1
|
Feger M, Hammerschmidt K, Liesche I, Rausch S, Alber J, Föller M. Prostaglandin E 2 signaling through prostaglandin E receptor subtype 2 and Nurr1 induces fibroblast growth factor 23 production. Biomed Pharmacother 2024; 180:117475. [PMID: 39332190 DOI: 10.1016/j.biopha.2024.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Bone cells produce fibroblast growth factor 23 (FGF23), a hormone regulating renal phosphate and vitamin D homeostasis, and a paracrine factor produced in further tissues. Chronic kidney disease and cardiovascular disorders are associated with early elevations of plasma FGF23 levels associated with clinical outcomes. FGF23 production is dependent on many conditions including inflammation. Prostaglandin E2 (PGE2) is a major eicosanoid with a broad role in pain, inflammation, and fever. Moreover, it regulates renal blood flow, renin secretion, natriuresis as well as bone formation through prostaglandin E receptor 2 (EP2). Here, we studied the role of PGE2 and its signaling for the production of FGF23. Osteoblast-like UMR-106 cells were exposed to EP receptor agonists, antagonists or RNAi. Wild type and EP2 knockout mice were treated with stable EP2 agonist misoprostol. Fgf23 or Nurr1 gene expression was determined by quantitative real-time PCR, hormone and further blood parameters by enzyme-linked immunosorbent assay and colorimetric methods. PGE2 and EP2 agonists misoprostol and butaprost enhanced FGF23 production in UMR-106 cells, effects mediated by EP2 and transcription factor Nurr1. A single dose of misoprostol up-regulated bone Fgf23 expression and FGF23 serum levels in wild type mice with subtle effects on parameters of mineral metabolism only. Compared to wild type mice, the FGF23 effect of misoprostol was significantly lower in EP2-deficient mice. To conclude, PGE2 signaling through EP2 and Nurr1 induces FGF23 production. Given the broad physiological and pathophysiological implications of PGE2 signaling, this effect is likely of clinical relevance.
Collapse
MESH Headings
- Animals
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Dinoprostone/metabolism
- Fibroblast Growth Factor-23
- Signal Transduction
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Mice, Knockout
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Mice
- Osteoblasts/metabolism
- Osteoblasts/drug effects
- Cell Line
- Mice, Inbred C57BL
- Misoprostol/pharmacology
Collapse
Affiliation(s)
- Martina Feger
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | | | - Ilona Liesche
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Steffen Rausch
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Jana Alber
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Geurts F, Chaker L, van der Burgh AC, Cronin‐Fenton D, Fenton RA, Hoorn EJ. Urinary Prostaglandin E2 Excretion and the Risk of Cardiovascular and Kidney Disease. J Am Heart Assoc 2024; 13:e032835. [PMID: 38362883 PMCID: PMC11010119 DOI: 10.1161/jaha.123.032835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Inhibition of prostaglandin synthesis by nonsteroidal anti-inflammatory drugs is associated with cardiovascular mortality and kidney disease. This study hypothesizes that urinary prostaglandin E2 (PGE2) and PGE2 metabolite (PGEM) excretions are markers of cardiovascular and kidney health, because they reflect both systemic and kidney-derived PGE2 production. METHODS AND RESULTS PGE2 and PGEM were measured in spot urine samples from 2291 participants (≥55 years old) of the population-based Rotterdam Study. Urinary PGE2 and PGEM excretions were analyzed using linear regression analyses to identify cross-sectional associations with cardiovascular risk factors and baseline estimated glomerular filtration rate (eGFR). Longitudinal associations with cardiovascular mortality and kidney outcomes (eGFR <60 or <45 mL/min per 1.73 m2 and the composite outcome 40% eGFR loss or kidney failure) were assessed with Cox regression. Urinary PGE2 and PGEM excretions were higher with increasing age, lower eGFR, smoking, diabetes, and albuminuria. A 2-fold higher urinary PGE2 and PGEM excretion was associated with a higher risk of cardiovascular mortality (28 825 patient-years; 160 events; PGE2 hazard ratio [HR], 1.27, [95% CI, 1.06-1.54]; PGEM HR, 1.36 [95% CI, 1.10-1.67]). Higher PGE2 excretions were also associated with a higher risk of incident eGFR <60 mL/min per 1.73 m2 (31 530 person-years; 691 events; HR, 1.13 [95% CI, 1.02-1.25]) with similar HRs for the other kidney outcomes. CONCLUSIONS Urinary PGE2 and PGEM excretions are novel markers for the presence and progression of cardiovascular and kidney disease. Future studies should address whether these associations are causal and can be targeted to improve cardiovascular and kidney outcomes.
Collapse
Affiliation(s)
- Frank Geurts
- Department of Internal Medicine, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Epidemiology, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Layal Chaker
- Department of Internal Medicine, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Epidemiology, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Anna C. van der Burgh
- Department of Epidemiology, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Deirdre Cronin‐Fenton
- Department of Clinical Epidemiology, Department of Clinical MedicineAarhus University Hospital and Aarhus UniversityAarhusDenmark
| | | | - Ewout J. Hoorn
- Department of Internal Medicine, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
3
|
Zhong D, Quan L, Hao C, Chen J, Qiao R, Lin T, Ying C, Sun D, Jia Z, Sun Y. Targeting mPGES-2 to protect against acute kidney injury via inhibition of ferroptosis dependent on p53. Cell Death Dis 2023; 14:710. [PMID: 37907523 PMCID: PMC10618563 DOI: 10.1038/s41419-023-06236-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality but no specific therapy. Microsomal prostaglandin E synthase-2 (mPGES-2) is a PGE2 synthase but can metabolize PGH2 to malondialdehyde by forming a complex with heme. However, the role and mechanism of action of mPGES-2 in AKI remain unclear. To examine the role of mPGES-2, both global and tubule-specific mPGES-2-deficient mice were treated with cisplatin to induce AKI. mPGES-2 knockdown or overexpressing HK-2 cells were exposed to cisplatin to cause acute renal tubular cell injury. The mPGES-2 inhibitor SZ0232 was used to test the translational potential of targeting mPGES-2 in treating AKI. Additionally, mice were subjected to unilateral renal ischemia/reperfusion to further validate the effect of mPGES-2 on AKI. Interestingly, both genetic and pharmacological blockage of mPGES-2 led to decreased renal dysfunction and morphological damage induced by cisplatin and unilateral renal ischemia/reperfusion. Mechanistic exploration indicated that mPGES-2 deficiency inhibited ferroptosis via the heme-dependent regulation of the p53/SLC7A11/GPX4 axis. The present study indicates that mPGES-2 blockage may be a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Lingling Quan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Chang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, P. R. China
| | - Ranran Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Tengfei Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, P. R. China
- Institute of Nephrology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Dong Sun
- Institute of Nephrology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210008, P. R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China.
| |
Collapse
|
4
|
Mutsaers HA, Nørregaard R. Prostaglandin E2 receptors as therapeutic targets in renal fibrosis. Kidney Res Clin Pract 2022; 41:4-13. [PMID: 35108767 PMCID: PMC8816406 DOI: 10.23876/j.krcp.21.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Correspondence: Rikke Nørregaard Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark E-mail:
| |
Collapse
|
5
|
Wang Y, Wang Y, Xue K, Wang H, Zhou J, Gao F, Li C, Yang T, Fang H. (Pro)renin receptor antagonist PRO20 attenuates nephrectomy-induced nephropathy in rats via inhibition of intrarenal RAS and Wnt/β-catenin signaling. Physiol Rep 2021; 9:e14881. [PMID: 34057312 PMCID: PMC8165733 DOI: 10.14814/phy2.14881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction (Pro)renin receptor has emerged as a new member of the renin‐angiotensin system implicated in the pathogenesis of chronic kidney disease (CKD). Herein we report characterization of the therapeutic potential of (pro)renin receptor (PRR) antagonist PRO20 in 5/6 nephrectomy (5/6Nx) rats. Methods Male Wistar rats underwent 5/6Nx followed by treatment with vehicle or received daily injections of a PRR inhibitor PRO20 (700 μg/kg) via the 3 s.c. Sham group served as a control. Results As compared with the sham control, the 5/6Nx rats exhibited significant increases in proteinuria, glomerulosclerosis, tubular injury, and interstitial inflammation in the remnant kidneys. Treatment with PRO20 significantly attenuated these abnormalities, as evidenced by reduced expression of fibronectin, α‐SMA, collagen 1, TGF‐β1, IL‐6, IL‐8, IL‐1β, MCP‐1 and increased expression of E‐cadherin. Increased urinary/renal levels of renin activity, angiotensinogen (AGT), and Angiotensin II (Ang II) by 5/6Nx, which were all ameliorated by PRO20. Renal PRR, the secreted proteolytic fragment of PRR (sPRR) in renal and urinary, were all elevated in 5/6Nx rats. Moreover, our results revealed that renal Wnt3A and β‐catenin expression were upregulated during 5/6Nx, which were all attenuated by PRO20. Conclusions Overall we conclude that in vivo antagonism of PRR with PRO20 will improve 5/6Nx‐induced CKD mainly through inhibition of intrarenal RAS and Wnt/β‐catenin signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yurong Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Kai Xue
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Huaijie Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingjing Zhou
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chengde Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
7
|
Hu DY, Luo Y, Li CB, Zhou CY, Li XH, Peng A, Liu JY. Oxylipin profiling of human plasma reflects the renal dysfunction in uremic patients. Metabolomics 2018; 14:104. [PMID: 30830362 DOI: 10.1007/s11306-018-1402-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Nearly all the enzymes that mediate the metabolism of polyunsaturated fatty acids (PUFAs) are present in the kidney. However, the correlation of renal dysfunction with PUFAs metabolism in uremic patients remains unknown. OBJECTIVES To test whether the alterations in the metabolism of PUFAs reflect the renal dysfunction in uremic patients. METHODS LC-MS/MS-based oxylipin profiling was conducted for the plasma samples from the uremic patients and controls. The data were analyzed by principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). The receiver operating characteristic (ROC) curves and the correlation of the estimated glomerular filtration rate (eGFR) with the key markers were evaluated. Furthermore, qPCR analysis of the whole blood cells was conducted to investigate the possible mechanisms. In addition, a 2nd cohort was used to validate the findings from the 1st cohort. RESULTS The plasma oxylipin profile distinguished the uremic patients from the controls successfully by using both PCA and OPLS-DA models. 5,6-Dihydroxyeicosatrienoic acid (5,6-DHET), 5-hydroxyeicosatetraenoic acid (5-HETE), 9(10)-epoxyoctadecamonoenoic acid [9(10)-EpOME] and 12(13)-EpOME were identified as the key markers to discriminate the patients from controls. The excellent predictive performance of these four markers was validated by ROC analysis. The eGFR significantly correlated with plasma levels of 5,6-DHET and 5-HETE positively but with plasma 9(10)-EpOME and 12(13)-EpOME negatively. The changes of these markers may account for the inactivation of cytochrome P450 2C18, 2C19, microsome epoxide hydrolase (EPHX1), and 5-lipoxygenase in the patients. CONCLUSION The alterations in plasma metabolic profile reflect the renal dysfunction in the uremic patients.
Collapse
Affiliation(s)
- Da-Yong Hu
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ying Luo
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chang-Bin Li
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chun-Yu Zhou
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xin-Hua Li
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ai Peng
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jun-Yan Liu
- Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Center for Nephrology and Metabolomics, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Fang H, Deng M, Zhang L, Lu A, Su J, Xu C, Zhou L, Wang L, Ou JS, Wang W, Yang T. Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. Am J Physiol Renal Physiol 2018; 315:F1759-F1768. [PMID: 29846109 DOI: 10.1152/ajprenal.00071.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteinuria is not only a common feature of chronic kidney diseases (CKD) but also an independent risk factor promoting CKD progression to end-stage renal failure. However, the underlying molecular mechanisms for protein overload-induced renal injury remain elusive. The present study examined the role of (pro)renin receptor (PRR) in pathogenesis of albumin overload (AO)-induced nephropathy and activation of the intrarenal renin-angiotensin system (RAS) in rats. Wistar rats underwent unilateral nephrectomy and were treated for 7 wk with vehicle, bovine serum albumin (5 g·kg-1·day-1 via a single ip injection), alone or in conjunction with the PRR decoy inhibitor PRO20 (500 μg·kg-1·day-1 via 3 sc injections). The AO rat model exhibited severe proteinuria, tubular necrosis, and interstitial fibrosis, oxidative stress, and inflammation, accompanied by elevated urinary N-acetyl-β-d-glucosaminidase activity and urinary β2-microglobulin secretion, all of which were significantly attenuated by PRO20. Urinary and renal levels of renin, angiotensinogen, and ANG II were elevated by AO and suppressed by PRO20, contrasting to largely unaltered plasma levels of the RAS parameters. The AO model also showed increased renal expression of full-length PRR and soluble PRR (sPRR) and urinary excretion of sPRR. Taken together, we conclude that PRR antagonism with PRO20 alleviates AO-induced nephropathy via inhibition of intrarenal RAS.
Collapse
Affiliation(s)
- Hui Fang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Mokan Deng
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jiahui Su
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Lei Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
9
|
Li Y, Xia W, Zhao F, Wen Z, Zhang A, Huang S, Jia Z, Zhang Y. Prostaglandins in the pathogenesis of kidney diseases. Oncotarget 2018; 9:26586-26602. [PMID: 29899878 PMCID: PMC5995175 DOI: 10.18632/oncotarget.25005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are important lipid mediators produced from arachidonic acid via the sequential catalyzation of cyclooxygenases (COXs) and specific prostaglandin synthases. There are five subtypes of PGs, namely PGE2, PGI2, PGD2, PGF2α, and thromboxane A2 (TXA2). PGs exert distinct roles by combining to a diverse family of membrane-spanning G protein-coupled prostanoid receptors. The distribution of these PGs, their specific synthases and receptors vary a lot in the kidney. This review summarized the recent findings of PGs together with the COXs and their specific synthases and receptors in regulating renal function and highlighted the insights into their roles in the pathogenesis of various kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Weiwei Xia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Fei Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhaoying Wen
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
10
|
Zhuang Y, Wang C, Wu C, Ding D, Zhao F, Hu C, Gong W, Ding G, Zhang Y, Chen L, Yang G, Zhu C, Zhang A, Jia Z, Huang S. Mitochondrial oxidative stress activates COX-2/mPGES-1/PGE2 cascade induced by albumin in renal proximal tubular cells. Oncotarget 2018; 9:9235-9245. [PMID: 29507686 PMCID: PMC5823666 DOI: 10.18632/oncotarget.24187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022] Open
Abstract
COX-2/mPGES-1/PGE2 cascade is of importance in the pathogenesis of kidney injury. Meanwhile, recent studies documented a detrimental role of mitochondrial oxidative stress in kidney diseases. The present study was undertaken to investigate the role of mitochondrial oxidative stress in albumin-induced activation of COX-2/mPGES-1/PGE2 cascade in renal proximal tubular cells. Following albumin overload in mice, we observed a significant increase of oxidative stress and mitochondrial abnormality determined by transmission electron microscope, which was attenuated by the administration of MnTBAP, a mitochondrial SOD2 mimic. More interestingly, albumin overload-induced upregulation of COX-2 and mPGES-1 at mRNA and protein levels was largely abolished by MnTBAP treatment in mice. Meanwhile, urinary PGE2 excretion was also blocked by MnTBAP treatment. Furthermore, mouse proximal tubule epithelial cells (mPTCs) were treated with albumin. Similarly, COX-2/mPGES-1/PGE2 cascade was significantly activated by albumin in dose- and time-dependent manners, which was abolished by MnTBAP treatment in parallel with a blockade of oxidative stress. Collectively, the findings from current study demonstrated that mitochondrial oxidative stress could activate COX-2/mPGES-1/PGE2 cascade in proximal tubular cells under the proteinuria condition. Mitochondrial oxidative stress/COX-2/mPGES-1/PGE2 could serve as the important targets for the treatment of proteinuria-associated kidney injury.
Collapse
Affiliation(s)
- Yibo Zhuang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Chenhu Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Chunfeng Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Dan Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Fei Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Caiyu Hu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Lihong Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Guangrui Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Chunhua Zhu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing 210029, China.,Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| |
Collapse
|
11
|
Physiological and pathophysiological implications of PGE2 and the PGE2 synthases in the kidney. Prostaglandins Other Lipid Mediat 2018; 134:1-6. [DOI: 10.1016/j.prostaglandins.2017.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022]
|
12
|
Jin J, Tang Q, Li Z, Zhao Z, Zhang Z, Lu L, Zhu T, Vanhoutte PM, Leung SW, Tu R, Shi Y. Prostaglandin E 2 regulates renal function in C57/BL6 mouse with 5/6 nephrectomy. Life Sci 2017; 174:68-76. [PMID: 28263803 DOI: 10.1016/j.lfs.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
AIMS To investigate the roles of cyclooxygenases (COX) and their metabolites in C57/BL6 mice with 5/6 nephrectomy, an animal model of chronic renal failure. MAIN METHODS C57/BL6 mice were grouped into sham-operated (2K), one kidney removal (1K) and 5/6 nephrectomy groups (5/6Nx). Renal resistive index was measured by ultrasonography. Blood, aortae, renal arteries and renal cortex were collected for measurement of kidney function, assessment of vascular responsiveness, Western blotting, immuohistochemistry and enzyme-linked immunosorbent assays. KEY FINDINGS After four weeks, acetylcholine-induced relaxations were blunted in renal arteries of 1K and 5/6Nx mice; indomethacin, a non-selective COX inhibitor, improved the response in 5/6Nx, but not in 1K renal arteries. In 5/6Nx renal arteries, but not in 1K preparations, the protein presence of endothelial nitric oxide synthase (eNOS) was decreased, while that of COX-2 and its products [prostacyclin and thromboxane A2] were increased. The renal resistive index was lower in 5/6Nx mice, suggesting a lower resistance in the renal microvasculature. In the renal cortex of 5/6Nx mice, eNOS protein presence was increased; while the presence of COX-2 was not detectable. The prostaglandin E2 level was lower in the 5/6Nx cortex than in the other two groups. SIGNIFICANCE The early stage of renal mass removal is associated with increased renal arterial constriction and reduced microvascular resistance. The former is due to downregulation of eNOS and upregulation of COX-2, leading to an increased production of prostacyclin and thromboxane A2. A reduced production of PGE2 in the renal cortex is important for maintaining normal renal function.
Collapse
Affiliation(s)
- J Jin
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, China
| | - Q Tang
- Department of Urology, Zhongshan Hospital, Fudan University, China; Shanghai Key Laboratory of Organ Transplantation, China
| | - Z Li
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, China
| | - Z Zhao
- Department of Pathology, Faculty of Medicine, Fudan University, China
| | - Z Zhang
- Department of Pathology, Faculty of Medicine, Fudan University, China
| | - L Lu
- Department of Physiology and Pathophysiology, Faculty of Medicine, Fudan University, China
| | - T Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, China; Shanghai Key Laboratory of Organ Transplantation, China
| | - P M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S W Leung
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - R Tu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, China.
| | - Y Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, China; Shanghai Key Laboratory of Organ Transplantation, China.
| |
Collapse
|
13
|
Baracho NCDV, Kangussu LM, Prestes TRR, Silveira KDD, Pereira RM, Rocha NP, Silva ACSE. Characterization of an experimental model of progressive renal disease in rats. Acta Cir Bras 2016; 31:744-752. [DOI: 10.1590/s0102-865020160110000007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023] Open
|
14
|
Xu Y, Lin H, Zheng W, Ye X, Yu L, Zhuang J, Yang Q, Wang D. Matrine ameliorates adriamycin-induced nephropathy in rats by enhancing renal function and modulating Th17/Treg balance. Eur J Pharmacol 2016; 791:491-501. [PMID: 27640745 DOI: 10.1016/j.ejphar.2016.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Matrine (MAT) is an active alkaloid extracted from Radix Sophora flavescens. The present study was to investigate whether MAT could effectively treat Adriamycin-induced nephropathy (AIN). AIN was induced in rats using a single injection of Adriamycin (ADR). Renal interleukin-6 (IL-6), IL-10, IL-17 and transforming growth factor-β (TGF-β) levels, and the expression of forkhead box protein 3 (Foxp3) and retinoid-related orphan nuclear receptor γt (Rorγt) was measured. AIN rats developed severe albuminuria, hypoalbuminaemia, hyperlipidaemia and podocyte injury. Daily administration of MAT (100mg/kg or 200mg/kg) significantly prevented ADR-induced podocyte injury, decreased AIN symptoms and improved renal pathology manifestations. Of note, treatment with MAT (100mg/kg) plus prednisone (Pre, 5mg/kg) had equivalent efficacy to that of Pre alone (10mg/kg). Additional findings showed that ADR triggered a disordered cytokine network and abnormal expression of Foxp3 and Rorγt in rats, as reflected by increased levels of IL-6, IL-10, TGF-β, Rorγt and decreased levels of IL-10 and Foxp3. Interestingly, MAT weakened the disordered cytokine network and normalized the expression of Foxp3 and Rorγt. In addition, a significant negative correlation was observed between the values of Foxp3/Rorγt and renal pathology scores. Finally, MAT normalized regulatory T cells (Treg)/ T-helper17 cells (Th17) ratio in peripheral blood mononuclear cells of AIN rats. These data indicate MAT prevents AIN through the modification of disordered plasma lipids and recovery of renal function, and this bioactivity is at least partly attributed to the suppression of renal inflammation and the regulation of the Treg/Th17 imbalance.
Collapse
Affiliation(s)
- Yixiao Xu
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongzhou Lin
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjie Zheng
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohua Ye
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lingfang Yu
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jieqiu Zhuang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qing Yang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dexuan Wang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
15
|
Yu J, Gong W, Wu Y, Li S, Cui Y, Ma Y, Zhang Y, Yang G, Huang S, Jia Z, Zhang A. mPGES-1-derived PGE2 contributes to adriamycin-induced podocyte injury. Am J Physiol Renal Physiol 2016; 310:F492-8. [PMID: 26739892 DOI: 10.1152/ajprenal.00499.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022] Open
Abstract
Podocyte damage is a common pathological feature in many types of glomerular diseases and is involved in the occurrence and progression of kidney disease. However, the pathogenic mechanisms leading to podocyte injury are still uncertain. The present study was undertaken to investigate the role of microsomal PGE synthase (mPGES)-1 in adriamycin (ADR)-induced podocyte injury as well as the underlying mechanism. In both mouse kidneys and in vitro podocytes, application of ADR remarkably enhanced mPGES-1 expression in line with a stimulation of cyclooxygenase-2. Interestingly, inhibition of mPGES-1 with a small interfering RNA approach significantly attenuated ADR-induced downregualtion of podocin and nephrin. Moreover, ADR-induced podocyte apoptosis was also markedly blocked in parallel with blunted caspase-3 induction. In agreement with the improvement of cell phenotypic alteration and apoptosis, the enhanced inflammatory markers of IL-1β and TNF-α were also significantly suppressed by mPGES-1 silencing. More importantly, in mPGES-1-deficient mice, albuminuria induced by ADR showed a remarkable attenuation in line with decreased urinary output of PGE2 and TNF-α, highly suggesting an in vivo role of mPGES-1 in mediating podocyte injury. In summary, findings from the present study offered the first evidence demonstrating a pathogenic role of mPGES-1 in mediating ADR-induced podocyte injury possibly via triggering an inflammatory response.
Collapse
Affiliation(s)
- Jing Yu
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Yimei Wu
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Shuzhen Li
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Yiyun Cui
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Yifei Ma
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Guangrui Yang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; and
- Nanjing Key Laboratory of Pediatrics, Nanjing, China
| |
Collapse
|
16
|
Zhang Y, Sun Y, Ding G, Huang S, Zhang A, Jia Z. Inhibition of Mitochondrial Complex-1 Prevents the Downregulation of NKCC2 and ENaCα in Obstructive Kidney Disease. Sci Rep 2015. [PMID: 26207612 PMCID: PMC4513566 DOI: 10.1038/srep12480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ureteral obstruction with subsequent hydronephrosis is a common clinical complication. Downregulation of renal sodium transporters in obstructed kidneys could contribute to impaired urinary concentrating capability and salt waste following the release of a ureteral obstruction. The current study was undertaken to investigate the role of mitochondrial complex-1 inhibition in modulating sodium transporters in obstructive kidney disease. Following unilateral ureteral obstruction (UUO) for 7 days, a global reduction of sodium transporters, including NHE3, α-Na-K-ATPase, NCC, NKCC2, p-NKCC2, ENaCα, and ENaCγ, was observed, as determined via qRT-PCR and/or Western blotting. Interestingly, inhibition of mitochondrial complex-1 by rotenone markedly reversed the downregulation of NKCC2, p-NKCC2, and ENaCα. In contrast, other sodium transporters were not affected by rotenone. To study the potential mechanisms involved in mediating the effects of rotenone on sodium transporters, we examined a number of known sodium modulators, including PGE2, ET1, Ang II, natriuretic peptides (ANP, BNP, and CNP), and nitric oxide synthases (iNOS, nNOS, and eNOS). Importantly, among these modulators, only BNP and iNOS were significantly reduced by rotenone treatment. Collectively, these findings demonstrated a substantial role of mitochondrial dysfunction in mediating the downregulation of NKCC2 and ENaCα in obstructive kidney disease, possibly via iNOS-derived nitric oxide and BNP.
Collapse
Affiliation(s)
- Yue Zhang
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Ying Sun
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Guixia Ding
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Aihua Zhang
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Zhanjun Jia
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
17
|
Koeberle A, Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol 2015; 98:1-15. [PMID: 26123522 DOI: 10.1016/j.bcp.2015.06.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Prostaglandin (PG)E2 encompasses crucial roles in pain, fever, inflammation and diseases with inflammatory component, such as cancer, but is also essential for gastric, renal, cardiovascular and immune homeostasis. Cyclooxygenases (COX) convert arachidonic acid to the intermediate PGH2 which is isomerized to PGE2 by at least three different PGE2 synthases. Inhibitors of COX - non-steroidal anti-inflammatory drugs (NSAIDs) - are currently the only available therapeutics that target PGE2 biosynthesis. Due to adverse effects of COX inhibitors on the cardiovascular system (COX-2-selective), stomach and kidney (COX-1/2-unselective), novel pharmacological strategies are in demand. The inducible microsomal PGE2 synthase (mPGES)-1 is considered mainly responsible for the excessive PGE2 synthesis during inflammation and was suggested as promising drug target for suppressing PGE2 biosynthesis. However, 15 years after intensive research on the biology and pharmacology of mPGES-1, the therapeutic value of mPGES-1 as drug target is still vague and mPGES-1 inhibitors did not enter the market so far. This commentary will first shed light on the structure, mechanism and regulation of mPGES-1 and will then discuss its biological function and the consequence of its inhibition for the dynamic network of eicosanoids. Moreover, we (i) present current strategies for interfering with mPGES-1-mediated PGE2 synthesis, (ii) summarize bioanalytical approaches for mPGES-1 drug discovery and (iii) describe preclinical test systems for the characterization of mPGES-1 inhibitors. The pharmacological potential of selective mPGES-1 inhibitor classes as well as dual mPGES-1/5-lipoxygenase inhibitors is reviewed and pitfalls in their development, including species discrepancies and loss of in vivo activity, are discussed.
Collapse
Affiliation(s)
- Andreas Koeberle
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| | - Oliver Werz
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
18
|
Role of COX-2/mPGES-1/prostaglandin E2 cascade in kidney injury. Mediators Inflamm 2015; 2015:147894. [PMID: 25729216 PMCID: PMC4333324 DOI: 10.1155/2015/147894] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
COX-2/mPGES-1/PGE2 cascade plays critical roles in modulating many physiological and pathological actions in different organs. In the kidney, this cascade is of high importance in regulating fluid metabolism, blood pressure, and renal hemodynamics. Under some disease conditions, this cascade displays various actions in response to the different pathological insults. In the present review, the roles of this cascade in the pathogenesis of kidney injuries including diabetic and nondiabetic kidney diseases and acute kidney injuries were introduced and discussed. The new insights from this review not only increase the understanding of the pathological role of the COX-2/mPGES-1/PGE2 pathway in kidney injuries, but also shed new light on the innovation of the strategies for the treatment of kidney diseases.
Collapse
|
19
|
Rotenone remarkably attenuates oxidative stress, inflammation, and fibrosis in chronic obstructive uropathy. Mediators Inflamm 2014; 2014:670106. [PMID: 25140114 PMCID: PMC4130131 DOI: 10.1155/2014/670106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial abnormality has been shown in many kidney disease models. However, its role in the pathogenesis of chronic kidney diseases (CKDs) is still uncertain. In present study, a mitochondrial complex I inhibitor rotenone was applied to the mice subjected to unilateral ureteral obstruction (UUO). Following 7-days rotenone treatment, a remarkable attenuation of tubular injury was detected by PAS staining. In line with the improvement of kidney morphology, rotenone remarkably blunted fibrotic response as shown by downregulation of fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), collagen I, collagen III, and α-SMA, paralleled with a substantial decrease of TGF-β1. Meanwhile, the oxidative stress markers thiobarbituric acid-reactive substances (TBARS) and heme oxygenase 1 (HO-1) and inflammatory markers TNF-α, IL-1β, and ICAM-1 were markedly decreased. More importantly, the reduction of mitochondrial DNA copy number and mitochondrial NADH dehydrogenase subunit 1 (mtND1) expression in obstructed kidneys was moderately but significantly restored by rotenone, suggesting an amelioration of mitochondrial injury. Collectively, mitochondrial complex I inhibitor rotenone protected kidneys against obstructive injury possibly via inhibition of mitochondrial oxidative stress, inflammation, and fibrosis, suggesting an important role of mitochondrial dysfunction in the pathogenesis of obstructive kidney disease.
Collapse
|
20
|
Jia Z, Sun Y, Yang G, Zhang A, Huang S, Heiney KM, Zhang Y. New Insights into the PPAR γ Agonists for the Treatment of Diabetic Nephropathy. PPAR Res 2014; 2014:818530. [PMID: 24624137 PMCID: PMC3927865 DOI: 10.1155/2014/818530] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes and serves as the leading cause of chronic renal failure. In the past decades, angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs) based first-line therapy can slow but cannot stop the progression of DN, which urgently requests the innovation of therapeutic strategies. Thiazolidinediones (TZDs), the synthetic exogenous ligands of nuclear receptor peroxisome proliferator-activated receptor- γ (PPAR γ ), had been thought to be a promising candidate for strengthening the therapy of DN. However, the severe adverse effects including fluid retention, cardiovascular complications, and bone loss greatly limited their use in clinic. Recently, numerous novel PPAR γ agonists involving the endogenous PPAR γ ligands and selective PPAR γ modulators (SPPARMs) are emerging as the promising candidates of the next generation of antidiabetic drugs instead of TZDs. Due to the higher selectivity of these novel PPAR γ agonists on the regulation of the antidiabetes-associated genes than that of the side effect-associated genes, they present fewer adverse effects than TZDs. The present review was undertaken to address the advancements and the therapeutic potential of these newly developed PPAR γ agonists in dealing with diabetic kidney disease. At the same time, the new insights into the therapeutic strategies of DN based on the PPAR γ agonists were fully addressed.
Collapse
Affiliation(s)
- Zhanjun Jia
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing 210008, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
- Key Pediatric Laboratory of Nanjing City, Nanjing 210008, China
| | - Ying Sun
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing 210008, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
- Key Pediatric Laboratory of Nanjing City, Nanjing 210008, China
| | - Guangrui Yang
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing 210008, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
- Key Pediatric Laboratory of Nanjing City, Nanjing 210008, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing 210008, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
- Key Pediatric Laboratory of Nanjing City, Nanjing 210008, China
| | | | - Yue Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing 210008, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China
- Key Pediatric Laboratory of Nanjing City, Nanjing 210008, China
| |
Collapse
|
21
|
Singh Bahia M, Kumar Katare Y, Silakari O, Vyas B, Silakari P. Inhibitors of Microsomal Prostaglandin E2
Synthase-1 Enzyme as Emerging Anti-Inflammatory Candidates. Med Res Rev 2014; 34:825-55. [DOI: 10.1002/med.21306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Malkeet Singh Bahia
- Molecular Modelling Lab (MML); Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala Punjab 147002 India
| | - Yogesh Kumar Katare
- Radharaman Institute of Pharmaceutical Sciences; Bhopal Madhya Pradesh 462046 India
| | - Om Silakari
- Molecular Modelling Lab (MML); Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala Punjab 147002 India
| | - Bhawna Vyas
- Department of Chemistry; Punjabi University; Patiala Punjab 147002 India
| | - Pragati Silakari
- Adina institute of Pharmaceutical Sciences; Sagar Madhya Pradesh (M.P.) 470001 India
| |
Collapse
|
22
|
PPARγ Agonist Rosiglitazone Suppresses Renal mPGES-1/PGE2 Pathway in db/db Mice. PPAR Res 2013; 2013:612971. [PMID: 24489534 PMCID: PMC3892750 DOI: 10.1155/2013/612971] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022] Open
Abstract
Evidence had shown the detrimental effect of prostaglandin (PG) E2 in diabetic nephropathy (DN) of STZ-induced type-1 diabetes but its role in the development of DN of type-2 diabetes remains uncertain. The present study was undertaken to investigate the regulation of PGE2 synthetic pathway and the interaction between peroxisome proliferator-activated receptor (PPAR) γ and PGE2 synthesis in the kidneys of db/db mice. Strikingly, urinary PGE2 was remarkably elevated in db/db mice paralleled with the increased protein expressions of COX-2 and mPGES-1. In contrast, the protein expressions of COX-1, mPGES-2, cPGES, and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) were not altered. Following 1-week rosiglitazone (Rosi) therapy, urinary PGE2, but not other prostanoids, was reduced by 57% in parallel with significant reduction of mPGES-1 protein and EP4 mRNA expressions. By immunohistochemistry, mPGES-1 was significantly induced in the glomeruli of db/db mice, which was almost entirely abolished by Rosi. In line with the reduction of glomerular mPGES-1, the glomerular injury score showed a tendency of improvement after 1 week of Rosi therapy. Collectively, the present study demonstrated an inhibitory effect of PPAR γ activation on renal mPGES-1/PGE2/EP4 pathway in type-2 diabetes and suggested that mPGES-1 may potentially serve as a therapeutic target for treating type-2 diabetes-associated DN.
Collapse
|
23
|
Gomez I, Foudi N, Longrois D, Norel X. The role of prostaglandin E2 in human vascular inflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:55-63. [PMID: 23756023 DOI: 10.1016/j.plefa.2013.04.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Prostaglandins (PG) are the product of a cascade of enzymes such as cyclooxygenases and PG synthases. Among PG, PGE2 is produced by 3 isoforms of PGE synthase (PGES) and through activation of its cognate receptors (EP1-4), this PG is involved in the pathophysiology of vascular diseases. Some anti-inflammatory drugs (e.g. glucocorticoids, nonsteroidal anti-inflammatory drugs) interfere with its metabolism or effects. Vascular cells can initiate many of the responses associated with inflammation. In human vascular tissue, PGE2 is involved in many physiological processes, such as increasing vascular permeability, cell proliferation, cell migration and control of vascular smooth muscle tone. PGE2 has been shown to contribute to the pathogenesis of atherosclerosis, abdominal aortic aneurysm but also in physiologic/adaptive processes such as angiogenesis. Understanding the roles of PGE2 and its cognate receptors in vascular diseases could help to identify diagnostic and prognostic biomarkers. In addition, from these recent studies new promising therapeutic approaches like mPGES-1 inhibition and/or EP4-antagonism should be investigated.
Collapse
Affiliation(s)
- I Gomez
- INSERM, U698, Paris F-75018, France; University Paris Nord, UMR-S698, Paris F-75018, France
| | | | | | | |
Collapse
|
24
|
Liu S, Jia Z, Zhou L, Liu Y, Ling H, Zhou SF, Zhang A, Du Y, Guan G, Yang T. Nitro-oleic acid protects against adriamycin-induced nephropathy in mice. Am J Physiol Renal Physiol 2013; 305:F1533-41. [PMID: 23486011 DOI: 10.1152/ajprenal.00656.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adriamycin (ADR) administration in susceptible rodents such as the BALB/c mouse strain produces injury to the glomerulus mimicking human focal glomerular sclerosis. The goal of the present study was to use this model to investigate antiproteinuric action of nitro-oleic acid (OA-NO2), a nitric oxide-derived endogenous lipid product, which has exhibited multiple attractive signaling properties particularly in the kidney. BALB/c mice were pretreated for 2 days with OA-NO2 at 5 mg·kg(-1)·day(-1) via an osmotic minipump, followed by a single injection of vehicle or adriamycin (10 mg/kg) via the tail vein. Albuminuria and renal function were analyzed at 1 wk post-ADR treatment. ADR mice developed prominent albuminuria, hypoalbuminemia, hyperlipidemia, and severe ascites. In contrast, the symptoms of nephrotic syndrome were greatly improved by OA-NO2 treatment. In parallel, plasma creatinine and plasma urea nitrogen were elevated in the ADR group, and the severity was less in the ADR+OA-NO2 group. OA-NO2 attenuates ADR-induced glomerulosclerosis, podocyte loss, and tubulointerstitial fibrosis. Indices of oxidative stress, including plasma and urinary thiobarbituric acid-reactive substances and renal expression of NAD(P)H oxidase p47(phox) and gp91(phox), and inflammation, including renal expression of TNF-α, IL-1β, and MCP-1 in response to ADR, were all similarly suppressed. Together, these findings suggest that OA-NO2 exerts renoprotective action against ADR nephropathy likely via its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Shanshan Liu
- Univ. of Utah and Veterans Affairs Medical Center, Div. of Nephrology and Hypertension, 30N 1900E, RM 4C224, Salt Lake City, UT 84132.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
KOEBERLE ANDREAS, WERZ OLIVER. Microsomal Prostaglandin E2 Synthase-1. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prostanoids and leukotrienes (LTs) formed from arachidonic acid (AA) via the cyclooxygenase (COX)-1/2 and 5-lipoxygenase (5-LO) pathway, respectively, mediate inflammatory responses, chronic tissue remodelling, cancer, asthma and autoimmune disorders, but also possess homeostatic functions in the gastrointestinal tract, uterus, brain, kidney, vasculature and host defence. Based on the manifold functions of these eicosanoids, the clinical use of non-steroidal anti-inflammatory drugs (NSAIDs), a class of drugs that block formation of all prostanoids, is hampered by severe side-effects including gastrointestinal injury, renal irritations and cardiovascular risks. Therefore, anti-inflammatory agents interfering with eicosanoid biosynthesis require a well-balanced pharmacological profile to minimize these on-target side-effects. Current anti-inflammatory research aims at identifying compounds that can suppress the massive formation of pro-inflammatory prostaglandin (PG)E2 without affecting homeostatic PGE2 and PGI2 synthesis. The inducible microsomal prostaglandin E2 synthase-1 (mPGES-1) is one promising target enzyme. We will give an overview about the structure, regulation and function of mPGES-1 and then present novel inhibitors of mPGES-1 that may possess a promising pharmacological profile.
Collapse
Affiliation(s)
- ANDREAS KOEBERLE
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy University Jena Philosophenweg 14, D-07743 Jena Germany
| | - OLIVER WERZ
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy University Jena Philosophenweg 14, D-07743 Jena Germany
| |
Collapse
|
26
|
Affiliation(s)
- Kevin R. Regner
- From the Department of Medicine (Nephrology), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|