial natriuretic peptide (ANP) analog, possessed more potent aldosterone inhibitory action than ANP in vivo. MANP and natriuretic peptide (NP)-augmenting therapy sacubitril/valsartan are under investigations for human hypertension treatment. Understanding the elusive mechanism of aldosterone inhibition by NPs remains to be a priority. Conflicting results were reported on the roles of the pGC-A (particulate guanylyl cyclase A receptor) and NP clearance receptor in aldosterone inhibition. Furthermore, the function of PKG (protein kinase G) and PDEs (phosphodiesterases) on aldosterone regulation are not clear. METHODS In the present study, we investigated the molecular mechanism of aldosterone regulation in a human adrenocortical cell line H295R and in mice. RESULTS We first provided evidence to show that pGC-A, not NP clearance receptor, mediates aldosterone inhibition. Next, we confirmed that MANP inhibits aldosterone via PDE2 (phosphodiesterase 2) not PKG, with specific agonists, antagonists, siRNA silencing, and fluorescence resonance energy transfer experiments. Further, the inhibitory effect is mediated by a reduction of intracellular Ca2+ levels. We then illustrated that MANP directly reduces aldosterone synthase CYP11B2 (cytochrome p450 family 11 subfamily b member 2) expression via PDE2. Last, in PDE2 knockout mice, consistent with in vitro findings, embryonic adrenal CYP11B2 is markedly increased. CONCLUSIONS Our results innovatively explore and expand the NP/pGC-A/3',5', cyclic guanosine monophosphate (cGMP)/PDE2 pathway for aldosterone inhibition by MANP in vitro and in vivo. In addition, our data also support the development of MANP as a novel ANP analog drug for aldosterone excess treatment.
Collapse
Affiliation(s)
- Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine (Y.C., S.R.I., X.M., J.C.B.), Mayo Clinic, Rochester MN.,The Institute for Diabetes' Obesity' and Metabolism, University of Pennsylvania, Philadelphia (Y.C.)
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine (Y.C., S.R.I., X.M., J.C.B.), Mayo Clinic, Rochester MN
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Italy (F.N.' S.C.)
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo, Rome, Italy (M.P.)
| | - Silvia Cardarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Italy (F.N.' S.C.)
| | - Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine (Y.C., S.R.I., X.M., J.C.B.), Mayo Clinic, Rochester MN
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine (H.-C.L.), Mayo Clinic, Rochester MN
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine (Y.C., S.R.I., X.M., J.C.B.), Mayo Clinic, Rochester MN
| |
Collapse
|
10
|
Natriuretic Peptide-Based Novel Therapeutics: Long Journeys of Drug Developments Optimized for Disease States. BIOLOGY 2022; 11:biology11060859. [PMID: 35741380 PMCID: PMC9219923 DOI: 10.3390/biology11060859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Natriuretic peptides are endogenous hormones produced in the heart and vascular endothelium, and they enable cardiorenal protective actions or bone growth via cGMP stimulation through their receptor guanylyl cyclase receptor A or B. To optimize the drug for each disease state, we must consider drug metabolism, delivery systems, and target receptor(s). This review summarizes attempts to develop novel natriuretic peptide-based therapeutics, including novel designer natriuretic peptides and oral drugs to enhance endogenous natriuretic peptides. We introduce some therapeutics that have been successful in clinical practice, as well as the prospective drug developments in the natriuretic peptide system for disease states. Abstract The field of natriuretic peptides (NPs) as an endocrine hormone has been developing since 1979. There are three peptides in humans: atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which bind to the guanylyl cyclase-A (GC-A) receptor (also called natriuretic peptide receptor-A (NPR-A)), and C-type natriuretic peptide (CNP), which binds to the GC-B receptor (also called the NPR-B) and then synthesizes intracellular cGMP. GC-A receptor stimulation has natriuretic, vasodilatory, cardiorenal protective and anti-renin–angiotensin–aldosterone system actions, and GC-B receptor stimulation can suppress myocardial fibrosis and can activate bone growth before epiphyseal plate closure. These physiological effects are useful as therapeutics for some disease states, such as heart failure, hypertension, and dwarfism. To optimize the therapeutics for each disease state, we must consider drug metabolism, delivery systems, and target receptor(s). We review the cardiac NP system; new designer NPs, such as modified/combined NPs and modified peptides that can bind to not only NP receptors but receptors for other systems; and oral drugs that enhance endogenous NP activity. Finally, we discuss prospective drug discoveries and the development of novel NP therapeutics.
Collapse
|
11
|
Leite APDO, Li XC, Nwia SM, Hassan R, Zhuo JL. Angiotensin II and AT 1a Receptors in the Proximal Tubules of the Kidney: New Roles in Blood Pressure Control and Hypertension. Int J Mol Sci 2022; 23:2402. [PMID: 35269547 PMCID: PMC8910592 DOI: 10.3390/ijms23052402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Contrary to public perception, hypertension remains one of the most important public health problems in the United States, affecting 46% of adults with increased risk for heart attack, stroke, and kidney diseases. The mechanisms underlying poorly controlled hypertension remain incompletely understood. Recent development in the Cre/LoxP approach to study gain or loss of function of a particular gene has significantly helped advance our new insights into the role of proximal tubule angiotensin II (Ang II) and its AT1 (AT1a) receptors in basal blood pressure control and the development of Ang II-induced hypertension. This novel approach has provided us and others with an important tool to generate novel mouse models with proximal tubule-specific loss (deletion) or gain of the function (overexpression). The objective of this invited review article is to review and discuss recent findings using novel genetically modifying proximal tubule-specific mouse models. These new studies have consistently demonstrated that deletion of AT1 (AT1a) receptors or its direct downstream target Na+/H+ exchanger 3 (NHE3) selectively in the proximal tubules of the kidney lowers basal blood pressure, increases the pressure-natriuresis response, and induces natriuretic responses, whereas overexpression of an intracellular Ang II fusion protein or AT1 (AT1a) receptors selectively in the proximal tubules increases proximal tubule Na+ reabsorption, impairs the pressure-natriuresis response, and elevates blood pressure. Furthermore, the development of Ang II-induced hypertension by systemic Ang II infusion or by proximal tubule-specific overexpression of an intracellular Ang II fusion protein was attenuated in mutant mice with proximal tubule-specific deletion of AT1 (AT1a) receptors or NHE3. Thus, these recent studies provide evidence for and new insights into the important roles of intratubular Ang II via AT1 (AT1a) receptors and NHE3 in the proximal tubules in maintaining basal blood pressure homeostasis and the development of Ang II-induced hypertension.
Collapse
Affiliation(s)
- Ana Paula de Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiao C. Li
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia L. Zhuo
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Cannone V, Burnett JC. Natriuretic Peptides and Blood Pressure Homeostasis: Implications for MANP, a Novel Guanylyl Cyclase a Receptor Activator for Hypertension. Front Physiol 2022; 12:815796. [PMID: 35222065 PMCID: PMC8878907 DOI: 10.3389/fphys.2021.815796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
The heart serves as an endocrine organ producing the hormones atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP) which via the guanylyl cyclase A (GC-A) receptor and the second messenger cGMP participate in blood pressure homeostasis under physiologic conditions. Genetic models of the ANP gene or the GCA receptor together with genomic medicine have solidified the concept that both cardiac hormones are fundamental for blood pressure homeostasis and when deficient or disrupted they may contribute to human hypertension. Advances in peptide engineering have led to novel peptide therapeutics including the ANP-analog MANP for human hypertension. Most importantly a first in human study of MANP in essential hypertension has demonstrated its unique properties of aldosterone suppression and blood pressure reduction. Physiology and pharmacology ultimately lead us to innovative peptide-based therapeutics to reduce the burden of cardiovascular disease.
Collapse
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- *Correspondence: Valentina Cannone,
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Dzhoyashvili NA, Iyer SR, Chen HH, Burnett JC. MANP (M-Atrial Natriuretic Peptide) Reduces Blood Pressure and Furosemide-Induced Increase in Aldosterone in Hypertension. Hypertension 2022; 79:750-760. [PMID: 35045724 PMCID: PMC8916975 DOI: 10.1161/hypertensionaha.121.18837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND MANP (M-atrial natriuretic peptide) is a best-in-class activator of the pGC-A (particulate guanylyl cyclase A) receptor. Furosemide increases the effectiveness of antihypertensive agents, but activates renin-angiotensin-aldosterone system. We aimed to investigate for the first time cardiorenal and neurohumoral actions of MANP in a genetic model of hypertension in spontaneously hypertensive rats. We also assessed how MANP would potentiate the blood pressure (BP)-lowering actions of furosemide while reducing the production of aldosterone. METHODS Spontaneously hypertensive rats (n=60) were randomized in vehicle, MANP, furosemide, or MANP+furosemide groups. Furosemide (1, 5, 10 mg/kg) was given as a single bolus which in MANP+furosemide groups was followed by a 60-minute infusion of MANP. RESULTS BP was reduced in MANP300 (300 pmol/[kg·min]) and MANP600 (600 pmol/[kg·min]) groups (P<0.05) and was accompanied by significant increase in plasma cGMP. Furosemide alone reduced BP but less compared with MANP with no change in plasma cGMP. MANP+furosemide resulted in the greatest BP reduction and significant increase in plasma cGMP in Fs5+MANP300, Fs10+MANP300, and Fs10+MANP600. Plasma aldosterone increased in furosemide groups, which was significantly attenuated in MANP+furosemide groups. Natriuresis and diuresis increased in all treated groups (P<0.05) with no significant differences between furosemide and furosemide+MANP. In vitro, MANP increased cGMP level in human vascular cells. CONCLUSIONS We provide novel evidence that MANP potentiates the BP-lowering actions of furosemide, suppresses the activation of renin-angiotensin-aldosterone system, and preserves renal function. These data are highly relevant to clinical needs in the treatment of hypertension and heart failure.
Collapse
Affiliation(s)
- Nina A Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.)
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (N.A.D., S.R.I., H.H.C., J.C.B.).,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN. (J.C.B.)
| |
Collapse
|
14
|
Rubattu S, Gallo G. The Natriuretic Peptides for Hypertension Treatment. High Blood Press Cardiovasc Prev 2021; 29:15-21. [PMID: 34727352 DOI: 10.1007/s40292-021-00483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Hypertension is a common pathological condition predisposing to a higher occurrence of cardiovascular diseases and events. Unfortunately, treatment of hypertension is still suboptimal worldwide. More efforts are needed to implement the availability of anti-hypertensive drugs. The family of natriuretic peptides, including atrial and brain natriuretic peptides (ANP and BNP), play a key role on blood pressure regulation through the natriuretic, diuretic and vasorelaxant effects. A large number of experimental and human studies, ranging from pathophysiological to genetic investigations, supported ANP as the most relevant component of the family able to modulate blood pressure and to contribute to hypertension development. On this background, it is expected that ANP-based therapeutic approaches may give a significant contribution to the development of efficacious therapies against hypertension. Since native ANP cannot be administered due to its short half-life, several approaches were attempted over the years to overcome the difficulties inherent to the ANP instability. These approaches included ANP recombinant and fusion peptides, gene therapy, inhibition of ANP degradation by neprilysin inhibition, and designer peptides. The most relevant achievements in the field are discussed in this article. Based on the available evidence, therapies targeting ANP represent efficacious and clinically applicable anti-hypertensive agents.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Gidlöf O. Toward a New Paradigm for Targeted Natriuretic Peptide Enhancement in Heart Failure. Front Physiol 2021; 12:650124. [PMID: 34721050 PMCID: PMC8548580 DOI: 10.3389/fphys.2021.650124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The natriuretic peptide system (NPS) plays a fundamental role in maintaining cardiorenal homeostasis, and its potent filling pressure-regulated diuretic and vasodilatory effects constitute a beneficial compensatory mechanism in heart failure (HF). Leveraging the NPS for therapeutic benefit in HF has been the subject of intense investigation during the last three decades and has ultimately reached widespread clinical use in the form of angiotensin receptor-neprilysin inhibition (ARNi). NPS enhancement via ARNi confers beneficial effects on mortality and hospitalization in HF, but inhibition of neprilysin leads to the accumulation of a number of other vasoactive peptides in the circulation, often resulting in hypotension and raising potential concerns over long-term adverse effects. Moreover, ARNi is less effective in the large group of HF patients with preserved ejection fraction. Alternative approaches for therapeutic augmentation of the NPS with increased specificity and efficacy are therefore warranted, and are now becoming feasible particularly with recent development of RNA therapeutics. In this review, the current state-of-the-art in terms of experimental and clinical strategies for NPS augmentation and their implementation will be reviewed and discussed.
Collapse
Affiliation(s)
- Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Chen HH, Wan SH, Iyer SR, Cannone V, Sangaralingham SJ, Nuetel J, Burnett JC. First-in-Human Study of MANP: A Novel ANP (Atrial Natriuretic Peptide) Analog in Human Hypertension. Hypertension 2021; 78:1859-1867. [PMID: 34657445 DOI: 10.1161/hypertensionaha.121.17159] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN (H.H.C., S.R.I., J.S., J.C.B.)
| | - Siu-Hin Wan
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (S.-H.W.)
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN (H.H.C., S.R.I., J.S., J.C.B.)
| | - Valentina Cannone
- Department of Internal Medicine, University of Parma, Parma, Italy (V.C.)
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN (H.H.C., S.R.I., J.S., J.C.B.)
| | | | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN (H.H.C., S.R.I., J.S., J.C.B.)
| |
Collapse
|
17
|
Murphy SP, Prescott MF, Camacho A, Iyer SR, Maisel AS, Felker GM, Butler J, Piña IL, Ibrahim NE, Abbas C, Burnett JC, Solomon SD, Januzzi JL. Atrial Natriuretic Peptide and Treatment With Sacubitril/Valsartan in Heart Failure With Reduced Ejection Fraction. JACC-HEART FAILURE 2020; 9:127-136. [PMID: 33189632 DOI: 10.1016/j.jchf.2020.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES This study sought to assess associations between longitudinal change in atrial natriuretic peptide (ANP) and reverse cardiac remodeling following initiation of sacubitril/valsartan in patients with heart failure with reduced ejection fraction (HFrEF). BACKGROUND Neprilysin inhibition results in an increase of several vasoactive peptides that may mediate the beneficial effects of sacubitril/valsartan, including ANP. METHODS In a prospective study of initiation and titration of sacubitril/valsartan in patients with HFrEF, blood was collected at scheduled time points into tubes containing protease inhibitors. This pre-specified exploratory analysis included patients in whom ANP was measured at baseline and serially through 12 months of treatment. RESULTS Among 144 participants (mean age: 64.5 years; left ventricular ejection fraction: 30.8%), following initiation of sacubitril/valsartan, there was an early and significant increase in ANP, with the majority of rise from 99 pg/ml at baseline to 156 pg/ml at day 14 (p < 0.001). There was a further trend toward a second increase from day 30 to day 45 (p = 0.07). At maximal rise, ANP had doubled. In longitudinal analyses, early rise in ANP was followed by a subsequent increase in urinary cycle guanosine monophosphate. Larger early increase in ANP was associated with larger later improvements in left ventricular ejection fraction and left atrial volume index (p < 0.001 for both). CONCLUSIONS Concentrations of ANP doubled after initiation of sacubitril/valsartan in patients with HFrEF. Larger early increases in ANP were associated with a greater magnitude of subsequent reverse cardiac remodeling. (Effects of Sacubitril/Valsartan Therapy on Biomarkers, Myocardial Remodeling and Outcomes [PROVE-HF]; NCT02887183).
Collapse
Affiliation(s)
- Sean P Murphy
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | - Alan S Maisel
- University of California, San Diego School of Medicine, San Diego, California, USA
| | - G Michael Felker
- Duke University Medical Center and Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Javed Butler
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Nasrien E Ibrahim
- Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Cheryl Abbas
- Novartis Pharmaceuticals, East Hanover, New Jersey, USA
| | | | - Scott D Solomon
- Harvard Medical School, Boston, Massachusetts, USA; Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James L Januzzi
- Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Baim Institute for Clinical Research, Boston, Massachusetts, USA.
| |
Collapse
|
18
|
Goetze JP, Hansen LH, Terzic D, Dall Mark P. Upgrading hypertension treatment. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1025-R1026. [PMID: 32348155 DOI: 10.1152/ajpregu.00086.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lasse H Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dijana Terzic
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Dall Mark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Sridharan S, Kini RM, Richards AM. Venom natriuretic peptides guide the design of heart failure therapeutics. Pharmacol Res 2020; 155:104687. [PMID: 32057893 DOI: 10.1016/j.phrs.2020.104687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022]
Abstract
Heart failure (HF) affects over 26 million people world-wide. It is a syndrome triggered by loss of normal cardiac function due to many acute (eg myocardial infarction) and/or chronic (eg hypertension) causes and characterized by mixed beneficial and deleterious activation of a complex of multifaceted neurohormonal systems the net effect of which frequently is further adverse disruption of pressure-volume homeostasis. Unlike the situation in chronic heart failure, current strategies for treatment of acute heart failure are empirical and lack a strong evidence base. Management includes any of a combination of vasodilators, diuretics and ionotropic agents depending on the hemodynamic profile of the patient. Despite the improvement in the options available to improve outcomes in patients with chronic HF, for several decades little gain has been made in the treatment of the acute decompensated state. Morbidity and mortality rates remain high necessitating new therapeutic agents. The cardiac natriuretic peptides (NPs) are key hormones in pressure-volume homoeostasis. There are three isoforms of mammalian NPs, namely ANP, BNP and CNP. These peptides bind to membrane-bound NP receptors (NPRs) on the heart, vasculature and kidney to lower blood pressure and circulating volume. Intravenous infusion of NPs in HF patients improves hemodynamic status but is associated with occasional severe hypotension. Apart from mammalian NPs, snake venom NPs are an excellent source of pharmacologically distinct ligands that offer the possibility of engineering NPs for therapeutic purposes. Venom NPs have long half-lives, differential NPR activation profiles and varied NPR specificity. The scaffolds of venom NPs encode the molecular information for designing NPs with longer half-lives and improved and differential vascular and renal functions. This review focuses on the structure-function paradigm of mammalian and venom NPs and the different peptide engineering strategies that have been utilized in the design of clinically relevant new NP-analogues.
Collapse
Affiliation(s)
- Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.
| | - Arthur Mark Richards
- Cardiac Department, National University Hospital, Cardiovascular Research Institute, National University Heart Centre, National University Health System, Singapore; Christchurch Heart Institute, University of Otago, NZ, United States.
| |
Collapse
|
20
|
Chen Y, Schaefer JJ, Iyer SR, Harders GE, Pan S, Sangaralingham SJ, Chen HH, Redfield MM, Burnett JC. Long-term blood pressure lowering and cGMP-activating actions of the novel ANP analog MANP. Am J Physiol Regul Integr Comp Physiol 2020; 318:R669-R676. [PMID: 32022596 DOI: 10.1152/ajpregu.00354.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on the cardiac hormone atrial natriuretic peptide (ANP) and its seminal role in blood pressure (BP) homeostasis, we investigated the chronic BP lowering actions of a novel ANP analog currently entering clinical trials for hypertension. Previous reports demonstrate that this analog MANP activates the guanylyl cyclase A receptor (GC-A) and results in more potent biological actions compared with ANP; thus, it may represent a new therapeutic drug for hypertension. A major goal of this study was to establish that chronic subcutaneous delivery of MANP is feasible and hypotensive together with cGMP effects. We investigated the BP-lowering and cGMP-activating actions of acute and chronic subcutaneous delivery in normal and hypertensive rats. Furthermore, we explored vascular mechanisms of MANP in human aortic smooth muscle cells (HASMC) and ex vivo in isolated arteries. In normal rats with a single subcutaneous injection, MANP promoted robust dose-dependent BP-lowering actions and natriuresis, together with cGMP activation. Most importantly in hypertensive rats, once-a-day subcutaneous injection of MANP for 7 days induced cGMP elevation and long-term BP reduction compared with vehicle. Mechanistically, in HASMC, MANP activated cGMP and attenuated angiotensin II-mediated increases in intracellular Ca2+ levels while directly vasorelaxing arterial rings. Our study demonstrates for the first time the effectiveness of subcutaneous administration of MANP for 7 days and provides innovative, vascular mechanisms of BP regulation supporting its continued development as a novel therapeutic for hypertension.
Collapse
Affiliation(s)
- Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob J Schaefer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gerald E Harders
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Margaret M Redfield
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Cannone V, Cabassi A, Volpi R, Burnett JC. Atrial Natriuretic Peptide: A Molecular Target of Novel Therapeutic Approaches to Cardio-Metabolic Disease. Int J Mol Sci 2019; 20:E3265. [PMID: 31269783 PMCID: PMC6651335 DOI: 10.3390/ijms20133265] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone with pleiotropic cardiovascular and metabolic properties including vasodilation, natriuresis and suppression of the renin-angiotensin-aldosterone system. Moreover, ANP induces lipolysis, lipid oxidation, adipocyte browning and ameliorates insulin sensitivity. Studies on ANP genetic variants revealed that subjects with higher ANP plasma levels have lower cardio-metabolic risk. In vivo and in humans, augmenting the ANP pathway has been shown to exert cardiovascular therapeutic actions while ameliorating the metabolic profile. MANP is a novel designer ANP-based peptide with greater and more sustained biological actions than ANP in animal models. Recent studies also demonstrated that MANP lowers blood pressure and inhibits aldosterone in hypertensive subjects whereas cardiometabolic properties of MANP are currently tested in an on-going clinical study in hypertension and metabolic syndrome. Evidence from in vitro, in vivo and in human studies support the concept that ANP and related pathway represent an optimal target for a comprehensive approach to cardiometabolic disease.
Collapse
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Circulatory Failure Division, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Aderville Cabassi
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Riccardo Volpi
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - John C Burnett
- Cardiorenal Research Laboratory, Circulatory Failure Division, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Wan SH, Slusser JP, Hodge DO, Chen HH. The Vascular-Renal Connection in Patients Hospitalized With Hypertensive Crisis: A Population-Based Study. Mayo Clin Proc Innov Qual Outcomes 2018; 2:148-154. [PMID: 30225444 PMCID: PMC6124328 DOI: 10.1016/j.mayocpiqo.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
OBJECTIVE To determine the risks of acute kidney injury development and long-term clinical outcomes of patients with hypertensive crisis. PATIENTS AND METHODS This was a population study of Olmsted County residents with hypertensive crisis between January 1, 2000, and December 31, 2008, with follow-up until June 30, 2016. RESULTS The results demonstrated that those with underlying chronic kidney disease upon admission for hypertensive crisis, defined as a systolic blood pressure above 180 mm Hg or diastolic blood pressure above 120 mm Hg, were more likely to develop acute kidney injury during hospitalization (odds ratio, 6.04; 95% CI, 1-26; P=.02). Hospitalization length of stay was increased when patients developed acute kidney injury during hypertensive crisis hospitalization (7.6±9 vs 3.4±4 days; P=.04). Furthermore, those who developed acute kidney injury had increased cardiac rehospitalization frequency over 10 years (87% vs 46%; P=.009). These results suggest that those with poor renal reserve are more likely to have further acute kidney damage in the setting of hypertensive crisis, likely due to decreased renal perfusion and neurohormonal dysregulation. CONCLUSION In patients hospitalized for hypertensive crisis, chronic renal insufficiency was a risk factor associated with acute kidney injury development during hospitalization. Those who developed acute kidney injury had longer hospitalizations with increased rehospitalization frequency. Future studies are warranted to further investigate whether the preservation of renal function will improve clinical outcomes in hospitalized patients with hypertensive crisis.
Collapse
Affiliation(s)
- Siu-Hin Wan
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Joshua P. Slusser
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - David O. Hodge
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Horng H. Chen
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
- Correspondence: Address to Horng H. Chen, MBBCh, Mayo Clinic, 200 First St SW, Rochester, MN 55905.
| |
Collapse
|
23
|
Klatt N, Scherschel K, Schad C, Lau D, Reitmeier A, Kuklik P, Muellerleile K, Yamamura J, Zeller T, Steven D, Baldus S, Schäffer B, Jungen C, Eickholt C, Wassilew K, Schwedhelm E, Willems S, Meyer C. Development of nonfibrotic left ventricular hypertrophy in an ANG II-induced chronic ovine hypertension model. Physiol Rep 2017; 4:4/17/e12897. [PMID: 27613823 PMCID: PMC5027340 DOI: 10.14814/phy2.12897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/29/2022] Open
Abstract
Hypertension is a major risk factor for many cardiovascular diseases and leads to subsequent concomitant pathologies such as left ventricular hypertrophy (LVH). Translational approaches using large animals get more important as they allow the use of standard clinical procedures in an experimental setting. Therefore, the aim of this study was to establish a minimally invasive ovine hypertension model using chronic angiotensin II (ANG II) treatment and to characterize its effects on cardiac remodeling after 8 weeks. Sheep were implanted with osmotic minipumps filled with either vehicle control (n = 7) or ANG II (n = 9) for 8 weeks. Mean arterial blood pressure in the ANG II‐treated group increased from 87.4 ± 5.3 to 111.8 ± 6.9 mmHg (P = 0.00013). Cardiovascular magnetic resonance imaging showed an increase in left ventricular mass from 112 ± 12.6 g to 131 ± 18.7 g after 7 weeks (P = 0.0017). This was confirmed by postmortem measurement of left ventricular wall thickness which was higher in ANG II‐treated animals compared to the control group (18 ± 4 mm vs. 13 ± 2 mm, respectively, P = 0.002). However, ANG II‐treated sheep did not reveal any signs of fibrosis or inflammatory infiltrates as defined by picrosirius red and H&E staining on myocardial full thickness paraffin sections of both atria and ventricles. Measurements of plasma high‐sensitivity C‐reactive protein and urinary 8‐iso‐prostaglandin F2α were inconspicuous in all animals. Furthermore, multielectrode surface mapping of the heart did not show any differences in epicardial conduction velocity and heterogeneity. These data demonstrate that chronic ANG II treatment using osmotic minipumps presents a reliable, minimally invasive approach to establish hypertension and nonfibrotic LVH in sheep.
Collapse
Affiliation(s)
- Niklas Klatt
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Katharina Scherschel
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Claudia Schad
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Denise Lau
- DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany Department of General and Interventional Cardiology, University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Aline Reitmeier
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Pawel Kuklik
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Muellerleile
- Department of General and Interventional Cardiology, University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Zeller
- DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany Department of General and Interventional Cardiology, University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Steven
- Department of Cardiology and Cologne Cardiovascular Research Centre, Heart Centre University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology and Cologne Cardiovascular Research Centre, Heart Centre University of Cologne, Cologne, Germany
| | - Benjamin Schäffer
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Jungen
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Christian Eickholt
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Wassilew
- German Heart Institute Berlin, Cardiovascular Pathology Unit, Berlin, Germany DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany Department of Pathology, Rigshospitalet University Hospital of Copenhagen, Copenhagen, Denmark
| | - Edzard Schwedhelm
- DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group University Heart Centre University Hospital Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
24
|
Abstract
Numerous investigators have attempted to target the natriuretic peptide system in the treatment of heart failure since it was first described over 30 years ago. The history of neprilysin inhibition as a treatment for heart failure has been characterized by numerous setbacks. Recently, the PARADIGM-HF trial has shown favorable results, which may bring neprilysin inhibition into the mainstream of clinical practice. This article will review the history of the natriuretic peptide system and the investigations into it as a target for heart failure treatment, culminating in the positive results of the PARADIGM-HF trial, as well as planned and potential future directions for research.
Collapse
|
25
|
Ichiki T, Burnett Jr JC. Atrial Natriuretic Peptide ― Old But New Therapeutic in Cardiovascular Diseases ―. Circ J 2017; 81:913-919. [DOI: 10.1253/circj.cj-17-0499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| | - John C. Burnett Jr
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| |
Collapse
|
26
|
Abstract
Endogenous natriuretic peptides serve as potent activators of particulate guanylyl cyclase receptors and the second messenger cGMP. Natriuretic peptides are essential in maintenance of volume homeostasis, and can be of myocardial, renal and endothelial origin. Advances in peptide engineering have permitted the ability to pursue highly innovative drug discovery strategies. This has resulted in designer natriuretic peptides that go beyond native peptides in efficacy, specificity, and resistance to enzymatic degradation. Together with recent improvements in peptide delivery systems, which have improved bioavailability, further advances in this field have been made. Therefore, designer natriuretic peptides with pleotropic actions together with strategies of chronic delivery have provided an unparalleled opportunity for the treatment of cardiovascular disease. In this review, we report the conceptual framework of peptide engineering of the natriuretic peptides that resulted in designer peptides for cardiovascular disease. We specifically provide an update on those currently in clinical trials for heart failure and hypertension, which include Cenderitide, ANX042 and ZD100.
Collapse
Affiliation(s)
- Laura M G Meems
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, College of Medicine Mayo Clinic, Rochester, MN
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, College of Medicine Mayo Clinic, Rochester, MN
| |
Collapse
|
27
|
Chen Y, Burnett JC. Biochemistry, Therapeutics, and Biomarker Implications of Neprilysin in Cardiorenal Disease. Clin Chem 2016; 63:108-115. [PMID: 28062615 DOI: 10.1373/clinchem.2016.262907] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neprilysin (NEP) is a membrane-bound neutral endopeptidase that degrades a variety of bioactive peptides. The substrates include natriuretic peptides (NPs), which are important regulating mediators for cardiovascular and renal biology. Inhibition of NEP activity and exogenous NP administration thus have emerged as potential therapeutic strategies for treating cardiorenal diseases. More recently, B-type natriuretic peptide (BNP) or N-terminal-proBNP (NT-proBNP), 3'-5' cyclic guanosine monophosphate (cGMP), and soluble NEP as biomarkers have also been investigated in heart failure (HF) trials and their predictive value are beginning to be recognized. CONTENT The biological functions of NEP and NPs are discussed. Enhancing NPs through NEP inhibition combined with renin-angiotensin-aldosterone system (RAAS) antagonism has proved to be successful in HF treatment, although future surveillance studies will be required. Direct NP enhancement through peptide delivery may have fewer potentially hazardous effects compared to NEP inhibition. Strategies of combined inhibition on NEP with other cardiorenal pathophysiological pathways are promising. Finally, monitoring BNP/NT-proBNP/cGMP concentrations during NEP inhibition treatment may provide supplemental benefits to conventional biomarkers, and the identification of soluble NEP as a novel biomarker for HF needs further investigation. SUMMARY In this review, the biology of NEP is summarized, with a focus on NP regulation. The degradation of NPs by NEP provides the rationale for NEP inhibition as a strategy for cardiorenal disease treatment. We also describe the current therapeutic strategies of NEP inhibition and NP therapeutics in cardiorenal diseases. Moreover, the discovery of its circulating form, soluble NEP, as a biomarker is also discussed.
Collapse
Affiliation(s)
- Yang Chen
- Biochemistry and Molecular Biology Graduate Program, Mayo Graduate School, Rochester, MN; .,Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester MN
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester MN
| |
Collapse
|
28
|
Burnett JC, McKie P, Heublein D, Huntley B, Chen H, Cannone V, Buglioni A, McCormick D. MANP: a novel particulate guanylyl cyclase A receptor/cGMP activator for resistant hypertension: preliminary first in human clinical trial results. BMC Pharmacol Toxicol 2015. [PMCID: PMC4565454 DOI: 10.1186/2050-6511-16-s1-a3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
29
|
Rationale and therapeutic opportunities for natriuretic peptide system augmentation in heart failure. Curr Heart Fail Rep 2015; 12:7-14. [PMID: 25331110 DOI: 10.1007/s11897-014-0235-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The natriuretic peptide system (NPS) is intimately involved in cardiorenal homeostasis in health, and dysregulation of the NPS plays an important role in the pathophysiology of heart failure (HF). Indeed, the diuretic, vasorelaxation, beneficial remodeling, and potent neurohumoral inhibition of the NPS support the therapeutic development of chronic augmentation of the NPS in symptomatic HF. Further, chronic augmentation of the protective NPS and in early stages of HF may ultimately prevent the progression of HF and reduced subsequent morbidity and mortality. In the current manuscript, we review the rationale for as well as previous and current efforts aimed at chronic therapeutic augmentation of the NPS in HF.
Collapse
|
30
|
Abstract
Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology.
Collapse
Affiliation(s)
- Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine
| | | |
Collapse
|
31
|
Singh JSS, Lang CC. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond. Vasc Health Risk Manag 2015; 11:283-95. [PMID: 26082640 PMCID: PMC4459540 DOI: 10.2147/vhrm.s55630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction.
Collapse
Affiliation(s)
- Jagdeep S S Singh
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Chim C Lang
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
32
|
|
33
|
The Path to an Angiotensin Receptor Antagonist-Neprilysin Inhibitor in the Treatment of Heart Failure. J Am Coll Cardiol 2015; 65:1029-41. [DOI: 10.1016/j.jacc.2015.01.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/20/2023]
|
34
|
Atrial natriuretic peptide gene variants and circulating levels: implications in cardiovascular diseases. Clin Sci (Lond) 2014; 127:1-13. [PMID: 24611929 DOI: 10.1042/cs20130427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ANP (atrial natriuretic peptide), discovered 30 years ago in rat cardiac atria, has been extensively investigated with regard to physiology, pathophysiology, cardiovascular disease therapeutics and molecular genetic aspects. Besides its diuretic, natriuretic and vasorelaxant effects, novel properties of this hormone have been described. Thus anti-hypertrophic, anti-fibrotic, anti-proliferative and anti-inflammatory actions suggest that ANP contributes not only to haemodynamic homoeostasis and adjustments, but has also a role in cardiovascular remodelling. Circulating ANP levels represent a valuable biomarker in cardiovascular diseases. ANP structure is highly conserved among species, indicating a key role in cardiovascular health. Thus an abnormal ANP structure may contribute to an increased risk of disease due to altered functions at either the vascular or cardiac level. Among others, the 2238T>C exon 3 variant has been associated with endothelial cell damage and dysfunction and with an increased risk of acute cardiovascular events, a frameshift mutation within exon 3 has been related to increased risk of atrial fibrillation, and ANP gene variants have been linked to increased risk of hypertension in different ethnic groups. On the other hand, the rs5068 variant, falling within the 3' UTR and associated with higher circulating ANP levels, has been shown to have a beneficial cardioprotective and metabolic effect. Dissecting out the disease mechanisms dependent on specific ANP molecular variants may reveal information useful in the clinical setting for diagnostic, prognostic and therapeutic purposes. Furthermore, insights from molecular genetic analysis of ANP may well integrate advancing knowledge on the role of ANP as a significant biomarker in patients affected by cardiovascular diseases.
Collapse
|
35
|
Atrial natriuretic peptide and regulation of vascular function in hypertension and heart failure: implications for novel therapeutic strategies. J Hypertens 2014; 31:1061-72. [PMID: 23524910 DOI: 10.1097/hjh.0b013e32835ed5eb] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atrial natriuretic peptide (ANP) plays a pivotal role in modulation of vascular function and it is also involved in the pathophysiology of several cardiovascular diseases. We provide an updated overview of the current appraisal of ANP vascular effects in both animal models and humans. We describe the physiological implications of ANP vasomodulatory properties as well as the involvement of ANP, through its control of vascular function, in hypertension and heart failure. The principal molecular mechanisms underlying regulation of vascular tone, that is natriuretic peptide receptor type A/cyclic guanylate monophosphate, natriuretic peptide receptor type C, nitric oxide system, are discussed. We review the literature on therapeutic implications of ANP in hypertension and heart failure, examining the potential use of ANP analogues, neutral endopeptidase (NEP) inhibitors, ACE/NEP inhibitors, angiotensin receptor blocker (ARB)/NEP inhibitors, the new dual endothelin-converting enzyme (ECE)/NEP inhibitors and ANP-based gene therapy. The data discussed support the role of ANP in different pathological conditions through its vasomodulatory properties. They also indicate that ANP may represent an optimal therapeutic agent in cardiovascular diseases.
Collapse
|
36
|
McKie PM, Cataliotti A, Ichiki T, Sangaralingham SJ, Chen HH, Burnett JC. M-atrial natriuretic peptide and nitroglycerin in a canine model of experimental acute hypertensive heart failure: differential actions of 2 cGMP activating therapeutics. J Am Heart Assoc 2014; 3:e000206. [PMID: 24385449 PMCID: PMC3959692 DOI: 10.1161/jaha.113.000206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Systemic hypertension is a common characteristic in acute heart failure (HF). This increasingly recognized phenotype is commonly associated with renal dysfunction and there is an unmet need for renal enhancing therapies. In a canine model of HF and acute vasoconstrictive hypertension we characterized and compared the cardiorenal actions of M‐atrial natriuretic peptide (M‐ANP), a novel particulate guanylyl cyclase (pGC) activator, and nitroglycerin, a soluble guanylyl cyclase (sGC) activator. Methods and Results HF was induced by rapid RV pacing (180 beats per minute) for 10 days. On day 11, hypertension was induced by continuous angiotensin II infusion. We characterized the cardiorenal and humoral actions prior to, during, and following intravenous M‐ANP (n=7), nitroglycerin (n=7), and vehicle (n=7) infusion. Mean arterial pressure (MAP) was reduced by M‐ANP (139±4 to 118±3 mm Hg, P<0.05) and nitroglycerin (137±3 to 116±4 mm Hg, P<0.05); similar findings were recorded for pulmonary wedge pressure (PCWP) with M‐ANP (12±2 to 6±2 mm Hg, P<0.05) and nitroglycerin (12±1 to 6±1 mm Hg, P<0.05). M‐ANP enhanced renal function with significant increases (P<0.05) in glomerular filtration rate (38±4 to 53±5 mL/min), renal blood flow (132±18 to 236±23 mL/min), and natriuresis (11±4 to 689±37 mEq/min) and also inhibited aldosterone activation (32±3 to 23±2 ng/dL, P<0.05), whereas nitroglycerin had no significant (P>0.05) effects on these renal parameters or aldosterone activation. Conclusions Our results advance the differential cardiorenal actions of pGC (M‐ANP) and sGC (nitroglycerin) mediated cGMP activation. These distinct renal and aldosterone modulating actions make M‐ANP an attractive therapeutic for HF with concomitant hypertension, where renal protection is a key therapeutic goal.
Collapse
Affiliation(s)
- Paul M McKie
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, MN
| | | | | | | | | | | |
Collapse
|
37
|
Qiao LN, Xu HB, Shi K, Zhou TF, Hua YM, Liu HM. Role of notch signal in angiotensin II induced pulmonary vascular remodeling. Transl Pediatr 2013; 2:5-13. [PMID: 26835278 PMCID: PMC4728945 DOI: 10.3978/j.issn.2224-4336.2012.05.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Notch signal is particularly important to vascular remodeling during the process of embryonic development, vessel repair and tumor growth, but there are few studies about pulmonary vascular remodeling in pulmonary hypertension. This study was to explore the effect of inhibiting Notch signal on pulmonary vascular remodeling induced by angiotensin II. METHODS Vessel strips taken from healthy Wistar rats were cocultured with extrogenous angiotensin II and the potent smooth muscle cell proliferation stimulators for 7 days. Vascular wall thickness, proliferating cell nuclear antigen (PCNA) positive cell rate, and caspase-3 positive cell rate were examined in vessel strips. Some of the vessel strips were cultured with angiotensin II and γ-secretase inhibitor DAPT, a Notch signaling inhibitor, for 7 days. The levels of Notch 1 to 4 receptor and HERP1/2 mRNA were ascertained by FQ-PCR. RESULTS Angiotensin II stimulation in the cultured normal pulmonary arteries resulted in an increase in the vascular medial thickness by nearly 50%, and a significant increase in the PCNA positive cell rate and a decrease in the caspase-3 positive cell rate (P<0.05). DAPT treatment did not alter the levels of Notch 1 to 4 receptor but remarkably decreased HERP1 and HERP2 mRNA expression (P<0.05). DAPT treatment also decreased angiotensin II-induced vascular medial thickness and PCNA positive cell rate, and increased caspase-3 positive cell rate (P<0.05). CONCLUSIONS Inhibition of Notch signal by the γ-secretase inhibitor may suppress pulmonary vascular remodeling induced by angiotensin II, suggesting that the inhibition of Notch signal pathway might be a novel strategy for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Li-Na Qiao
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Bo Xu
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kun Shi
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong-Fu Zhou
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi-Min Hua
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| | - Han-Min Liu
- Department of Pediatrics, Second West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Abstract
The natriuretic peptides, specifically atrial natriuretic peptide (ANP), are increasingly recognized to play a fundamental role in blood pressure (BP) regulation. This role in BP regulation reflects the pluripotent cardiorenal actions of ANP, which include diuresis, enhancement of renal blood flow and glomerular filtration rate, systemic vasodilatation, suppression of aldosterone, and inhibition of the sympathetic nervous system. These actions of ANP, in addition to recent human studies demonstrating an association of higher plasma ANP with lower risk of hypertension, support the development of an ANP-based therapy for hypertension. M-ANP is a novel ANP-based peptide that is resistant to proteolytic degradation and possesses greater BP-lowering, renal function-enhancing, and aldosterone-suppressing properties than native ANP. In an animal model of hypertension, M-ANP lowers BP via multiple mechanisms, including vasodilatation, diuresis, and inhibition of aldosterone. Importantly, M-ANP enhances both glomerular filtration rate and renal blood flow despite reductions in BP. The pluripotent BP-lowering actions and concomitant enhancement of renal function associated with M-ANP are highly attractive characteristics for an antihypertensive agent and underscore the therapeutic potential of M-ANP. M-ANP currently is heading into clinical testing, which may advance this novel strategy for human hypertension.
Collapse
|
39
|
Bricca G, Lantelme P. Natriuretic peptides: ready for prime-time in hypertension? Arch Cardiovasc Dis 2011; 104:403-9. [PMID: 21798473 DOI: 10.1016/j.acvd.2011.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/25/2022]
Abstract
Over the past years, natriuretic peptides have been recognised not only as important contributors to cardiovascular regulation but also as valuable markers in overt cardiac disease, including heart failure or coronary disease. More recently, these markers have shown their ability to detect preclinical cardiac alterations in different settings. In this respect, natriuretic peptides offer a new perspective for risk stratification in hypertension. They are correlated to various features of cardiac remodelling provoked by hypertension. They also depend on vascular properties, including blood pressure level and aortic stiffness. In addition to being integrative markers of cardiovascular alterations, several studies have shown their value in predicting all-cause mortality or cardiovascular mortality and morbidity in the general population. At least three consistent studies are now available in hypertension also showing this prognostic value. This performance, together with the ease of measurement, low cost and widespread availability, should prompt the wide use of natriuretic peptides for risk stratification in hypertension, at least in patients with normal electrocardiography, but also in most hypertensive patients.
Collapse
Affiliation(s)
- Giampiero Bricca
- Metabolic and Endocrine Exploration Laboratory, hôpital de Croix-Rousse, hospices civils de Lyon, 69004 Lyon cedex, France
| | | |
Collapse
|