1
|
Chaitoff A, Shimbo D, Bress AP. Epigenetic Aging: A Mechanism by Which Social Determinants Increase the Risk of Hypertension? Hypertension 2025; 82:e25-e27. [PMID: 39970252 DOI: 10.1161/hypertensionaha.124.24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Affiliation(s)
- Alexander Chaitoff
- Veterans Affairs Center for Clinical Management Research, Veterans Affairs Ann Arbor Healthcare System, MI (A.C.)
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (A.C.)
| | - Daichi Shimbo
- Columbia Hypertension Center and Lab, Division of Cardiology, Columbia University Irving Medical Center, New York, NY (D.S.)
| | - Adam P Bress
- Intermountain Healthcare Department of Population Health Sciences, Divisions of Health System Innovation and Research and Biostatistics, Spencer Fox-Eccles School of Medicine, University of Utah, Salt Lake City (A.P.B.)
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT (A.P.B.)
| |
Collapse
|
2
|
Liu N, Xia L. Investigation of epigenetics insights of hypertension: A bibliometric analysis. Medicine (Baltimore) 2023; 102:e35125. [PMID: 37682151 PMCID: PMC10489307 DOI: 10.1097/md.0000000000035125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
PURPOSE Hypertension remains a major risk factor for myocardial infarction, heart failure, end-stage renal disease, and stroke. Multiple genes are involved in the process of hypertension with an additional dimension of interaction with the environment. This study conducted a bibliometric analysis of publications in the field of hypertension and epigenetics over the past 10 years to summarize the current status of the field and analyze the trends in the field. METHODS On February 5, 2023, we chose the web of science core collection database as the study data source. VOS viewer 1.6.18 and Cite Space 6.1.6 were used to examine publications of research on hypertension and epigenetics that were published between 2013 and 2022. We looked through the papers for journals, organizations, nations and regions, authors, and key terms. RESULTS This analysis covered a total of 1535 papers on studies into hypertension and epigenetics. There were 7279 authors, 83 nations, 1983 organizations, and 606 journals in all of the articles. In the USA, 540 publications were the most. The institution with the most publications was Harvard Medical School. The author with the most articles was Zhao Lubo. CONCLUSION This study summarizes the global research trends in hypertension and epigenetics. Publications in this field have increased year by year in the last decade and the field of research on hypertension and epigenetics has good prospects for growth.
Collapse
Affiliation(s)
- Nannan Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lina Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Sun X, Wang S, Sheng H, Lv X, Li J, Han B, Wang S, Liu K, Zhang C, Zhang W, Guo F. Study on the mechanism of stir-fried Fructus Tribuli in enhancing the essential hypertension treatment by an integrated "spectrum-effect relationship-network pharmacology-metabolomics" strategy. Biomed Pharmacother 2023; 165:115160. [PMID: 37459662 DOI: 10.1016/j.biopha.2023.115160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Essential hypertension (EH) is a leading cause of cardiovascular morbidity and mortality. Fructus Tribuli (FT), as a traditional medicine, has been frequently used for thousands of years. The crude Fructus Tribuli (CFT), decoction pieces being processed to remove impurities, have been listed as an important medicine for the treatment of hypertension in the elderly. According to the theory of traditional Chinese medicine, the CFT can enhance the EH treatment after being stir-fried into stir-fried Fructus Tribuli (SFT). At present, whether the SFT can enhance the EH treatment and its potential pharmacodynamic substances and mechanism are unknown. In this study, an integrated "spectrum-effect relationship-network pharmacology-metabolomics" strategy was used. Using male spontaneously hypertensive rats as an experimental model, we compared the therapeutic effects of CFT and SFT on EH. Subsequently, to define the pharmacodynamic material basis of SFT in enhancing the EH treatment, the steroidal saponins (main active components of FT) were selected for spectrum-effect relationship analysis. Furthermore, we applied the joint pathway analysis of network pharmacology and metabolomics to explore the underlying mechanism of SFT in enhancing the EH treatment. Results showed that SFT was better than CFT in the EH treatment. The steroidal saponins transformed by stir-frying were the potential pharmacodynamic substances that SFT could enhance the EH treatment. And the mechanism of action might be associated with regulating glycerophospholipid metabolism and arachidonic acid metabolism, especially arachidonic acid metabolism. This study provided a scientific basis for the clinical use of SFT as an important medicine for the EH treatment.
Collapse
Affiliation(s)
- Xiaochen Sun
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong College of Traditional Chinese Medicine, Yantai 264199, China
| | - Shuyue Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Binzhou Hospital of Traditional Chinese Medicine, Binzhou 256600, China
| | - Huagang Sheng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiyu Lv
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingna Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bing Han
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Kunlin Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenhuan Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| | - Fei Guo
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
4
|
Xue B, Johnson AK. Sensitization of Hypertension: The Impact of Earlier Life Challenges: Excellence Award for Hypertension Research 2021. Hypertension 2023; 80:1-12. [PMID: 36069195 DOI: 10.1161/hypertensionaha.122.18550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hypertension affects over 1 billion individuals worldwide. Because the cause of hypertension is known only in a small fraction of patients, most individuals with high blood pressure are diagnosed as having essential hypertension. Elevated sympathetic nervous system activity has been identified in a large portion of hypertensive patients. However, the root cause for this sympathetic overdrive is unknown. A more complete understanding of the breadth of the functional capabilities of the sympathetic nervous system may lead to new insights into the cause of essential hypertension. By employing a unique experimental paradigm, we have recently discovered that the neural network controlling sympathetic drive is more reactive after rats are exposed to mild challenges (stressors) and that the hypertensive response can be sensitized (ie, hypertensive response sensitization [HTRS]). We have also found that the induction of HTRS involves plasticity in the neural network controlling sympathetic drive. The induction and maintenance of the latent HTRS state also require the functional integrity of the brain renin-angiotensin-aldosterone system and the presence of several central inflammatory factors. In this review, we will discuss the induction and expression of HTRS in adult animals and in the progeny of mothers with prenatal obesity/overnutrition or with maternal gestational hypertension. Also, interventions that reverse the effects of stressor-induced HTRS will be reviewed. Understanding the mechanisms underlying HTRS and identifying the beneficial effects of maternal or offspring early-life interventions that prevent or reverse the sensitized state can provide insights into therapeutic strategies for interrupting the vicious cycle of transgenerational hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences (B.X., A.K.J.), University of Iowa, Iowa City
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences (B.X., A.K.J.), University of Iowa, Iowa City.,Neuroscience and Pharmacology (A.K.J.), University of Iowa, Iowa City.,Health and Human Physiology (A.K.J.), University of Iowa, Iowa City.,François M. Abboud Cardiovascular Research Center (A.K.J.), University of Iowa, Iowa City
| |
Collapse
|
5
|
Chew NWS, Loong SSE, Foo R. Progress in molecular biology and translational science: Epigenetics in cardiovascular health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:105-134. [PMID: 37019589 DOI: 10.1016/bs.pmbts.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Conrad Waddington's epigenetics landscape has provided a metaphorical framework for how cells progress from undifferentiated states to one of several discrete, distinct, differentiated cell fates. The understanding of epigenetics has evolved over time, with DNA methylation being the most studied epigenetic modification, followed by histone modifications and non-coding RNA. Cardiovascular diseases (CVD) are leading contributors to death worldwide, with the prevalence of CVDs increasing across the last couple of decades. Significant amount of resources being poured into researching key mechanisms and underpinnings of the various CVDs. These molecular studies looked at the genetics, epigenetics as well as the transcriptomics of various cardiovascular conditions, aiming to provide mechanistic insights. It has paved the way for therapeutics to be developed and in recent years, epi-drugs for the treatment of CVDs. This chapter aims to cover the various roles of epigenetics in the context of cardiovascular health and disease. The following will be examined in detail: the developments in basic experimental techniques used to study epigenetics, the role of epigenetics in various CVDs (hypertension, atrial fibrillation, atherosclerosis, and heart failure), and current advances in epi-therapeutics, providing a holistic view of the current concerted efforts in advancing the field of epigenetics in CVDs.
Collapse
Affiliation(s)
- Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore.
| | - Shaun S E Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
He B, Zhang Q, Guo Y, Ao Y, Tie K, Xiao H, Chen L, Xu D, Wang H. Prenatal smoke (Nicotine) exposure and offspring's metabolic disease susceptibility in adulthood. Food Chem Toxicol 2022; 168:113384. [PMID: 36041661 DOI: 10.1016/j.fct.2022.113384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Exposure to smoking (nicotine) during pregnancy not only directly affects fetal development, but also increases susceptibility to metabolic diseases in adulthood, but the mechanism of action remains unclear. Here, we review epidemiological and laboratory studies linking these relationships. In addition to the direct effect of nicotine on the fetus, intrauterine neuroendocrine-metabolic programming mediated by maternal glucocorticoid overexposure also plays an important role, involving glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, hypothalamic-pituitary-adrenal (HPA) axis, renin-angiotensin system (RAS) and other endocrine systems. Epigenetics is involved in intrauterine neuroendocrine-metabolic programming, metabolic disease susceptibility and multigenerational inheritance. There are "two programming" and "two strikes" mechanisms for the occurrence of fetal-originated metabolic diseases in adulthood. These innovative research summaries and academic viewpoints provide experimental and theoretical basis for systematically elucidating the occurrence and development of fetal-originated metabolic diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
7
|
Nuotio ML, Sánez Tähtisalo H, Lahtinen A, Donner K, Fyhrquist F, Perola M, Kontula KK, Hiltunen TP. Pharmacoepigenetics of hypertension: genome-wide methylation analysis of responsiveness to four classes of antihypertensive drugs using a double-blind crossover study design. Epigenetics 2022; 17:1432-1445. [PMID: 35213289 PMCID: PMC9586691 DOI: 10.1080/15592294.2022.2038418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Essential hypertension remains the leading risk factor of global disease burden, but its treatment goals are often not met. We investigated whether DNA methylation is associated with antihypertensive responses to a diuretic, a beta-blocker, a calcium channel blocker or an angiotensin receptor antagonist. In addition, since we previously showed an SNP at the transcription start site (TSS) of the catecholamine biosynthesis-related ACY3 gene to associate with blood pressure (BP) response to beta-blockers, we specifically analysed the association of methylation sites close to the ACY3 TSS with BP responses to beta-blockers. We conducted an epigenome-wide association study between leukocyte DNA methylation and BP responses to antihypertensive monotherapies in two hypertensive Finnish cohorts: the GENRES (https://clinicaltrials.gov/ct2/show/NCT03276598; amlodipine 5 mg, bisoprolol 5 mg, hydrochlorothiazide 25 mg, or losartan 50 mg daily) and the LIFE-Fin studies (https://clinicaltrials.gov/ct2/show/NCT00338260; atenolol 50 mg or losartan 50 mg daily). The monotherapy groups consisted of approximately 200 individuals each. We identified 64 methylation sites to suggestively associate (P < 1E-5) with either systolic or diastolic BP responses to a particular study drug in GENRES. These associations did not replicate in LIFE-Fin . Three methylation sites close to the ACY3 TSS were associated with systolic BP responses to bisoprolol in GENRES but not genome-wide significantly (P < 0.05). No robust associations between DNA methylation and BP responses to four different antihypertensive drugs were identified. However, the findings on the methylation sites close to the ACY3 TSS may support the role of ACY3 genetic and epigenetic variation in BP response to bisoprolol.
Collapse
Affiliation(s)
- Marja-Liisa Nuotio
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Heini Sánez Tähtisalo
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alexandra Lahtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Donner
- Technology Centre, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Frej Fyhrquist
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Markus Perola
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Kimmo K Kontula
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo P Hiltunen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Roberts ML, Kotchen TA, Pan X, Li Y, Yang C, Liu P, Wang T, Laud PW, Chelius TH, Munyura Y, Mattson DL, Liu Y, Cowley AW, Kidambi S, Liang M. Unique Associations of DNA Methylation Regions With 24-Hour Blood Pressure Phenotypes in Blacks. Hypertension 2022; 79:761-772. [PMID: 34994206 PMCID: PMC8917053 DOI: 10.1161/hypertensionaha.121.18584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epigenetic marks (eg, DNA methylation) may capture the effect of gene-environment interactions. DNA methylation is involved in blood pressure (BP) regulation and hypertension development; however, no studies have evaluated its relationship with 24-hour BP phenotypes (daytime, nighttime, and 24-hour average BPs). METHODS We examined the association of whole blood DNA methylation with 24-hour BP phenotypes and clinic BPs in a discovery cohort of 281 Blacks using reduced representation bisulfite sequencing. We developed a deep and region-specific methylation sequencing method, Bisulfite ULtrapLEx Targeted Sequencing and utilized it to validate our findings in a separate validation cohort (n=117). RESULTS Analysis of 38 215 DNA methylation regions (MRs), derived from 1 549 368 CpG sites across the genome, identified up to 72 regions that were significantly associated with 24-hour BP phenotypes. No MR was significantly associated with clinic BP. Two to 3 MRs were significantly associated with various 24-hour BP phenotypes after adjustment for age, sex, and body mass index. Together, these MRs explained up to 16.5% of the variance of 24-hour average BP, while age, sex, and BMI explained up to 11.0% of the variance. Analysis of one of the MRs in an independent cohort using Bisulfite ULtrapLEx Targeted Sequencing confirmed its association with 24-hour average BP phenotype. CONCLUSIONS We identified several MRs that explain a substantial portion of variances in 24-hour BP phenotypes, which might be excellent markers of cumulative effect of factors influencing 24-hour BP levels. The Bisulfite ULtrapLEx Targeted Sequencing workflow has potential to be suitable for clinical testing and population screenings on a large scale.
Collapse
Affiliation(s)
- Michelle L Roberts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.)
| | - Theodore A Kotchen
- Department of Medicine, Medical College of Wisconsin, Milwaukee. (T.A.K., Y.M., S.K.)
| | - Xiaoqing Pan
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.).,Department of Mathematics, Shanghai Normal University, China (X.P.)
| | - Yingchuan Li
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.).,Department of Critical Care Medicine, Shanghai JiaoTong University affiliated the Sixth People's Hospital, China (Y.L.)
| | - Chun Yang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.)
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.).,The Sir Run Run Shaw Hospital, Institute of Translational Medicine, Zhejiang University, China (P.L.)
| | | | - Purushottam W Laud
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee. (P.W.L.)
| | - Thomas H Chelius
- Division of Epidemiology, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee. (T.H.C.)
| | - Yannick Munyura
- Department of Medicine, Medical College of Wisconsin, Milwaukee. (T.A.K., Y.M., S.K.)
| | - David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta (D.L.M.)
| | | | - Allen W Cowley
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.)
| | - Srividya Kidambi
- Department of Medicine, Medical College of Wisconsin, Milwaukee. (T.A.K., Y.M., S.K.)
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.)
| |
Collapse
|
9
|
Poon L, Por ED, Cho HJ, Oliver TG. A Review of Genome-Based Precision Medicine Efforts Within the Department of Defense. Mil Med 2021; 187:25-31. [PMID: 34967400 DOI: 10.1093/milmed/usab243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Providing patient-specific clinical care is an expanding focus for medical professionals and researchers, more commonly referred to as personalized or precision medicine. The goal of using a patient-centric approach is to provide safer care while also increasing the probability of therapeutic success through careful consideration of the influence of certain extrinsic and intrinsic human factors in developing the patient care plan. Of increasing influence on patient care is the phenotype and genotype information gathered from employing various next-generation sequencing methods. Guided by and partnered with our civilian colleagues, clinical components within the DoD are embracing and advancing genomic medicine in many facets-from the bench to the bedside-and in many therapeutic areas, from Psychiatry to Oncology. In this PubMed-based review, we describe published clinical research and interventions within the DoD using genome-informed data and emphasize precision medicine efforts in earlier stages of development with the potential to revolutionize the approach to therapeutics. MATERIALS AND METHODS The new PubMed database was searched for articles published between 2015 and 2020 with the following key search terms: precision medicine, genomic, pharmacogenetic, pharmacogenomic, US military, and Department of Defense. RESULTS Eighty-one articles were retrieved in our initial search. After screening the abstracts for studies that only involved direct testing of (or clinical interaction with) active duty, Reserve, National Guard, or civilian personnel working within the DoD and excluding any epidemiological or microbial isolation studies, seven were included in this review. CONCLUSION There are several programs and studies within the DoD, which investigate or use gene-based biomarkers or gene variants to deliver more precise clinical assessment and treatment. These genome-based precision medicine efforts aim to optimize the clinical care of DoD beneficiaries, particularly service members in the operational environment.
Collapse
Affiliation(s)
- Lucas Poon
- Department of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA
| | - Elaine D Por
- Department of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA.,Experimental Therapeutics, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA
| | - Hyun Joon Cho
- Department of Pharmacy, Walter Reed National Military Medical Center (WRNMMC), Bethesda, MD 20889, USA
| | - Thomas G Oliver
- Department of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA
| |
Collapse
|
10
|
Olczak KJ, Taylor-Bateman V, Nicholls HL, Traylor M, Cabrera CP, Munroe PB. Hypertension genetics past, present and future applications. J Intern Med 2021; 290:1130-1152. [PMID: 34166551 DOI: 10.1111/joim.13352] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Essential hypertension is a complex trait where the underlying aetiology is not completely understood. Left untreated it increases the risk of severe health complications including cardiovascular and renal disease. It is almost 15 years since the first genome-wide association study for hypertension, and after a slow start there are now over 1000 blood pressure (BP) loci explaining ∼6% of the single nucleotide polymorphism-based heritability. Success in discovery of hypertension genes has provided new pathological insights and drug discovery opportunities and translated to the development of BP genetic risk scores (GRSs), facilitating population disease risk stratification. Comparing highest and lowest risk groups shows differences of 12.9 mm Hg in systolic-BP with significant differences in risk of hypertension, stroke, cardiovascular disease and myocardial infarction. GRSs are also being trialled in antihypertensive drug responses. Drug targets identified include NPR1, for which an agonist drug is currently in clinical trials. Identification of variants at the PHACTR1 locus provided insights into regulation of EDN1 in the endothelin pathway, which is aiding the development of endothelin receptor EDNRA antagonists. Drug re-purposing opportunities, including SLC5A1 and canagliflozin (a type-2 diabetes drug), are also being identified. In this review, we present key studies from the past, highlight current avenues of research and look to the future focusing on gene discovery, epigenetics, gene-environment interactions, GRSs and drug discovery. We evaluate limitations affecting BP genetics, including ancestry bias and discuss streamlining of drug target discovery and applications for treating and preventing hypertension, which will contribute to tailored precision medicine for patients.
Collapse
Affiliation(s)
- Kaya J Olczak
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Victoria Taylor-Bateman
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hannah L Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Traylor
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Biomedical Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,NIHR Barts Biomedical Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Li Y, Zhang Q, Di Zhang, Cai Q, Fan J, Venners SA, Jiang S, Li J, Xu X. The effect of ABCA1 gene DNA methylation on blood pressure levels in a Chinese hyperlipidemic population. J Hum Hypertens 2021; 35:1139-1148. [PMID: 33462393 DOI: 10.1038/s41371-020-00479-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/08/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Hypertension is an important public health challenge worldwide. Epigenetic studies are providing novel insight into the underlying mechanisms of hypertension. We investigated the effect of DNA methylation in ATP-binding cassette transporter 1 (ABCA1) gene on blood pressure levels in a Chinese hyperlipidemic population. We randomly selected 211 individuals with hyperlipidemia who had not received any lipid-lowering treatment at baseline from our previous statin pharmacogenetics study (n = 734). DNA methylation loci at the ABCA1 gene were measured by MethylTarget, a next generation bisulfite sequencing-based multiple targeted cytosine-guanine dinucleotide methylation analysis method. Mean DNA methylation level was used in statistical analysis. In all subjects, higher mean ABCA1_B methylation was positively associated with systolic blood pressure (SBP) (β = 8.27, P = 0.008; β = 8.78, P = 0.005) and explained 2.7% and 5.8% of SBP variation before and after adjustment for lipids, respectively. We further divided all patients into three groups based on the tertile of body mass index (BMI) distribution. In the middle tertile of BMI, there was a significantly positive relationship between mean ABCA1_A methylation and SBP (β = 0.89, P = 0.003) and DBP (β = 0.32, P = 0.030). Mean ABCA1_A methylation explained 11.0% of SBP variation and 5.3% of DBP variation, respectively. Furthermore, mean ABCA1_A methylation (β = 0.79; P = 0.007) together with age and gender explained up to 24.1% of SBP variation. Our study provides new evidence that the ABCA1 DNA methylation profile is associated with blood pressure levels, which highlights that DNA methylation might be a significant molecular mechanism involved in the pathophysiological process of hypertension.
Collapse
Affiliation(s)
- Yajie Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Qian Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Di Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Qianru Cai
- School of Life Sciences, Anhui University, Hefei, China
| | - Juanlin Fan
- School of Life Sciences, Anhui University, Hefei, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China. .,Institute of Biomedicine, Anhui Medical University, Hefei, China.
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China.
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Whitehead TA, Banta S, Bentley WE, Betenbaugh MJ, Chan C, Clark DS, Hoesli CA, Jewett MC, Junker B, Koffas M, Kshirsagar R, Lewis A, Li CT, Maranas C, Terry Papoutsakis E, Prather KLJ, Schaffer S, Segatori L, Wheeldon I. The importance and future of biochemical engineering. Biotechnol Bioeng 2020; 117:2305-2318. [PMID: 32343367 DOI: 10.1002/bit.27364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
Today's Biochemical Engineer may contribute to advances in a wide range of technical areas. The recent Biochemical and Molecular Engineering XXI conference focused on "The Next Generation of Biochemical and Molecular Engineering: The role of emerging technologies in tomorrow's products and processes". On the basis of topical discussions at this conference, this perspective synthesizes one vision on where investment in research areas is needed for biotechnology to continue contributing to some of the world's grand challenges.
Collapse
Affiliation(s)
- Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - Corinne A Hoesli
- Department of Chemical Engineering & Department of Biological and Biomedical Engineering, McGill University, Montreal, Québec, Canada
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| | - Beth Junker
- BioProcess Advantage LLC, Middesex, New Jersey
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | | | - Chien-Ting Li
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Costas Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - E Terry Papoutsakis
- Department of Chemical & Biomolecular Engineering & the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Laura Segatori
- Department of Bioengineering, Rice University, Houston, Texas
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| |
Collapse
|
13
|
Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice. Exp Mol Med 2020; 52:152-165. [PMID: 31974504 PMCID: PMC7000670 DOI: 10.1038/s12276-020-0373-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/16/2019] [Accepted: 12/04/2019] [Indexed: 11/08/2022] Open
Abstract
Renal and cardiovascular complications of prematurity are well established, notably the development of hypertension in adulthood. However, the underlying molecular mechanisms remain poorly understood. Our objective was to investigate the impact of prematurity on the ontogenesis of renal corticosteroid pathways, to evaluate its implication in perinatal renal complications and in the emergence of hypertension in adulthood. Swiss CD1 pregnant mice were injected with lipopolysaccharides at 18 days of gestation (E18) to induce prematurity at E18.5. Pups were sacrificed at birth, 7 days and 6 months of life. Second (F2) and third (F3) generations, established by mating prematurely born adult females with wild-type males, were also analyzed. Former preterm males developed hypertension at M6 (P < 0.0001). We found robust activation of renal corticosteroid target gene transcription at birth in preterm mice (αENaC (+45%), Gilz (+85%)), independent of any change in mineralocorticoid or glucocorticoid receptor expression. The offspring of the preterm group displayed increased blood pressure in F2 and F3, associated with increased renal Gilz mRNA expression, despite similar MR or GR expression and plasma corticosteroid levels measured by LC-MS/MS. Gilz promoter methylation measured by methylated DNA immunoprecipitation-qPCR was reduced with a negative correlation between methylation and expression (P = 0.0106). Our study demonstrates prematurity-related alterations in renal corticosteroid signaling pathways, with transgenerational inheritance of blood pressure dysregulation and epigenetic Gilz regulation up to the third generation. This study provides a better understanding of the molecular mechanisms involved in essential hypertension, which could partly be due to perinatal epigenetic programming from previous generations. A propensity towards high blood pressure may be passed down through several generations from adults who were born preterm. People who are born prematurely often suffer from kidney (renal) problems, high blood pressure and cardiovascular disease as they age. Recent research suggests adults born prematurely can pass dysregulated blood pressure to their children. Laetitia Martinerie at INSERM Unit 1185, Le Kremlin Bicêtre and Robert Debré Hospital in Paris, France, and co-workers studied generations of mice to explore how epigenetic alterations, DNA modifications that do not change the DNA code, affect blood pressure from birth through to adulthood. The team identified tissue-specific alterations in renal signaling pathways in premature mice. They also traced the associated overexpression of a gene called Gilz, known to play a role in blood pressure maintenance, through second and third generation mice born to the first generation preterms.
Collapse
|
14
|
Crosswhite PL. ATP-dependent chromatin remodeling complexes in embryonic vascular development and hypertension. Am J Physiol Heart Circ Physiol 2019; 317:H575-H580. [PMID: 31398060 DOI: 10.1152/ajpheart.00147.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension, a chronic elevation in blood pressure, is the largest single contributing factor to mortality worldwide and the most common preventable risk factor for cardiovascular disease. High blood pressure increases the risk for someone to experience a number of adverse cardiovascular events including heart failure, stroke, or aneurysm. Despite advancements in understanding factors that contribute to hypertension, the etiology remains elusive and there remains a critical need to develop innovative study approaches to develop more effective therapeutics. ATP-dependent chromatin remodelers are dynamic regulators of DNA-histone bonds and thus gene expression. The goal of this review is to highlight and summarize reports of ATP-dependent chromatin remodelers contribution to the development or maintenance of hypertension. Emerging evidence from hypertensive animal models suggests that induction of chromatin remodeler activity increases proinflammatory genes and increases blood pressure, whereas human studies demonstrate how chromatin remodelers may act as stress-response sensors to harmful physiological stimuli. Importantly, genomic studies have linked patients with hypertension to mutations in chromatin remodeler genes. Collectively, evidence linking chromatin remodelers and hypertension warrants additional research and ultimately could reveal novel therapeutic approaches for treating this complex and devastating disease.
Collapse
|
15
|
Abstract
The causes of essential hypertension remain an enigma. Interactions between genetic and external factors are generally recognized to act as aetiological mechanisms that trigger the pathogenesis of high blood pressure. However, the questions of which genes and factors are involved, and when and where such interactions occur, remain unresolved. Emerging evidence indicates that the hypertensive response to pressor stimuli, like many other physiological and behavioural adaptations, can become sensitized to particular stimuli. Studies in animal models show that, similarly to other response systems controlled by the brain, hypertensive response sensitization (HTRS) is mediated by neuroplasticity. The brain circuitry involved in HTRS controls the sympathetic nervous system. This Review outlines evidence supporting the phenomenon of HTRS and describes the range of physiological and psychosocial stressors that can produce a sensitized hypertensive state. Also discussed are the cellular and molecular changes in the brain neural network controlling sympathetic tone involved in long-term storage of information relating to stressors, which could serve to maintain a sensitized state. Finally, this Review concludes with a discussion of why a sensitized hypertensive response might previously have been beneficial and increased biological fitness under some environmental conditions and why today it has become a health-related liability.
Collapse
Affiliation(s)
- Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA.
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
- The François M. Abboud Cardiovascular Center, Iowa City, IA, USA.
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- The François M. Abboud Cardiovascular Center, Iowa City, IA, USA
| |
Collapse
|
16
|
Liu P, Liu Y, Liu H, Pan X, Li Y, Usa K, Mishra MK, Nie J, Liang M. Role of DNA De Novo (De)Methylation in the Kidney in Salt-Induced Hypertension. Hypertension 2018; 72:1160-1171. [PMID: 30354815 PMCID: PMC6314686 DOI: 10.1161/hypertensionaha.118.11650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Numerous adult diseases involving tissues consisting primarily of nondividing cells are associated with changes in DNA methylation. It suggests a pathophysiological role for de novo methylation or demethylation of DNA, which is catalyzed by DNA methyltransferase 3 and ten-eleven translocases. However, the contribution of DNA de novo (de)methylation to these diseases remains almost completely unproven. Broad changes in DNA methylation occurred within days in the renal outer medulla of Dahl SS rats fed a high-salt diet, a classic model of hypertension. Intrarenal administration of anti-DNA methyltransferase 3a/ten-eleven translocase 3 GapmeRs attenuated high salt-induced hypertension in SS rats. The high-salt diet induced differential expression of 1712 genes in the renal outer medulla. Remarkably, the differential expression of 76% of these genes was prevented by anti-DNA methyltransferase 3a/ten-eleven translocase 3 GapmeRs. The genes differentially expressed in response to the GapmeRs were involved in the regulation of metabolism and inflammation and were significantly enriched for genes showing differential methylation in response to the GapmeRs. These data indicate a significant role of DNA de novo (de)methylation in the kidney in the development of hypertension in SS rats. The findings should help to shift the paradigm of DNA methylation research in diseases involving nondividing cells from correlative analysis to functional and mechanistic studies.
Collapse
Affiliation(s)
- Pengyuan Liu
- Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University, Zhejiang, China
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Han Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Xiaoqing Pan
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yingchuan Li
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Critical Care Medicine, Shanghai JiaoTong University affiliated The Sixth People‧s Hospital, Shanghai, China
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Manoj K. Mishra
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| |
Collapse
|
17
|
Zhang G, Li X, Zhang K, Zhao J, Qiu C. Haplotype-based association of renin gene polymorphisms with essential hypertension in Han population of northern china. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317744917. [PMID: 29233044 PMCID: PMC5843929 DOI: 10.1177/1470320317744917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The renin gene has been suggested as a good candidate in the study of genetic mechanism of essential hypertension. However, studies on the contribution of renin gene polymorphisms to essential hypertension, have not had consistent outcomes. The purpose of the present study is to explore the association of renin gene polymorphisms with essential hypertension in the Han population of northern China. METHODS A case-control study was conducted among 3090 Han farmers (1533 essential hypertension patients and 1557 normotensives). Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction-sequencing. RESULTS The genotypic and allelic distributions of rs2368564 in essential hypertension and control was significant statistically ( p<0.001). The allelic distribution of rs10900557 showed marginal statistical significance ( p=0.048). There were no significant differences in other genotypic and allelic distributions ( p>0.05). In the haplotypes comprised by the six single-nucleotide polymorphisms, there were differences in the distribution of haplotypes A-T-C-G-C-A, A-T-C-G-C-G, G-C-T-G-T-A and G-C-T-G-T-G in both groups, and their differences reached to significant levels, respectively. After having corrected for false discovery rate, this association still remained significant. CONCLUSIONS The current study provides evidence for a possible association of renin gene polymorphisms with essential hypertension in a Han population of northern China.
Collapse
Affiliation(s)
- Guoping Zhang
- 1 Department of Epidemiology, Harbin Medical University, China
| | - Xueyan Li
- 2 Institute of Polygenic Disease, Qiqihar Medical University, China
| | - Keyong Zhang
- 2 Institute of Polygenic Disease, Qiqihar Medical University, China
| | - Jingbo Zhao
- 1 Department of Epidemiology, Harbin Medical University, China
| | - Changchun Qiu
- 2 Institute of Polygenic Disease, Qiqihar Medical University, China.,3 National Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, China
| |
Collapse
|
18
|
Xiong S, Li Q, Liu D, Zhu Z. Gastrointestinal Tract: a Promising Target for the Management of Hypertension. Curr Hypertens Rep 2018; 19:31. [PMID: 28349378 DOI: 10.1007/s11906-017-0726-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pathogenesis of hypertension remains elusive. Current treatments on hypertension have only achieved modest reductions. Facilitating theoretical research and looking for new therapeutic strategy are urgently needed. Besides food digestion and nutrients absorption, the gastrointestinal tract (GI) has been shown to influence the status of the central nervous system, immune system, metabolism, and cardiovascular homeostasis. Emerging findings demonstrate that endogenous factors derived from GI including gut hormones, autonomic nerve, and gut microbiota play important roles in the regulation of vascular function and/or blood pressure. Meanwhile, evidences from clinical practice and experimental study have found that intervention in GI through metabolic surgery, probiotics consumption, and dietary modification can efficiently ameliorate or even remit hypertension and related cardiometabolic diseases. Thus, we propose that GI might be an initiating organ of hypertension and a promising target for the management of hypertension. Further, illuminating this concept may aid to understand the pathogenesis and control of hypertension.
Collapse
Affiliation(s)
- Shiqiang Xiong
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China.
| |
Collapse
|
19
|
|
20
|
Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, Irvin MR, Marioni R, Shen J, Tsai PC, Montasser ME, Jia Y, Syme C, Salfati EL, Boerwinkle E, Guan W, Mosley TH, Bressler J, Morrison AC, Liu C, Mendelson MM, Uitterlinden AG, van Meurs JB, Franco OH, Zhang G, Li Y, Stewart JD, Bis JC, Psaty BM, Chen YDI, Kardia SLR, Zhao W, Turner ST, Absher D, Aslibekyan S, Starr JM, McRae AF, Hou L, Just AC, Schwartz JD, Vokonas PS, Menni C, Spector TD, Shuldiner A, Damcott CM, Rotter JI, Palmas W, Liu Y, Paus T, Horvath S, O'Connell JR, Guo X, Pausova Z, Assimes TL, Sotoodehnia N, Smith JA, Arnett DK, Deary IJ, Baccarelli AA, Bell JT, Whitsel E, Dehghan A, Levy D, Fornage M. DNA Methylation Analysis Identifies Loci for Blood Pressure Regulation. Am J Hum Genet 2017; 101:888-902. [PMID: 29198723 PMCID: PMC5812919 DOI: 10.1016/j.ajhg.2017.09.028] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies have identified hundreds of genetic variants associated with blood pressure (BP), but sequence variation accounts for a small fraction of the phenotypic variance. Epigenetic changes may alter the expression of genes involved in BP regulation and explain part of the missing heritability. We therefore conducted a two-stage meta-analysis of the cross-sectional associations of systolic and diastolic BP with blood-derived genome-wide DNA methylation measured on the Infinium HumanMethylation450 BeadChip in 17,010 individuals of European, African American, and Hispanic ancestry. Of 31 discovery-stage cytosine-phosphate-guanine (CpG) dinucleotides, 13 replicated after Bonferroni correction (discovery: N = 9,828, p < 1.0 × 10-7; replication: N = 7,182, p < 1.6 × 10-3). The replicated methylation sites are heritable (h2 > 30%) and independent of known BP genetic variants, explaining an additional 1.4% and 2.0% of the interindividual variation in systolic and diastolic BP, respectively. Bidirectional Mendelian randomization among up to 4,513 individuals of European ancestry from 4 cohorts suggested that methylation at cg08035323 (TAF1B-YWHAQ) influences BP, while BP influences methylation at cg00533891 (ZMIZ1), cg00574958 (CPT1A), and cg02711608 (SLC1A5). Gene expression analyses further identified six genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, and LPCAT3) with evidence of triangular associations between methylation, gene expression, and BP. Additional integrative Mendelian randomization analyses of gene expression and DNA methylation suggested that the expression of TSPAN2 is a putative mediator of association between DNA methylation at cg23999170 and BP. These findings suggest that heritable DNA methylation plays a role in regulating BP independently of previously known genetic variants.
Collapse
Affiliation(s)
- Melissa A Richard
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Tianxiao Huan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Rahul Gondalia
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Min A Jhun
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Riccardo Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, Kings College London, SE17EH London, UK
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Catriona Syme
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Elias L Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55454, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alanna C Morrison
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chunyu Liu
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA; Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Michael M Mendelson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Joyce B van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Guosheng Zhang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27514, USA; Department of Statistics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James D Stewart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Population Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98101, USA; Kaiser Permanente Washington Health Research Unit, Seattle, WA 98101, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Allan F McRae
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Allan C Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Pantel S Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, Kings College London, SE17EH London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, SE17EH London, UK
| | - Alan Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Coleen M Damcott
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Walter Palmas
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yongmei Liu
- Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tomáš Paus
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Toronto, ON M6A 2E1, Canada; Child Mind Institute, New York, NY 10022, USA
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Zdenka Pausova
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48108, USA
| | - Donna K Arnett
- University of Kentucky, College of Public Health, Lexington, KY 40563, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH9 8JZ, UK
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, SE17EH London, UK
| | - Eric Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands; Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
22
|
Hasin T, Iakobishvili Z, Weisz G. Associated Risk of Malignancy in Patients with Cardiovascular Disease: Evidence and Possible Mechanism. Am J Med 2017; 130:780-785. [PMID: 28344133 DOI: 10.1016/j.amjmed.2017.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease and malignancy are leading causes of morbidity and mortality. Increased risk of malignancy was identified in patients with cardiovascular disease, including patients with heart failure, heart failure after myocardial infarction, patients undergoing cardiac intervention, and patients after a thrombotic event. Common risk factors and biological pathways can explain this association and are explored in this review. Further research is needed to establish the causes of malignancy in this population and direct possible intervention.
Collapse
Affiliation(s)
- Tal Hasin
- Department of Cardiology, Shaare Zedek Medical Center, Jerusalem, Israel.
| | - Zaza Iakobishvili
- Department of Cardiology, Rabin Medical Center, Petach Tiqwa, Israel
| | - Giora Weisz
- Department of Cardiology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
23
|
Padmanabhan S, Aman A, Dominiczak AF. Genomics of hypertension. Pharmacol Res 2017; 121:219-229. [DOI: 10.1016/j.phrs.2017.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/11/2023]
|
24
|
Kotchen TA. Genotypic and Phenotypic Heterogeneity-Hurdles and Opportunities in the Quest for Hypertension-Related Genes. Am J Hypertens 2017; 30:466-467. [PMID: 28338746 DOI: 10.1093/ajh/hpx021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Theodore A Kotchen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
25
|
Are genetic polymorphisms in the renin-angiotensin-aldosterone system associated with essential hypertension? Evidence from genome-wide association studies. J Hum Hypertens 2017; 31:695-698. [PMID: 28425437 DOI: 10.1038/jhh.2017.29] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
In candidate gene era, dozens of single-nucleotide polymorphisms (SNPs) within renin-angiotensin-aldosterone system (RAAS) have been reported to be significantly associated with hypertension. However, the unbiased genome-wide association studies (GWAS) rarely identified the SNPs within RAAS were associated with hypertension or blood pressure (BP) traits. In order to figure out whether genetic polymorphisms of RAAS are really associated with hypertension, we systemically searched the GWAS Catalogue and identified all the known RAAS genes and relevant diseases/traits. After data processing, we found that polymorphisms within REN, AGT, ACE2, CYP11B2, ATP6AP2 and HSD11B2 were not associated with any disease or trait. SNPs within ACE, AGTR1, AGTR2, MAS1, RENBP and NR3C2 were associated with other diseases or traits, but showed no direct connection with hypertension. The only SNP associated with a BP trait, systolic BP was rs17367504. However, it is located in the intronic region of MTHFR near many plausible candidate genes, including CLCN6, NPPA, NPPB and AGTRAP. Therefore, the effect of RAAS polymorphisms may have been overestimated during the 'candidate gene era'. In the time of 'precision medicine', the power of RAAS variants needs to be reconsidered when evaluating one's susceptibility of hypertension.
Collapse
|
26
|
Mensah GA, Galis ZS, Fine LJ, Garcia ME, Levy DF, Gibbons GH. Building on a Legacy of Hypertension Research: Charting Our Future Together. Hypertension 2017; 69:5-10. [PMID: 27849567 PMCID: PMC5145749 DOI: 10.1161/hypertensionaha.116.06582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Abstract
PURPOSE OF REVIEW Hypertension, which is present in about one quarter of the world's population, is responsible for about 41% of the number one cause of death - cardiovascular disease. Not included in these statistics is the effect of sodium intake on blood pressure, even though an increase or a marked decrease in sodium intake can increase blood pressure. This review deals with the interaction of gut microbiota and the kidney with genetics and epigenetics in the regulation of blood pressure and salt sensitivity. RECENT FINDINGS The abundance of the gut microbes, Firmicutes and Bacteroidetes, is associated with increased blood pressure in several models of hypertension, including the spontaneously hypertensive and Dahl salt-sensitive rats. Decreasing gut microbiota by antibiotics can increase or decrease blood pressure that is influenced by genotype. The biological function of probiotics may also be a consequence of epigenetic modification, related, in part, to microRNA. Products of the fermentation of nutrients by gut microbiota can influence blood pressure by regulating expenditure of energy, intestinal metabolism of catecholamines, and gastrointestinal and renal ion transport, and thus, salt sensitivity. SUMMARY The beneficial or deleterious effect of gut microbiota on blood pressure is a consequence of several variables, including genetics, epigenetics, lifestyle, and intake of antibiotics. These variables may influence the ultimate level of blood pressure and control of hypertension.
Collapse
|
28
|
Han L, Liu Y, Duan S, Perry B, Li W, He Y. DNA methylation and hypertension: emerging evidence and challenges. Brief Funct Genomics 2016; 15:460-469. [PMID: 27142121 DOI: 10.1093/bfgp/elw014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypertension is a multifactorial disease influenced by an interaction of environmental and genetic factors. The exact molecular mechanism of hypertension remains unknown. Aberrant DNA methylation is the most well-defined epigenetic modification that regulates gene transcription. However, studies on the association between DNA methylation and hypertension are still in their infancy. This review summarizes the latest evidence and challenges regarding the role of DNA methylation on hypertension.
Collapse
|
29
|
Anwar MA, Al Disi SS, Eid AH. Anti-Hypertensive Herbs and Their Mechanisms of Action: Part II. Front Pharmacol 2016; 7:50. [PMID: 27014064 PMCID: PMC4782109 DOI: 10.3389/fphar.2016.00050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/22/2016] [Indexed: 01/20/2023] Open
Abstract
Traditional medicine has a history extending back to thousands of years, and during the intervening time, man has identified the healing properties of a very broad range of plants. Globally, the use of herbal therapies to treat and manage cardiovascular disease (CVD) is on the rise. This is the second part of our comprehensive review where we discuss the mechanisms of plants and herbs used for the treatment and management of high blood pressure. Similar to the first part, PubMed and ScienceDirect databases were utilized, and the following keywords and phrases were used as inclusion criteria: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine, endothelial cells, nitric oxide (NO), vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B (NF-κB), oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with plant or herb in question, and where possible with its constituent molecule(s). This part deals in particular with plants that are used, albeit less frequently, for the treatment and management of hypertension. We then discuss the interplay between herbs/prescription drugs and herbs/epigenetics in the context of this disease. The review then concludes with a recommendation for more rigorous, well-developed clinical trials to concretely determine the beneficial impact of herbs and plants on hypertension and a disease-free living.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | - Sara S Al Disi
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
30
|
Napoli C, Grimaldi V, De Pascale MR, Sommese L, Infante T, Soricelli A. Novel epigenetic-based therapies useful in cardiovascular medicine. World J Cardiol 2016; 8:211-219. [PMID: 26981216 PMCID: PMC4766271 DOI: 10.4330/wjc.v8.i2.211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/28/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications include DNA methylation, histone modifications, and microRNA. Gene alterations have been found to be associated with cardiovascular diseases, and epigenetic mechanisms are continuously being studied to find new useful strategies for the clinical management of afflicted patients. Numerous cardiovascular disorders are characterized by the abnormal methylation of CpG islands and so specific drugs that could inhibit DNA methyltransferase directly or by reducing its gene expression (e.g., hydralazine and procainamide) are currently under investigation. The anti-proliferative and anti-inflammatory properties of histone deacetylase inhibitors and their cardio-protective effects have been confirmed in preclinical studies. Furthermore, the regulation of the expression of microRNA targets through pharmacological tools is still under development. Indeed, large controlled trials are required to establish whether current possible candidate antisense microRNAs could offer better therapeutic benefits in clinical practice. Here, we updated therapeutic properties, side effects, and feasibility of emerging epigenetic-based strategies in cardiovascular diseases by highlighting specific problematic issues that still affect the development of large scale novel therapeutic protocols.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To provide an overview of available evidence of the potential role of epigenetics in the pathogenesis of hypertension and vascular dysfunction. RECENT FINDINGS Arterial hypertension is a highly heritable condition. Surprisingly, however, genetic variants only explain a tiny fraction of the phenotypic variation and the term 'missing heritability' has been coined to describe this phenomenon. Recent evidence suggests that phenotypic alteration that is unrelated to changes in DNA sequence (thereby escaping detection by classic genetic methodology) offers a potential explanation. Here, we present some basic information on epigenetics and review recent work consistent with the hypothesis of epigenetically induced arterial hypertension. SUMMARY New technologies that enable the rigorous assessment of epigenetic changes and their phenotypic consequences may provide the basis for explaining the missing heritability of arterial hypertension and offer new possibilities for treatment and/or prevention.
Collapse
|
32
|
Muntner P, Becker RC, Calhoun D, Chen D, Cowley AW, Flynn JT, Grobe JL, Kidambi S, Kotchen TA, Lackland DT, Leslie KK, Li Y, Liang M, Lloyd A, Mattson DL, Mendizabal B, Mitsnefes M, Nair A, Pierce GL, Pollock JS, Safford MM, Santillan MK, Sigmund CD, Thomas SJ, Urbina EM. Introduction to the American Heart Association's Hypertension Strategically Focused Research Network. Hypertension 2016; 67:674-80. [PMID: 26902490 DOI: 10.1161/hypertensionaha.115.06433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paul Muntner
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.).
| | - Richard C Becker
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - David Calhoun
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Daian Chen
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Allen W Cowley
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Joseph T Flynn
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Justin L Grobe
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Srividya Kidambi
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Theodore A Kotchen
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Daniel T Lackland
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Kimberly K Leslie
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Yingchuan Li
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Mingyu Liang
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Augusta Lloyd
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - David L Mattson
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Brenda Mendizabal
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Mark Mitsnefes
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Anand Nair
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Gary L Pierce
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Jennifer S Pollock
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Monika M Safford
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Mark K Santillan
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Curt D Sigmund
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Stephen J Thomas
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| | - Elaine M Urbina
- From the Department of Epidemiology (P.M., S.J.T.), and Divisions of Preventive Medicine (M.M.S.), Nephrology (D.C., J.S.P.), and Cardiology (D.C.), Department of Medicine, University of Alabama at Birmingham; Department of Physiology (M.L., A.W.C., D.L.M., Y.L.), and Division of Endocrinology, Department of Medicine (T.K., S.K.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology (C.D.S., J.L.G., A.N.), Health and Human Physiology (G.L.P.), and Obstetrics and Gynecology (K.K.L., M.K.S.), University of Iowa, Iowa City; Department of Pediatrics, Cincinnati Children's Hospital, OH (E.U., M.M., B.M.); Department of Medicine, University of Cincinnati, OH (R.C.B.); Division of Nephrology, Department of Medicine, Seattle Children's Hospital, WA (J.T.F.); American Heart Association, Dallas, TX (A.L.); and Department of Public Health Sciences, Medical University of South Carolina, Charleston (D.T.L.)
| |
Collapse
|
33
|
Glucocorticoid-induced fetal origins of adult hypertension: Association with epigenetic events. Vascul Pharmacol 2016; 82:41-50. [PMID: 26903240 DOI: 10.1016/j.vph.2016.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 02/05/2023]
Abstract
Hypertension is a predominant risk factor for cardiovascular diseases and a major health care burden. Accumulating epidemiological and experimental evidence suggest that adult-onset hypertension may have its origins during early development. Upon exposure to glucocorticoids, the fetus develops hypertension, and the offspring may be programmed to continue the hypertensive trajectory into adulthood. Elevated oxidative stress and deranged nitric oxide system are not only hallmarks of adult hypertension but are also observed earlier in life. Endothelial dysfunction and remodeling of the vasculature, which are robustly associated with increased incidence of hypertension, are likely to have been pre-programmed during fetal life. Apparently, genomic, non-genomic, and epigenomic factors play a significant role in the development of hypertension, including glucocorticoid-driven effects on blood pressure. In this review, we discuss the involvement of the aforementioned participants in the pathophysiology of hypertension and suggest therapeutic opportunities for targeting epigenome modifiers, potentially for personalized medicine.
Collapse
|
34
|
Affiliation(s)
| | - Allen W Cowley
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
35
|
Johnson AK, Zhang Z, Clayton SC, Beltz TG, Hurley SW, Thunhorst RL, Xue B. The roles of sensitization and neuroplasticity in the long-term regulation of blood pressure and hypertension. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1309-25. [PMID: 26290101 PMCID: PMC4698407 DOI: 10.1152/ajpregu.00037.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
After decades of investigation, the causes of essential hypertension remain obscure. The contribution of the nervous system has been excluded by some on the basis that baroreceptor mechanisms maintain blood pressure only over the short term. However, this point of view ignores one of the most powerful contributions of the brain in maintaining biological fitness-specifically, the ability to promote adaptation of behavioral and physiological responses to cope with new challenges and maintain this new capacity through processes involving neuroplasticity. We present a body of recent findings demonstrating that prior, short-term challenges can induce persistent changes in the central nervous system to result in an enhanced blood pressure response to hypertension-eliciting stimuli. This sensitized hypertensinogenic state is maintained in the absence of the inducing stimuli, and it is accompanied by sustained upregulation of components of the brain renin-angiotensin-aldosterone system and other molecular changes recognized to be associated with central nervous system neuroplasticity. Although the heritability of hypertension is high, it is becoming increasingly clear that factors beyond just genes contribute to the etiology of this disease. Life experiences and attendant changes in cellular and molecular components in the neural network controlling sympathetic tone can enhance the hypertensive response to recurrent, sustained, or new stressors. Although the epigenetic mechanisms that allow the brain to be reprogrammed in the face of challenges to cardiovascular homeostasis can be adaptive, this capacity can also be maladaptive under conditions present in different evolutionary eras or ontogenetic periods.
Collapse
Affiliation(s)
- Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa; Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa; Department of Pharmacology, The University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Center, The University of Iowa, Iowa City, Iowa; and
| | - Zhongming Zhang
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa; Nanyang Institute of Technology, Zhang Zhongjing College of Chinese Medicine, Nanyang, Henan Province, China
| | - Sarah C Clayton
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa
| | - Seth W Hurley
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa
| | - Robert L Thunhorst
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Center, The University of Iowa, Iowa City, Iowa; and
| | - Baojian Xue
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Center, The University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
36
|
Renin angiotensinogen system gene polymorphisms and essential hypertension among people of West African descent: a systematic review. J Hum Hypertens 2015; 30:467-78. [DOI: 10.1038/jhh.2015.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023]
|
37
|
Zheng J, Rao DC, Shi G. An update on genome-wide association studies of hypertension. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40535-015-0013-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Feto-maternal interactions: a possible clue to explain the 'missed heritability' in arterial hypertension. Curr Opin Cardiol 2015; 30:391-2. [PMID: 26049387 DOI: 10.1097/hco.0000000000000195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
|
40
|
Li H, Kem DC, Zhang L, Huang B, Liles C, Benbrook A, Gali H, Veitla V, Scherlag BJ, Cunningham MW, Yu X. Novel retro-inverso peptide inhibitor reverses angiotensin receptor autoantibody-induced hypertension in the rabbit. Hypertension 2015; 65:793-9. [PMID: 25691619 DOI: 10.1161/hypertensionaha.114.05037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating autoantibodies to the angiotensin II type 1 receptor (AT1R) have been implicated in hypertensive disorders. We investigated whether AT1R antibodies produced in immunized rabbits will activate AT1R and contribute to hypertension by a direct contractile effect on the vasculature and whether they can be blocked by a novel decoy peptide. A multiple antigenic peptide containing the AT1R epitope AFHYESQ, which is the receptor-binding epitope of AT1R-activating autoantibodies, was used to immunize 6 rabbits. AT1R antibody activity was analyzed in AT1R-transfected cells, and their contractile effects were assayed using isolated perfused rat cremaster resistance arterioles. A retro-inverso D-amino acid epitope-mimetic peptide was tested for AT1R antibody inhibition in vitro and in vivo. All immunized animals produced high AT1R antibody titers and developed elevated blood pressure. No changes in measured blood chemistry values were observed after immunization. Rabbit anti-AT1R sera induced significant AT1R activation in transfected cells and vasoconstriction in the arteriole assay, both of which were blocked by losartan and the retro-inverso D-amino acid peptide. A single intravenous bolus injection of the retro-inverso d-amino acid peptide (1 mg/kg) into immunized rabbits dropped the mean arterial pressure from 122±11 to 82±6 mm Hg. Rabbit anti-AT1R sera partially suppressed angiotensin II-induced contraction of isolated rat cremaster arterioles, and the pressor response to angiotensin II infusion was attenuated in immunized animals. In conclusion, AT1R-activating autoantibodies and the retro-inverso d-amino acid peptide, respectively, have important etiologic and therapeutic implications in hypertensive subjects who harbor these autoantibodies.
Collapse
Affiliation(s)
- Hongliang Li
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - David C Kem
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Ling Zhang
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Bing Huang
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Campbell Liles
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Alexandria Benbrook
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Hariprasad Gali
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Vineet Veitla
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Benjamin J Scherlag
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Madeleine W Cunningham
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City
| | - Xichun Yu
- From the Department of Medicine and the Heart Rhythm Institute (H.L., D.C.K., L.Z., B.H., C.L., A.B., V.V., B.J.S., X.Y.), and Departments of Pharmaceutical Sciences (H.G.) and Microbiology and Immunology (M.W.C.), University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City.
| |
Collapse
|
41
|
Zhong J, Colicino E, Lin X, Mehta A, Kloog I, Zanobetti A, Byun HM, Bind MA, Cantone L, Prada D, Tarantini L, Trevisi L, Sparrow D, Vokonas P, Schwartz J, Baccarelli AA. Cardiac autonomic dysfunction: particulate air pollution effects are modulated by epigenetic immunoregulation of Toll-like receptor 2 and dietary flavonoid intake. J Am Heart Assoc 2015; 4:e001423. [PMID: 25628407 PMCID: PMC4330067 DOI: 10.1161/jaha.114.001423] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Short‐term fine particles (PM2.5) exposure is associated with reduced heart rate variability, a strong predictor of cardiac mortality among older people. Identifying modifiable factors that confer susceptibility is essential for intervention. We evaluated whether Toll‐like receptor 2 (TLR2) methylation, a reversible immune‐epigenetic process, and its dietary modulation by flavonoids and methyl nutrients, modify susceptibility to heart rate variability effects following PM2.5 exposure. Methods and Results We measured heart rate variability and PM2.5 repeatedly over 11 years (1275 total observations) among 573 elderly men from the Normative Aging Study. Blood TLR2 methylation was analyzed using pyrosequencing. Daily flavonoid and methyl nutrients intakes were assessed through the Food Frequency Questionnaire (FFQ). Every 10 μg/m3 increase in 48‐hour PM2.5 moving average was associated with 7.74% (95% CI: −1.21% to 15.90%; P=0.09), 7.46% (95% CI: 0.99% to 13.50%; P=0.02), 14.18% (95% CI: 1.14% to 25.49%; P=0.03), and 12.94% (95% CI: −2.36% to 25.96%; P=0.09) reductions in root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency power, and high‐frequency power, respectively. Higher TLR2 methylation exacerbated the root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency, and high‐frequency reductions associated with heightened PM2.5 (Pinteraction=0.006, 0.03, 0.05, 0.04, respectively). Every interquartile‐range increase in flavonoid intake was associated with 5.09% reduction in mean TLR2 methylation (95% CI: 0.12% to 10.06%; P=0.05) and counteracted the effects of PM2.5 on low frequency (Pinteraction=0.05). No significant effect of methyl nutrients on TLR2 methylation was observed. Conclusions Higher TLR2 methylation may confer susceptibility to adverse cardiac autonomic effects of PM2.5 exposure in older individuals. Higher flavonoid intake may attenuate these effects, possibly by decreasing TLR2 methylation.
Collapse
Affiliation(s)
- Jia Zhong
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| | - Elena Colicino
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| | - Xinyi Lin
- Department of Biostatistics, Harvard School of Public Health, Boston, MA (X.L., M.A.B.) Singapore Institute for Clinical Sciences, Singapore (X.L.)
| | - Amar Mehta
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel (I.K.)
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| | - Hyang-Min Byun
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| | - Marie-Abèle Bind
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.) Department of Biostatistics, Harvard School of Public Health, Boston, MA (X.L., M.A.B.)
| | - Laura Cantone
- Center of Molecular and Genetic Epidemiology, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy (L.C., L.T.)
| | - Diddier Prada
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| | - Letizia Tarantini
- Center of Molecular and Genetic Epidemiology, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy (L.C., L.T.)
| | - Letizia Trevisi
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| | - David Sparrow
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA (D.S., P.V.)
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA (D.S., P.V.)
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard School of Public Health, Boston, MA (J.Z., E.C., A.M., A.Z., H.M.B., M.A.B., D.P., L.T., J.S., A.A.B.)
| |
Collapse
|
42
|
Han L, Liu P, Wang C, Zhong Q, Fan R, Wang L, Duan S, Zhang L. The interactions between alcohol consumption and DNA methylation of the ADD1 gene promoter modulate essential hypertension susceptibility in a population-based, case–control study. Hypertens Res 2015; 38:284-90. [DOI: 10.1038/hr.2014.172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/09/2014] [Accepted: 11/01/2014] [Indexed: 12/11/2022]
|
43
|
Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl Res 2015; 165:154-65. [PMID: 25035152 DOI: 10.1016/j.trsl.2014.06.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/11/2023]
Abstract
Epigenetic phenomena include DNA methylation, post-translational histone modifications, and noncoding RNAs, as major marks. Although similar to genetic features of DNA for their heritability, epigenetic mechanisms differ for their potential reversibility by environmental and nutritional factors, which make them potentially crucial for their role in complex and multifactorial diseases. The function of these mechanisms is indeed gaining interest in relation to arterial hypertension (AH) with emerging evidence from cell culture and animal models as well as human studies showing that epigenetic modifications have major functions within pathways related to AH. Among epigenetic marks, the role of DNA methylation is mostly highlighted given the primary role of this epigenetic feature in mammalian cells. A lower global methylation was observed in DNA of peripheral blood mononuclear cells of hypertensive patients. Moreover, DNA hydroxymethylation appears modifiable by salt intake in a Dahl salt-sensitive rat model. The specific function of DNA methylation in regulating the expression of AH-related genes at promoter site was described for hydroxysteroid (11-beta) dehydrogenase 2 (HSD11B2), somatic angiotensin converting enzyme (sACE), Na+/K+/2Cl- cotransporter 1 (NKCC1), angiotensinogen (AGT), α-adducin (ADD1), and for other crucial genes in endocrine hypertension. Post-translational histone methylation at different histone 3 lysine residues was also observed to control the expression of genes related to AH as lysine-specific demethylase-1(LSD1), HSD11B2, and epithelial sodium channel subunit α (SCNN1A). Noncoding RNAs including several microRNAs influence genes involved in steroidogenesis and the renin-angiotensin-aldosterone pathway. In the present review, the current knowledge on the relationship between the main epigenetic marks and AH will be presented, considering the challenge of epigenetic patterns being modifiable by environmental factors that may lead toward novel implications in AH preventive and therapeutic strategies.
Collapse
|
44
|
Geurts AM, Mattson DL, Liu P, Cabacungan E, Skelton MM, Kurth TM, Yang C, Endres BT, Klotz J, Liang M, Cowley AW. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Hypertension 2014; 65:447-55. [PMID: 25452472 DOI: 10.1161/hypertensionaha.114.04179] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats.
Collapse
Affiliation(s)
- Aron M Geurts
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee.
| | - David L Mattson
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Pengyuan Liu
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Erwin Cabacungan
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Meredith M Skelton
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Theresa M Kurth
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Chun Yang
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Bradley T Endres
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Jason Klotz
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- From the Departments of Physiology (A.M.G., D.L.M., P.L., M.M.S., T.M.K., C.Y., B.T.E., J.K., M.L., A.W.C.), Pediatrics (E.C.), and Cardiovascular Research Center (A.M.G.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
45
|
Kusche-Vihrog K, Schmitz B, Brand E. Salt controls endothelial and vascular phenotype. Pflugers Arch 2014; 467:499-512. [DOI: 10.1007/s00424-014-1657-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023]
|
46
|
Castrop H, Schießl IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 2014; 307:F991-F1002. [PMID: 25186299 DOI: 10.1152/ajprenal.00432.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Na-K-2Cl cotransporter (NKCC2; BSC1) is located in the apical membrane of the epithelial cells of the thick ascending limb of the loop of Henle (TAL). NKCC2 facilitates ∼20–25% of the reuptake of the total filtered NaCl load. NKCC2 is therefore one of the transport proteins with the highest overall reabsorptive capacity in the kidney. Consequently, even subtle changes in NKCC2 transport activity considerably alter the renal reabsorptive capacity for NaCl and eventually lead to perturbations of the salt and water homoeostasis. In addition to facilitating the bulk reabsorption of NaCl in the TAL, NKCC2 transport activity in the macula densa cells of the TAL constitutes the initial step of the tubular-vascular communication within the juxtaglomerular apparatus (JGA); this communications allows the TAL to modulate the preglomerular resistance of the afferent arteriole and the renin secretion from the granular cells of the JGA. This review provides an overview of our current knowledge with respect to the general functions of NKCC2, the modulation of its transport activity by different regulatory mechanisms, and new developments in the pathophysiology of NKCC2-dependent renal NaCl transport.
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
47
|
Han S, Uludag MO, Usanmaz SE, Ayaloglu-Butun F, Akcali KC, Demirel-Yilmaz E. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep 2014; 42:35-42. [DOI: 10.1007/s11033-014-3737-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/10/2014] [Indexed: 01/06/2023]
|
48
|
Luft FC. Preparation for hypertension specialists: genomics reveals the pathogenesis of hypertension. ACTA ACUST UNITED AC 2014; 8:607-11. [PMID: 25151324 DOI: 10.1016/j.jash.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Abstract
Hypertension has become a major global health burden due to its high prevalence and associated increase in risk of cardiovascular disease and premature death. It is well established that hypertension is determined by both genetic and environmental factors and their complex interactions. Recent large-scale meta-analyses of genome-wide association studies (GWAS) have successfully identified a total of 38 loci which achieved genome-wide significance (P < 5 × 10(-8)) for their association with blood pressure (BP). Although the heritability of BP explained by these loci is very limited, GWAS meta-analyses have elicited renewed optimism in hypertension genomics research, highlighting novel pathways influencing BP and elucidating genetic mechanisms underlying BP regulation. This review summarizes evolving progress in the rapidly moving field of hypertension genetics and highlights several promising approaches for dissecting the remaining heritability of BP. It also discusses the future translation of genetic findings to hypertension treatment and prevention.
Collapse
|
50
|
Hypertensive subjects with type-2 diabetes, the sympathetic nervous system, and treatment implications. Int J Cardiol 2014; 174:702-9. [DOI: 10.1016/j.ijcard.2014.04.204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 04/19/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022]
|