1
|
Rodrigues AF, Todiras M, Qadri F, Alenina N, Bader M. Angiotensin deficient FVB/N mice are normotensive. Br J Pharmacol 2023; 180:1843-1861. [PMID: 36740662 DOI: 10.1111/bph.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE All previous rodent models lacking the peptide hormone angiotensin II (Ang II) were hypotensive. A mixed background strain with global deletion of the angiotensinogen gene was backcrossed to the FVB/N background (Agt-KO), a strain preferred for transgenic generation. Surprisingly, the resulting line turned out to be normotensive. Therefore, this study aimed to understand the unique blood pressure regulation of FVB/N mice without angiotensin peptides. EXPERIMENTAL APPROACH Acute and chronic recordings of blood pressure (BP) in freely-moving adult mice were performed to establish baseline BP. The pressure responses to sympatholytic and sympathomimetic as well as a nitric oxide inhibitor and donor compounds were used to quantify the neurogenic tone and endothelial function. The role of the renal nerves on baseline BP maintenance was tested by renal denervation. Finally, further phenotyping was done by gene expression analysis, histology and measurement of metabolites in plasma, urine and tissues. KEY RESULTS Baseline BP in adult FVB/N Agt-KO was unexpectedly unaltered. As compensatory mechanisms Agt-KO presented an increased sympathetic nerve activity and reduced endothelial nitric oxide production. However, FVB/N Agt-KO exhibited the renal morphological and physiological alterations previously found in mice lacking the production of Ang II including polyuria and hydronephrosis. The hypotensive effect of bilateral renal denervation was blunted in Agt-KO compared to wildtype FVB/N mice. CONCLUSION AND IMPLICATIONS We describe a germline Agt-KO line that challenges all previous knowledge on BP regulation in mice with deletion of the classical RAS. This line may represent a model of drug-resistant hypertension because it lacks hypotension.
Collapse
Affiliation(s)
- André Felipe Rodrigues
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
4
|
Genetic Kidney Diseases (GKDs) Modeling Using Genome Editing Technologies. Cells 2022; 11:cells11091571. [PMID: 35563876 PMCID: PMC9105797 DOI: 10.3390/cells11091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic kidney diseases (GKDs) are a group of rare diseases, affecting approximately about 60 to 80 per 100,000 individuals, for which there is currently no treatment that can cure them (in many cases). GKDs usually leads to early-onset chronic kidney disease, which results in patients having to undergo dialysis or kidney transplant. Here, we briefly describe genetic causes and phenotypic effects of six GKDs representative of different ranges of prevalence and renal involvement (ciliopathy, glomerulopathy, and tubulopathy). One of the shared characteristics of GKDs is that most of them are monogenic. This characteristic makes it possible to use site-specific nuclease systems to edit the genes that cause GKDs and generate in vitro and in vivo models that reflect the genetic abnormalities of GKDs. We describe and compare these site-specific nuclease systems (zinc finger nucleases (ZFNs), transcription activator-like effect nucleases (TALENs) and regularly clustered short palindromic repeat-associated protein (CRISPR-Cas9)) and review how these systems have allowed the generation of cellular and animal GKDs models and how they have contributed to shed light on many still unknown fields in GKDs. We also indicate the main obstacles limiting the application of these systems in a more efficient way. The information provided here will be useful to gain an accurate understanding of the technological advances in the field of genome editing for GKDs, as well as to serve as a guide for the selection of both the genome editing tool and the gene delivery method most suitable for the successful development of GKDs models.
Collapse
|
5
|
Sato M, Nakamura S, Inada E, Takabayashi S. Recent Advances in the Production of Genome-Edited Rats. Int J Mol Sci 2022; 23:ijms23052548. [PMID: 35269691 PMCID: PMC8910656 DOI: 10.3390/ijms23052548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| |
Collapse
|
6
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
7
|
Sex differences in cardiovascular actions of the renin-angiotensin system. Clin Auton Res 2020; 30:393-408. [PMID: 32860555 DOI: 10.1007/s10286-020-00720-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) remains a worldwide public health concern despite decades of research and the availability of numerous targeted therapies. While the intrinsic physiological mechanisms regulating cardiovascular function are similar between males and females, marked sex differences have been established in terms of CVD onset, pathophysiology, manifestation, susceptibility, prevalence, treatment responses and outcomes in animal models and clinical populations. Premenopausal females are generally protected from CVD in comparison to men of similar age, with females tending to develop cardiovascular complications later in life following menopause. Emerging evidence suggests this cardioprotection in females is, in part, attributed to sex differences in hormonal regulators, such as the renin-angiotensin system (RAS). To date, research has largely focused on canonical RAS pathways and shown that premenopausal females are protected from cardiovascular derangements produced by activation of angiotensin II pathways. More recently, a vasodilatory arm of the RAS has emerged that is characterized by angiotensin-(1-7) [(Ang-(1-7)], angiotensin-converting enzyme 2 and Mas receptors. Emerging studies provide evidence for a shift towards these cardioprotective Ang-(1-7) pathways in females, with effects modulated by interactions with estrogen. Despite well-established sex differences, female comparison studies on cardiovascular outcomes are lacking at both the preclinical and clinical levels. Furthermore, there are no specific guidelines in place for the treatment of cardiovascular disease in men versus women, including therapies targeting the RAS. This review summarizes current knowledge on sex differences in the cardiovascular actions of the RAS, focusing on interactions with gonadal hormones, emerging data for protective Ang-(1-7) pathways and potential clinical implications for established and novel therapies.
Collapse
|
8
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
9
|
Xu C, Wang F, Chen Y, Xie S, Sng D, Reversade B, Yang T. ELABELA antagonizes intrarenal renin-angiotensin system to lower blood pressure and protects against renal injury. Am J Physiol Renal Physiol 2020; 318:F1122-F1135. [PMID: 32174138 DOI: 10.1152/ajprenal.00606.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence has demonstrated that (pro)renin receptor (PRR)-mediated activation of intrarenal renin-angiotensin system (RAS) plays an essential role in renal handling of Na+ and water balance and blood pressure. The present study tested the possibility that the intrarenal RAS served as a molecular target for the protective action of ELABELA (ELA), a novel endogenous ligand of apelin receptor, in the distal nephron. By RNAscope and immunofluorescence, mRNA and protein expression of endogenous ELA was consistently localized to the collecting duct (CD). Apelin was also found in the medullary CDs as assessed by immunofluorescence. In cultured CD-derived M1 cells, exogenous ELA induced parallel decreases of full-length PRR (fPRR), soluble PRR (sPRR), and prorenin/renin protein expression as assessed by immunoblotting and medium sPRR and prorenin/renin levels by ELISA, all of which were reversed by 8-bromoadenosine 3',5'-cyclic monophosphate. Conversely, deletion of PRR in the CD or nephron in mice elevated Apela and Apln mRNA levels as well as urinary ELA and apelin excretion, supporting the antagonistic relationship between the two systems. Administration of exogenous ELA-32 infusion (1.5 mg·kg-1·day-1, minipump) to high salt (HS)-loaded Dahl salt-sensitive (SS) rats significantly lowered mean arterial pressure, systolic blood pressure, diastolic blood pressure, and albuminuria, accompanied with a reduction of urinary sPRR, angiotensin II, and prorenin/renin excretion. HS upregulated renal medullary protein expression of fPRR, sPRR, prorenin, and renin in Dahl SS rats, all of which were significantly blunted by exogenous ELA-32 infusion. Additionally, HS-induced upregulation of inflammatory cytokines (IL-1β, IL-2, IL-6, IL-17A, IFN-γ, VCAM-1, ICAM-1, and MCP-1), fibrosis markers (TGF-β1, FN, Col1A1, PAI-1, and TIMP-1), and kidney injury markers (NGAL, Kim-1, albuminuria, and urinary NGAL excretion) were markedly blocked by exogenous ELA infusion. Together, these results support the antagonistic interaction between ELA and intrarenal RAS in the distal nephron that appears to exert a major impact on blood pressure regulation.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Danielle Sng
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| |
Collapse
|
10
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
11
|
Renin Activity in Heart Failure with Reduced Systolic Function-New Insights. Int J Mol Sci 2019; 20:ijms20133182. [PMID: 31261774 PMCID: PMC6651297 DOI: 10.3390/ijms20133182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Regardless of the cause, symptomatic heart failure (HF) with reduced ejection fraction (rEF) is characterized by pathological activation of the renin–angiotensin–aldosterone system (RAAS) with sodium retention and extracellular fluid expansion (edema). Here, we review the role of active renin, a crucial, upstream enzymatic regulator of the RAAS, as a prognostic and diagnostic plasma biomarker of heart failure with reduced ejection fraction (HFrEF) progression; we also discuss its potential as a pharmacological bio-target in HF therapy. Clinical and experimental studies indicate that plasma renin activity is elevated with symptomatic HFrEF with edema in patients, as well as in companion animals and experimental models of HF. Plasma renin activity levels are also reported to be elevated in patients and animals with rEF before the development of symptomatic HF. Modulation of renin activity in experimental HF significantly reduces edema formation and the progression of systolic dysfunction and improves survival. Thus, specific assessment and targeting of elevated renin activity may enhance diagnostic and therapeutic precision to improve outcomes in appropriate patients with HFrEF.
Collapse
|
12
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) has recently emerged as a top genome editing technology and has afforded investigators the ability to more easily study a number of diseases. This review discusses CRISPR/Cas9's advantages and limitations and highlights a few recent reports on genome editing applications for alleviating dyslipidemia through disruption of proprotein convertase subtilisin/kexin type 9 (PCSK9). RECENT FINDINGS Targeting of mouse Pcsk9 using CRISPR/Cas9 technology has yielded promising results for lowering total cholesterol levels, and several recent findings are highlighted in this review. Reported on-target mutagenesis efficiency is as high as 90% with a subsequent 40% reduction of blood cholesterol levels in mice, highlighting the potential for use as a therapeutic in human patients. The ability to characterize and treat diseases is becoming easier with the recent advances in genome editing technologies. In this review, we discuss how genome editing strategies can be of use for potential therapeutic applications.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases. RECENT FINDINGS The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance.
Collapse
Affiliation(s)
- Alexandra C Chadwick
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Musunuru K. Genome Editing: The Recent History and Perspective in Cardiovascular Diseases. J Am Coll Cardiol 2017; 70:2808-2821. [PMID: 29191331 DOI: 10.1016/j.jacc.2017.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
The genome-editing field has advanced to a remarkable degree in the last 5 years, culminating in the successful correction of a cardiomyopathy gene mutation in viable human embryos. In this review, the author discusses the basic principles of genome editing, recent advances in clustered regularly interspaced short palindromic repeats and clustered regularly interspaced short palindromic repeats-associated 9 technology, the impact on cardiovascular basic science research, possible therapeutic applications in patients with cardiovascular diseases, and finally the implications of potential clinical uses of human germline genome editing.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and the Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech 2017; 9:1419-1433. [PMID: 27935823 PMCID: PMC5200898 DOI: 10.1242/dmm.027276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rat has classically been the species of choice for pharmacological studies and disease modeling, providing a source of high-quality physiological data on cardiovascular and renal pathophysiology over many decades. Recent developments in genome engineering now allow us to capitalize on the wealth of knowledge acquired over the last century. Here, we review rat models of hypertension, diabetic nephropathy, and acute and chronic kidney disease. These models have made important contributions to our understanding of renal diseases and have revealed key genes, such as Ace and P2rx7, involved in renal pathogenic processes. By targeting these genes of interest, researchers are gaining a better understanding of the etiology of renal pathologies, with the promised potential of slowing disease progression or even reversing the damage caused. Some, but not all, of these target genes have proved to be of clinical relevance. However, it is now possible to generate more sophisticated and appropriate disease models in the rat, which can recapitulate key aspects of human renal pathology. These advances will ultimately be used to identify new treatments and therapeutic targets of much greater clinical relevance. Summary: This Review highlights the key role that the rat continues to play in improving our understanding of the etiologies of renal pathologies, and how these insights have opened up new therapeutic avenues.
Collapse
Affiliation(s)
- Linda J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryan R Conway
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert I Menzies
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
17
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
18
|
Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Pochynyuk OM, Jacob HJ, Geurts AM, Hodges MR, Staruschenko A. Essential role of Kir5.1 channels in renal salt handling and blood pressure control. JCI Insight 2017; 2:92331. [PMID: 28931751 PMCID: PMC5621918 DOI: 10.1172/jci.insight.92331] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16-/-). SSKcnj16-/- rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16-/- rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16-/- rats, but the protein was predominantly localized in the cytosol in SSKcnj16-/- rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16-/- rats and prevented or mitigated hypertension in SSKcnj16-/- or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology and
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Oleh M. Pochynyuk
- Department of Integrative Biology, University of Texas Health Science Center Medical School, Houston, Texas, USA
| | - Howard J. Jacob
- Department of Physiology and
- Human and Molecular Genetics Center and
| | - Aron M. Geurts
- Department of Physiology and
- Human and Molecular Genetics Center and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew R. Hodges
- Department of Physiology and
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexander Staruschenko
- Department of Physiology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Haller ST, Kumarasamy S, Folt DA, Wuescher LM, Stepkowski S, Karamchandani M, Waghulde H, Mell B, Chaudhry M, Maxwell K, Upadhyaya S, Drummond CA, Tian J, Filipiak WE, Saunders TL, Shapiro JI, Joe B, Cooper CJ. Targeted disruption of Cd40 in a genetically hypertensive rat model attenuates renal fibrosis and proteinuria, independent of blood pressure. Kidney Int 2017; 91:365-374. [PMID: 27692815 PMCID: PMC5237403 DOI: 10.1016/j.kint.2016.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
High blood pressure is a common cause of chronic kidney disease. Because CD40, a member of the tumor necrosis factor receptor family, has been linked to the progression of kidney disease in ischemic nephropathy, we studied the role of Cd40 in the development of hypertensive renal disease. The Cd40 gene was mutated in the Dahl S genetically hypertensive rat with renal disease by targeted-gene disruption using zinc-finger nuclease technology. These rats were then given low (0.3%) and high (2%) salt diets and compared. The resultant Cd40 mutants had significantly reduced levels of both urinary protein excretion (41.8 ± 3.1 mg/24 h vs. 103.7 ± 4.3 mg/24 h) and plasma creatinine (0.36 ± 0.05 mg/dl vs. 1.15 ± 0.19 mg/dl), with significantly higher creatinine clearance compared with the control S rats (3.04 ± 0.48 ml/min vs. 0.93 ± 0.15 ml/min), indicating renoprotection was conferred by mutation of the Cd40 locus. Furthermore, the Cd40 mutants had a significant attenuation in renal fibrosis, which persisted on the high salt diet. However, there was no difference in systolic blood pressure between the control and Cd40 mutant rats. Thus, these data serve as the first evidence for a direct link between Cd40 and hypertensive nephropathy. Hence, renal fibrosis is one of the underlying mechanisms by which Cd40 plays a crucial role in the development of hypertensive renal disease.
Collapse
Affiliation(s)
- Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Sivarajan Kumarasamy
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - David A Folt
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Leah M Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Manish Karamchandani
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Muhammad Chaudhry
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Kyle Maxwell
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Siddhi Upadhyaya
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher A Drummond
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Wanda E Filipiak
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joseph I Shapiro
- Department of Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher J Cooper
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
20
|
Wang D, Tediashvili G, Pecha S, Reichenspurner H, Deuse T, Schrepfer S. Vein Interposition Model: A Suitable Model to Study Bypass Graft Patency. J Vis Exp 2017. [PMID: 28117809 DOI: 10.3791/54839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bypass grafting is an established treatment method for coronary artery disease. Graft patency continues to be the Achilles heel of saphenous vein grafts. Research models for bypass graft failure are essential for a better understanding of pathobiological and pathophysiological processes during graft patency loss. Large animal models, such as pigs or sheep, resemble human anatomical structures but require special facilities and equipment. This video describes a rat vein interposition model to investigate vein graft patency loss. Rats are inexpensive and easy to handle. Compared to mouse models, the convenient size of rats permits better operability and enables a sufficient amount of material to be obtained for further diverse analysis. In brief, the inferior epigastric vein of a donor rat is harvested and used to replace a segment of the femoral artery. Anastomosis is conducted via single stitches and sealed with fibrin glue. Graft patency can be monitored non-invasively using duplex sonography. Myointimal hyperplasia, which is the main cause for graft patency loss, develops progressively over time and can be calculated from histological cross sections.
Collapse
Affiliation(s)
- Dong Wang
- Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg; Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF); Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck; Cardiovascular Surgery, University Heart Center Hamburg
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg; Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF); Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck
| | - Simon Pecha
- Cardiovascular Surgery, University Heart Center Hamburg
| | | | - Tobias Deuse
- Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg; Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF); Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck; Cardiovascular Surgery, University Heart Center Hamburg
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg; Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF); Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck; Cardiovascular Surgery, University Heart Center Hamburg;
| |
Collapse
|
21
|
Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 313:F135-F140. [PMID: 28003189 DOI: 10.1152/ajprenal.00427.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Salt-sensitive hypertension is associated with renal and vascular dysfunctions, which lead to impaired fluid excretion, increased cardiac output, and total peripheral resistance. It is commonly accepted that increased renal sodium handling and plasma volume expansion are necessary factors for the development of salt-induced hypertension. The epithelial sodium channel (ENaC) is a trimeric ion channel expressed in the distal nephron that plays a critical role in the regulation of sodium reabsorption in both normal and pathological conditions. In this mini-review, we summarize recent studies investigating the role of ENaC in the development of salt-sensitive hypertension. On the basis of experimental data obtained from the Dahl salt-sensitive rats, we and others have demonstrated that abnormal ENaC activation in response to a dietary NaCl load contributes to the development of high blood pressure in this model. The role of different humoral factors, such as the components of the renin-angiotensin-aldosterone system, members of the epidermal growth factors family, arginine vasopressin, and oxidative stress mediating the effects of dietary salt on ENaC are discussed in this review to highlight future research directions and to determine potential molecular targets for drug development.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; and
| | | |
Collapse
|
22
|
Abstract
Genome-editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems, have emerged as an invaluable technology to achieve somatic and germline genomic manipulation in cells and model organisms for multiple applications, including the creation of knockout alleles, introducing desired mutations into genomic DNA, and inserting novel transgenes. Genome editing is being rapidly adopted into all fields of biomedical research, including the cardiovascular field, where it has facilitated a greater understanding of lipid metabolism, electrophysiology, cardiomyopathies, and other cardiovascular disorders, has helped to create a wider variety of cellular and animal models, and has opened the door to a new class of therapies. In this Review, we discuss the applications of genome-editing technology throughout cardiovascular disease research and the prospect of in vivo genome-editing therapies in the future. We also describe some of the existing limitations of genome-editing tools that will need to be addressed if cardiovascular genome editing is to achieve its full scientific and therapeutic potential.
Collapse
|
23
|
Pavlov TS, Levchenko V, Ilatovskaya DV, Moreno C, Staruschenko A. Renal sodium transport in renin-deficient Dahl salt-sensitive rats. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316653858. [PMID: 27443990 PMCID: PMC5100984 DOI: 10.1177/1470320316653858] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/15/2016] [Indexed: 01/01/2023] Open
Abstract
Objective: The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat. Methods: Renin knockout (Ren−/−) rats created on the salt-sensitive rat background were used to investigate the role of renin in the regulation of ion transport in salt-sensitive hypertension. Western blotting and patch-clamp analyses were utilized to assess the expression level and activity of Na+ transporters. Results: It has been described previously that Ren−/− rats exhibit severe kidney underdevelopment, polyuria, and lower body weight and blood pressure compared to their wild-type littermates. Here we found that renin deficiency led to decreased expression of sodium-hydrogen antiporter (NHE3), the Na+/H+ exchanger involved in Na+ absorption in the proximal tubules, but did not affect the expression of Na-K-Cl cotransporter (NKCC2), the main transporter in the loop of Henle. In the distal nephron, the expression of sodium chloride cotransporter (NCC) was lower in Ren−/− rats. Single-channel patch clamp analysis detected decreased ENaC activity in Ren−/− rats which was mediated via changes in the channel open probability. Conclusion: These data illustrate that renin deficiency leads to significant dysregulation of ion transporters.
Collapse
Affiliation(s)
| | | | | | - Carol Moreno
- Department of Physiology, Medical College of Wisconsin, USA Cardiovascular and Metabolic Diseases, MedImmune, Cambridge, UK
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, USA Cardiovascular Center, Medical College of Wisconsin, USA
| |
Collapse
|
24
|
Beyder A, Gibbons SJ, Mazzone A, Strege PR, Saravanaperumal SA, Sha L, Higgins S, Eisenman ST, Bernard CE, Geurts A, Kline CF, Mohler PJ, Farrugia G. Expression and function of the Scn5a-encoded voltage-gated sodium channel NaV 1.5 in the rat jejunum. Neurogastroenterol Motil 2016; 28:64-73. [PMID: 26459913 PMCID: PMC4688076 DOI: 10.1111/nmo.12697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/05/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The SCN5A-encoded voltage-gated sodium channel NaV 1.5 is expressed in human jejunum and colon. Mutations in NaV 1.5 are associated with gastrointestinal motility disorders. The rat gastrointestinal tract expresses voltage-gated sodium channels, but their molecular identity and role in rat gastrointestinal electrophysiology are unknown. METHODS The presence and distribution of Scn5a-encoded NaV 1.5 was examined by PCR, Western blotting and immunohistochemistry in rat jejunum. Freshly dissociated smooth muscle cells were examined by whole cell electrophysiology. Zinc finger nuclease was used to target Scn5a in rats. Lentiviral-mediated transduction with shRNA was used to target Scn5a in rat jejunum smooth muscle organotypic cultures. Organotypic cultures were examined by sharp electrode electrophysiology and RT-PCR. KEY RESULTS We found NaV 1.5 in rat jejunum and colon smooth muscle by Western blot. Immunohistochemistry using two other antibodies of different portions of NaV 1.5 revealed the presence of the ion channel in rat jejunum. Whole cell voltage-clamp in dissociated smooth muscle cells from rat jejunum showed fast activating and inactivating voltage-dependent inward current that was eliminated by Na(+) replacement by NMDG(+) . Constitutive rat Scn5a knockout resulted in death in utero. NaV 1.5 shRNA delivered by lentivirus into rat jejunum smooth muscle organotypic culture resulted in 57% loss of Scn5a mRNA and several significant changes in slow waves, namely 40% decrease in peak amplitude, 30% decrease in half-width, and 7 mV hyperpolarization of the membrane potential at peak amplitude. CONCLUSIONS & INFERENCES Scn5a-encoded NaV 1.5 is expressed in rat gastrointestinal smooth muscle and it contributes to smooth muscle electrophysiology.
Collapse
Affiliation(s)
- A Beyder
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S J Gibbons
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - A Mazzone
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - P R Strege
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S A Saravanaperumal
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - L Sha
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - S Higgins
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - S T Eisenman
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - C E Bernard
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - A Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - C F Kline
- The Dorothy M. Davis Heart and Lung Research Institute and Departments of Physiology & Cell Biology and Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - P J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute and Departments of Physiology & Cell Biology and Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - G Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
25
|
Cowley AW, Yang C, Zheleznova NN, Staruschenko A, Kurth T, Rein L, Kumar V, Sadovnikov K, Dayton A, Hoffman M, Ryan RP, Skelton MM, Salehpour F, Ranji M, Geurts A. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats. Hypertension 2015; 67:440-50. [PMID: 26644237 DOI: 10.1161/hypertensionaha.115.06280] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022]
Abstract
This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4.
Collapse
Affiliation(s)
- Allen W Cowley
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.).
| | - Chun Yang
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Nadezhda N Zheleznova
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Alexander Staruschenko
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Theresa Kurth
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Lisa Rein
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Vikash Kumar
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Katherine Sadovnikov
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Alex Dayton
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Matthew Hoffman
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Robert P Ryan
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Meredith M Skelton
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Fahimeh Salehpour
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Mahsa Ranji
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Aron Geurts
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| |
Collapse
|
26
|
Priestley JRC, Kautenburg KE, Casati MC, Endres BT, Geurts AM, Lombard JH. The NRF2 knockout rat: a new animal model to study endothelial dysfunction, oxidant stress, and microvascular rarefaction. Am J Physiol Heart Circ Physiol 2015; 310:H478-87. [PMID: 26637559 DOI: 10.1152/ajpheart.00586.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022]
Abstract
Nuclear factor (erythroid-derived 2)-like-2 (NRF2) is a master antioxidant and cell protective transcription factor that upregulates antioxidant defenses. In this study we developed a strain of Nrf2 null mutant rats to evaluate the role of reduced NRF2-regulated antioxidant defenses in contributing to endothelial dysfunction and impaired angiogenic responses during salt-induced ANG II suppression. Nrf2(-/-) mutant rats were developed using transcription activator-like effector nuclease technology in the Sprague-Dawley genetic background, and exhibited a 41-bp deletion that included the start codon for Nrf2 and an absence of immunohistochemically detectable NRF2 protein. Expression of mRNA for the NRF2-regulated indicator enzymes heme oxygenase-1, catalase, superoxide dismutase 1, superoxide dismutase 2, and glutathione reductase was significantly lower in livers of Nrf2(-/-) mutant rats fed high salt (HS; 4% NaCl) for 2 wk compared with wild-type controls. Endothelium-dependent dilation to acetylcholine was similar in isolated middle cerebral arteries (MCA) of Nrf2(-/-) mutant rats and wild-type littermates fed low-salt (0.4% NaCl) diet, and was eliminated by short-term (3 days) HS diet in both strains. Low-dose ANG II infusion (100 ng/kg sc) reversed salt-induced endothelial dysfunction in MCA and prevented microvessel rarefaction in wild-type rats fed HS diet, but not in Nrf2(-/-) mutant rats. The results of this study indicate that suppression of NRF2 antioxidant defenses plays an essential role in the development of salt-induced oxidant stress, endothelial dysfunction, and microvessel rarefaction in normotensive rats and emphasize the potential therapeutic benefits of directly upregulating NRF2-mediated antioxidant defenses to ameliorate vascular oxidant stress in humans.
Collapse
Affiliation(s)
| | - Katie E Kautenburg
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Marc C Casati
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Bradley T Endres
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
27
|
Kawaharada K, Kawamata M, Ochiya T. Rat embryonic stem cells create new era in development of genetically manipulated rat models. World J Stem Cells 2015; 7:1054-1063. [PMID: 26328021 PMCID: PMC4550629 DOI: 10.4252/wjsc.v7.i7.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem (ES) cells are isolated from the inner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer gene-modified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.
Collapse
|
28
|
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2015; 4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | |
Collapse
|
29
|
Animal Models with a Genetic Alteration of the ACE2/Ang-(1-7)/Mas Axis. THE PROTECTIVE ARM OF THE RENIN ANGIOTENSIN SYSTEM (RAS) 2015. [PMCID: PMC7150279 DOI: 10.1016/b978-0-12-801364-9.00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this chapter is to describe the animal models generated by transgenic technology for the functional analysis of the protective axis of the renin–angiotensin system, consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin (Ang)-(1-7), and Mas. Transgenic overexpression of the components of this axis in general led to an ameliorated cardiac and vascular damage in disease states and to an improved metabolic profile. Knockout models for ACE2 and Mas, however, show aggravated cardiovascular pathologies and a metabolic syndrome-like state. In particular, the local production of Ang-(1-7) in the vascular wall, in the heart, and in the brain was found to be of high physiological relevance by the use of transgenic animals overexpressing ACE2 or Ang-(1-7) in these tissues.
Collapse
|
30
|
Raff H, Gehrand A, Bruder ED, Hoffman MJ, Engeland WC, Moreno C. Renin knockout rat: control of adrenal aldosterone and corticosterone synthesis in vitro and adrenal gene expression. Am J Physiol Regul Integr Comp Physiol 2014; 308:R73-7. [PMID: 25394830 DOI: 10.1152/ajpregu.00440.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The classic renin-angiotensin system is partly responsible for controlling aldosterone secretion from the adrenal cortex via the peptide angiotensin II (ANG II). In addition, there is a local adrenocortical renin-angiotensin system that may be involved in the control of aldosterone synthesis in the zona glomerulosa (ZG). To characterize the long-term control of adrenal steroidogenesis, we utilized adrenal glands from renin knockout (KO) rats and compared steroidogenesis in vitro and steroidogenic enzyme expression to wild-type (WT) controls (Dahl S rat). Adrenal capsules (ZG; aldosterone production) and subcapsules [zona reticularis/fasciculata (ZFR); corticosterone production] were separately dispersed and studied in vitro. Plasma renin activity and ANG II concentrations were extremely low in the KO rats. Basal and cAMP-stimulated aldosterone production was significantly reduced in renin KO ZG cells, whereas corticosterone production was not different between WT and KO ZFR cells. As expected, adrenal renin mRNA expression was lower in the renin KO compared with the WT rat. Real-time PCR and immunohistochemical analysis showed a significant decrease in P450aldo (Cyp11b2) mRNA and protein expression in the ZG from the renin KO rat. The reduction in aldosterone synthesis in the ZG of the renin KO adrenal seems to be accounted for by a specific decrease in P450aldo and may be due to the absence of chronic stimulation of the ZG by circulating ANG II or to a reduction in locally released ANG II within the adrenal gland.
Collapse
Affiliation(s)
- Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin; Departments of Medicine, Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| | - Ashley Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Eric D Bruder
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Matthew J Hoffman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - William C Engeland
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Carol Moreno
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
31
|
Abstract
PLEKHA7 (pleckstrin homology domain containing family A member 7) has been found in multiple studies as a candidate gene for human hypertension, yet functional data supporting this association are lacking. We investigated the contribution of this gene to the pathogenesis of salt-sensitive hypertension by mutating Plekha7 in the Dahl salt-sensitive (SS/JrHsdMcwi) rat using zinc-finger nuclease technology. After four weeks on an 8% NaCl diet, homozygous mutant rats had lower mean arterial (149 ± 9 mmHg vs. 178 ± 7 mmHg; P < 0.05) and systolic (180 ± 7 mmHg vs. 213 ± 8 mmHg; P < 0.05) blood pressure compared with WT littermates. Albumin and protein excretion rates were also significantly lower in mutant rats, demonstrating a renoprotective effect of the mutation. Total peripheral resistance and perivascular fibrosis in the heart and kidney were significantly reduced in Plekha7 mutant animals, suggesting a potential role of the vasculature in the attenuation of hypertension. Indeed, both flow-mediated dilation and endothelium-dependent vasodilation in response to acetylcholine were improved in isolated mesenteric resistance arteries of Plekha7 mutant rats compared with WT. These vascular improvements were correlated with changes in intracellular calcium handling, resulting in increased nitric oxide bioavailability in mutant vessels. Collectively, these data provide the first functional evidence that Plekha7 may contribute to blood pressure regulation and cardiovascular function through its effects on the vasculature.
Collapse
|
32
|
Rumi MAK, Dhakal P, Kubota K, Chakraborty D, Lei T, Larson MA, Wolfe MW, Roby KF, Vivian JL, Soares MJ. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing. Endocrinology 2014; 155:1991-9. [PMID: 24506075 PMCID: PMC3990838 DOI: 10.1210/en.2013-2150] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.
Collapse
MESH Headings
- Animals
- Codon, Nonsense
- Crosses, Genetic
- Deoxyribonucleases/chemistry
- Deoxyribonucleases/genetics
- Deoxyribonucleases/metabolism
- Estrogen Receptor alpha/chemistry
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Exons
- Female
- Gene Knockout Techniques
- Infertility, Female/blood
- Infertility, Female/metabolism
- Infertility, Female/pathology
- Infertility, Male/blood
- Infertility, Male/metabolism
- Infertility, Male/pathology
- Male
- Microinjections
- Protein Engineering
- RNA, Messenger/metabolism
- Rats
- Rats, Mutant Strains
- Rats, Sprague-Dawley
- Rats, Transgenic
- Zinc Fingers
- Zygote/metabolism
Collapse
Affiliation(s)
- M A Karim Rumi
- Institute for Reproductive Health and Regenerative Medicine; Departments of Pathology and Laboratory Medicine (M.A.K.R., P.D., K.K., D.C., T.L., J.L.V., M.J.S.), Molecular and Integrative Physiology (M.A.L., M.W.W.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mercer JR. Mitochondrial bioenergetics and therapeutic intervention in cardiovascular disease. Pharmacol Ther 2014; 141:13-20. [DOI: 10.1016/j.pharmthera.2013.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/15/2022]
|
34
|
Campbell DJ. Clinical relevance of local Renin Angiotensin systems. Front Endocrinol (Lausanne) 2014; 5:113. [PMID: 25071727 PMCID: PMC4095645 DOI: 10.3389/fendo.2014.00113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Duncan J. Campbell
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Fitzroy, VIC, Australia
- *Correspondence:
| |
Collapse
|
35
|
Cleland JG, Clark AL, Costanzo P, Francis DP. Diabetes, aliskiren, and heart failure: let's bring ASTRONAUT down to earth. Eur Heart J 2013; 34:3097-9. [PMID: 23999453 DOI: 10.1093/eurheartj/eht366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- John G Cleland
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | |
Collapse
|
36
|
Pillay LM, Selland LG, Fleisch VC, Leighton PLA, Cheng CS, Famulski JK, Ritzel RG, March LD, Wang H, Allison WT, Waskiewicz AJ. Evaluating the mutagenic activity of targeted endonucleases containing a Sharkey FokI cleavage domain variant in zebrafish. Zebrafish 2013; 10:353-64. [PMID: 23781947 DOI: 10.1089/zeb.2012.0832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic targeted endonucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) have recently emerged as powerful tools for targeted mutagenesis, especially in organisms that are not amenable to embryonic stem cell manipulation. Both ZFNs and TALENs consist of DNA-binding arrays that are fused to the nonspecific FokI nuclease domain. In an effort to improve targeted endonuclease mutagenesis efficiency, we enhanced their catalytic activity using the Sharkey FokI nuclease domain variant. All constructs tested display increased DNA cleavage activity in vitro. We demonstrate that one out of four ZFN arrays containing the Sharkey FokI variant exhibits a dramatic increase in mutagenesis frequency in vivo in zebrafish. The other three ZFNs exhibit no significant alteration of activity in vivo. Conversely, we demonstrate that TALENs containing the Sharkey FokI variant exhibit absent or severely reduced in vivo mutagenic activity in zebrafish. Notably, Sharkey ZFNs and TALENs do not generate increased toxicity-related defects or mortality. Our results present Sharkey ZFNs as an effective alternative to conventional ZFNs, but advise against the use of Sharkey TALENs.
Collapse
Affiliation(s)
- Laura M Pillay
- Department of Biological Sciences, University of Alberta , Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Parker CC, Chen H, Flagel SB, Geurts AM, Richards JB, Robinson TE, Solberg Woods LC, Palmer AA. Rats are the smart choice: Rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology 2013; 76 Pt B:250-8. [PMID: 23791960 DOI: 10.1016/j.neuropharm.2013.05.047] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Due in part to their rich behavioral repertoire rats have been widely used in behavioral studies of drug abuse-related traits for decades. However, the mouse became the model of choice for researchers exploring the genetic underpinnings of addiction after the first mouse study was published demonstrating the capability of engineering the mouse genome through embryonic stem cell technology. The sequencing of the mouse genome and more recent re-sequencing of numerous inbred mouse strains have further cemented the status of mice as the premier mammalian organism for genetic studies. As a result, many of the behavioral paradigms initially developed and optimized for rats have been adapted to mice. However, numerous complex and interesting drug abuse-related behaviors that can be studied in rats are very difficult or impossible to adapt for use in mice, impeding the genetic dissection of those traits. Now, technological advances have removed many of the historical limitations of genetic studies in rats. For instance, the rat genome has been sequenced and many inbred rat strains are now being re-sequenced and outbred rat stocks are being used to fine-map QTLs. In addition, it is now possible to create "knockout" rats using zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and related techniques. Thus, rats can now be used to perform quantitative genetic studies of sophisticated behaviors that have been difficult or impossible to study in mice. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, Mattson DL, Sorokin A, Lombard JH, Cowley AW, Staruschenko A. Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension. J Am Soc Nephrol 2013; 24:1053-62. [PMID: 23599382 DOI: 10.1681/asn.2012080839] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various stimuli, including hormones and growth factors, modulate epithelial sodium channels (ENaCs), which fine-tune Na(+) absorption in the kidney. Members of the EGF family are important for maintaining transepithelial Na(+) transport, but whether EGF influences ENaC, perhaps mediating salt-sensitive hypertension, is not well understood. Here, the ENaC inhibitor benzamil attenuated the development of hypertension in Dahl salt-sensitive rats. Feeding these salt-sensitive rats a high-salt diet led to lower levels of EGF in the kidney cortex and enhanced the expression and activity of ENaC compared with feeding a low-salt diet. To directly evaluate the role of EGF in the development of hypertension and its effect on ENaC activity, we infused EGF intravenously while continuously monitoring BP of the salt-sensitive rats. Infusion of EGF decreased ENaC activity, prevented the development of hypertension, and attenuated glomerular and renal tubular damage. Taken together, these findings indicate that cortical EGF levels decrease with a high-salt diet in salt-sensitive rats, promoting ENaC-mediated Na(+) reabsorption in the collecting duct and the development of hypertension.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marques FZ, Morris BJ. Neurogenic hypertension: revelations from genome-wide gene expression profiling. Curr Hypertens Rep 2013; 14:485-91. [PMID: 22639016 DOI: 10.1007/s11906-012-0282-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is now good evidence for a role of the sympathetic nervous system in the etiology of essential hypertension in humans. Although genetic variation is expected to underlie the elevated sympathetic outflow in this complex polygenic condition, only limited information has emerged from classic molecular genetic studies. Recently, progress has been made in understanding neurogenic aspects by determination of global alterations in gene expression in key brain regions of animal models of neurogenic hypertension. Such genome-wide expression studies in the hypothalamus and brainstem support roles for factors such as neuronal nitric oxide synthase, inflammation and reactive oxygen species. A role for non-coding RNAs such as microRNAs, and epigenetic alterations await exploration. Ongoing novel approaches should provide a better understanding of the processes responsible for the increased sympathetic outflow in animal models, as well as essential hypertension in humans. Such information may lead to better therapies for neurogenic hypertension in humans.
Collapse
|
40
|
Flister MJ, Hoffman MJ, Reddy P, Jacob HJ, Moreno C. Congenic mapping and sequence analysis of the Renin locus. Hypertension 2013; 61:850-6. [PMID: 23460292 DOI: 10.1161/hypertensionaha.111.01008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renin was the first blood pressure (BP) quantitative trait locus mapped by linkage analysis in the rat. Subsequent BP linkage and congenic studies capturing different portions of the renin region have returned conflicting results, suggesting that multiple interdependent BP loci may be residing in the chromosome 13 BP quantitative trait locus that includes Renin. We used SS-13(BN) congenic strains to map 2 BP loci in the Renin region (chr13: 45.2-49.0 Mb). We identified a 1.1-Mb protective Brown Norway region around Renin (chr13: 46.1-47.2 Mb) that significantly decreased BP by 32 mm Hg. The Renin protective BP locus was offset by an adjacent hypertensive locus (chr13: 47.2-49.0 Mb) that significantly increased BP by 29 mm Hg. Sequence analysis of the protective and hypertensive BP loci revealed 1433 and 2063 variants between Dahl salt-sensitive/Mcwi and Brown Norway rats, respectively. To further reduce the list of candidate variants, we regenotyped an overlapping SS-13(SR) congenic strain (S/renrr) with a previously reported BP phenotype. Sequence comparison among Dahl salt-sensitive, Dahl R, and Brown Norway reduced the number of candidate variants in the 2 BP loci by 42% for further study. Combined with previous studies, these data suggest that at least 4 BP loci reside within the 30-cM chromosome 13 BP quantitative trait locus that includes Renin.
Collapse
Affiliation(s)
- Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
41
|
Mattson DL, Lund H, Guo C, Rudemiller N, Geurts AM, Jacob H. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am J Physiol Regul Integr Comp Physiol 2013; 304:R407-14. [PMID: 23364523 DOI: 10.1152/ajpregu.00304.2012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypertension and renal damage in Dahl SS rats are associated with increased infiltrating immune cells in the kidney. To examine the role of infiltrating immune cells in this disease process, a zinc finger nuclease targeting bases 672-706 of recombination-activating gene 1 (Rag1) was injected into the pronucleus of Dahl SS (SS/JrHsdMcwi) strain embryos and implanted in pseudopregnant females. This strategy yielded a rat strain with a 13-base frame-shift mutation in the target region of Rag1 and a deletion of immunoreactive Rag1 protein in the thymus. Flow cytometry demonstrated that the Rag1-null mutant rats have a significant reduction in T and B lymphocytes in the circulation and spleen. Studies were performed on SS and Rag1-null rats fed a 4.0% NaCl diet for 3 wk. The infiltration of T cells into the kidney following high-salt intake was significantly blunted in the Rag1-null rats (1.7 ± 0.6 × 10(5) cells/kidney) compared with the Dahl SS (5.6 ± 0.9 × 10(5) cells/kidney). Accompanying the reduction in infiltration of immune cells in the kidney, mean arterial blood pressure and urinary albumin excretion rate were significantly lower in Rag1-null mutants (158 ± 3 mmHg and 60 ± 16 mg/day, respectively) than in SS rats (180 ± 11 mmHg and 251 ± 37 mg/day). Finally, a histological analysis revealed that the glomerular and tubular damage in the kidneys of the SS rats fed a high-salt diet was also attenuated in the Rag1 mutants. These studies demonstrate the importance of renal infiltration of immune cells in the pathogenesis of hypertension and renal damage in Dahl SS rats.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Engineered Zinc Finger Nucleases for Targeted Genome Editing. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Ménoret S, Fontanière S, Jantz D, Tesson L, Thinard R, Rémy S, Usal C, Ouisse LH, Fraichard A, Anegon I. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 2012; 27:703-11. [PMID: 23150522 DOI: 10.1096/fj.12-219907] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite the recent availability of gene-specific nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like nucleases (TALENs), there is still a need for new tools to modify the genome of different species in an efficient, rapid, and less costly manner. One aim of this study was to apply, for the first time, engineered meganucleases to mutate an endogenous gene in animal zygotes. The second aim was to target the mouse and rat recombination activating gene 1 (Rag1) to describe, for the first time, Rag1 knockout immunodeficient rats. We microinjected a plasmid encoding a meganuclease for Rag1 into the pronucleus of mouse and rat zygotes. Mutant animals were detected by PCR sequencing of the targeted sequence. A homozygous RAG1-deficient rat line was generated and immunophenotyped. Meganucleases were efficient, because 3.4 and 0.6% of mouse and rat microinjected zygotes, respectively, generated mutated animals. RAG1-deficient rats showed significantly decreased proportions and numbers of immature and mature T and B lymphocytes and normal NK cells vs. littermate wild-type controls. In summary, we describe the use of engineered meganucleases to inactivate an endogenous gene with efficiencies comparable to those of ZFNs and TALENs. Moreover, we generated an immunodeficient rat line useful for studies in which there is a need for biological parameters to be analyzed in the absence of immune responses.
Collapse
Affiliation(s)
- Séverine Ménoret
- Institut National de Santé et de Recherche Médicale (INSERM) Unité Mixte de Recherche1064, Center for Research in Transplantation and Immunology and Platform Transgenic Rats Nantes Infrastructures en Biologie Sante et Agronomie, Centre National de Recherche Scientifique, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zschemisch NH, Glage S, Wedekind D, Weinstein EJ, Cui X, Dorsch M, Hedrich HJ. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol 2012; 13:60. [PMID: 23136839 PMCID: PMC3522011 DOI: 10.1186/1471-2172-13-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background Engineered zinc-finger nucleases (ZFN) represented an innovative method for the genome manipulation in vertebrates. ZFN introduced targeted DNA double strand breaks (DSB) and initiated non-homologous end joining (NHEJ) after pronuclear or cytoplasmatic microinjection into zygotes. Resulting frame shift mutations led to functional gene ablations in zebra fish, mice, pigs and also in laboratory rats. Therefore, we targeted the rat Rag1 gene essential for the V(D)J recombination within the immunoglobulin production process and for the differentiation of mature B and T lymphocytes to generate an immunodeficient rat model in the LEW/Ztm strain. Results After microinjection of Rag1 specific ZFN mRNAs in 623 zygotes of inbred LEW/Ztm rats 59 offspring were born from which one carried a 4 bp deletion. This frame shift mutation led to a premature stop codon and a subsequently truncated Rag1 protein confirmed by the loss of the full-length protein in Western Blot analysis. Truncation of the Rag1 protein was characterized by the complete depletion of mature B cells. The remaining T cell population contained mature CD4+/CD3+/TCRαβ+ as well as CD8+/CD3+/TCRαβ+ positive lymphocytes accompanied by a compensatory increase of natural killer cells in the peripheral blood. Reduction of T cell development in Rag1 mutant rats was associated with a hypoplastic thymus that lacked follicular structures. Histological evaluation also revealed the near-complete absence of lymphocytes in spleen and lymph nodes in the immunodeficient Rag1 mutant rat. Conclusion The Rag1 mutant rat will serve as an important model for transplantation studies. Furthermore, it may be used as a model for reconstitution experiments related to the immune system, particularly with respect to different populations of human lymphocytes, natural killer cells and autoimmune phenomena.
Collapse
Affiliation(s)
- Nils-Holger Zschemisch
- Institute of Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str,1, 30625, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Campbell DJ. Angiotensin II generation in vivo: does it involve enzymes other than renin and angiotensin-converting enzyme? J Renin Angiotensin Aldosterone Syst 2012; 13:314-6. [PMID: 22626976 DOI: 10.1177/1470320312447162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Duncan J Campbell
- St. Vincent's Institute of Medical Research, St. Vincent's Hospital, Australia.
| |
Collapse
|
46
|
Gul R, Ramdas M, Mandavia CH, Sowers JR, Pulakat L. RAS-Mediated Adaptive Mechanisms in Cardiovascular Tissues: Confounding Factors of RAS Blockade Therapy and Alternative Approaches. Cardiorenal Med 2012; 2:268-280. [PMID: 23381810 DOI: 10.1159/000343456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the classic experiments by Tigerstedt and Bergman that established the role of renin in hypertension a century ago, aggressive efforts have been launched to effectively block the renin-angiotensin system (RAS). Blockade of RAS is advocated at multiple levels by direct renin inhibitor, angiotensin-converting enzyme inhibitor and/or angiotensin II type 1 receptor blocker, or aldosterone inhibitor (spironolactone), and has now become part of the standard of care to control hypertension and related metabolic diseases including diabetes. However, recent lessons learned from randomized clinical trials question the wisdom of blocking RAS at multiple levels. In this context, it is highly pertinent that components of RAS are evolutionarily conserved, and novel physiological/adaptive/protective roles for renin and angiotensin-converting enzyme are currently emerging. Angiotensin II, the classical RAS effector peptide responsible for hypertension, hypertrophy, fluid retention and fibrosis, manifests its cardiovascular protective effect when it activates the angiotensin II type 2 receptor. Additionally, angiotensin-converting enzyme 2 and the angiotensin II metabolite Ang-(1-7) that acts through the Mas proto-oncogene constitute the cardiovascular and renal protective branch of RAS. It is conceivable that modulating this vasodilative/anti-inflammatory branch of RAS by activation of the RAS components that constitute this branch may offer a safer long-term treatment strategy to balance RAS activity and achieve homeostasis compared to chronic multilevel RAS inhibition.
Collapse
Affiliation(s)
- Rukhsana Gul
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Mo., USA ; Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Mo., USA ; Harry S Truman Veterans Affair Medical Center, University of Missouri, Columbia, Mo., USA
| | | | | | | | | |
Collapse
|
47
|
Wirt SE, Porteus MH. Development of nuclease-mediated site-specific genome modification. Curr Opin Immunol 2012; 24:609-16. [PMID: 22981684 DOI: 10.1016/j.coi.2012.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 11/30/2022]
Abstract
Genome engineering is an emerging strategy to treat monogenic diseases that relies on the use of engineered nucleases to correct mutations at the nucleotide level. Zinc finger nucleases can be designed to stimulate homologous recombination-mediated gene targeting at a variety of loci, including genes known to cause the primary immunodeficiencies (PIDs). Recently, these nucleases have been used to correct disease-causing mutations in human cells, as well as to create new animal models for human disease. Although a number of hurdles remain before they can be used clinically, engineered nucleases hold increasing promise as a therapeutic tool, particularly for the PIDs.
Collapse
Affiliation(s)
- Stacey E Wirt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
48
|
Hermann M, Maeder ML, Rector K, Ruiz J, Becher B, Bürki K, Khayter C, Aguzzi A, Joung JK, Buch T, Pelczar P. Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos. PLoS One 2012; 7:e41796. [PMID: 22970113 PMCID: PMC3435328 DOI: 10.1371/journal.pone.0041796] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022] Open
Abstract
Zinc finger nucleases (ZFNs) enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using Oligomerized Pool Engineering (OPEN) ZFNs. OPEN ZFN can be constructed using publicly available resources and therefore provide an attractive alternative for academic researchers. Two ZFN pairs specific to the mouse genomic locus gt(ROSA26)Sor were generated by OPEN selections and used for gene disruption and homology-mediated gene replacement in single cell mouse embryos. One specific ZFN pair facilitated non-homologous end joining (NHEJ)-mediated gene disruption when expressed in mouse zygotes. We also observed a single homologous recombination (HR)-driven gene replacement event when this ZFN pair was co-injected with a targeting vector. Our experiments demonstrate the feasibility of achieving both gene ablation through NHEJ and gene replacement by HR by using the OPEN ZFN technology directly in mouse zygotes.
Collapse
Affiliation(s)
- Mario Hermann
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Morgan L. Maeder
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kyle Rector
- Transposagen Biopharmaceuticals, Inc., Lexington, Kentucky, United States of America
| | - Joseph Ruiz
- Transposagen Biopharmaceuticals, Inc., Lexington, Kentucky, United States of America
| | - Burkhard Becher
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Kurt Bürki
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Cyd Khayter
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thorsten Buch
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, Munich, Germany
- * E-mail: (TB); (PP)
| | - Pawel Pelczar
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
- * E-mail: (TB); (PP)
| |
Collapse
|
49
|
Affiliation(s)
- Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences Toledo, OH (B.J., J.I.S.) ; Department of Physiology/Pharmacology, University of Toledo College of Medicine and Life Sciences Toledo, OH (B.J., J.I.S.)
| | | |
Collapse
|
50
|
Abstract
Small GTPases function as molecular switches in cell signaling, alternating between an inactive, GDP-bound state, and active GTP-bound state. βPix is one of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of bound GDP for ambient GTP. The central goal of this review article is to summarize recent findings on βPix and the role it plays in kidney pathology and physiology. Recent studies shed new light on several key questions concerning the signaling mechanisms mediated by βPix. This manuscript provides a review of the various mechanisms whereby βPix has been shown to function within the kidney through a wide range of actions. Both canonical GEF activity and non-canonical signaling pathways mediated by βPix are discussed. Distribution patterns of βPix in the kidney will be also covered. Much has yet to be discerned, but it is clear that βPix plays a significant role in the kidney.
Collapse
|