1
|
Wang T, Xiong T, Yang Y, Chen X, Ma Z, Zuo B, Ning D, Zhou B, Song R, Liu X, Wang D. Estradiol-mediated small GTP-binding protein GDP dissociation stimulator induction contributes to sex differences in resilience to ferroptosis in takotsubo syndrome. Redox Biol 2023; 68:102961. [PMID: 38007983 PMCID: PMC10719533 DOI: 10.1016/j.redox.2023.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Declining beneficial cardiovascular actions of estradiol (E2) have been associated with disproportionate susceptibility to takotsubo syndrome (TTS) in postmenopausal women. However, the underlying mechanisms between E2 and this marked disproportion remain unclear. SmgGDS (small GTP-binding protein GDP dissociation stimulator), as a key modulator of cardiovascular disease, plays protective roles in reducing oxidative stress and exerts pleiotropic effects of statins. Whether SmgGDS levels are influenced by E2 status and the effect of SmgGDS on sex differences in TTS are poorly understood. METHODS Clinical data were reviewed from TTS inpatients. Echocardiography, immunofluorescence, and immunohistochemistry were performed together with expression analysis to uncover phenotypic and mechanism changes in sex differences in TTS-like wild-type (WT) and SmgGDS± mice. HL-1 cardiomyocytes were used to further examine and validate molecular mechanisms. RESULTS In 14 TTS inpatients, TTS had a higher incidence in postmenopausal women as compared to premenopausal women and men. In murine TTS, female WT mice exhibited higher cardiac SmgGDS levels than male WT mice. Ovariectomy reduced SmgGDS expression in female WT mice similar to that observed in male mice, whereas E2 replacement in these ovariectomized (OVX) female mice reversed this effect. The physiological importance of this sex-specific E2-mediated SmgGDS response is underscored by the disparity in cardiac adaptation to isoproterenol (ISO) stimulation between both sexes of WT mice. E2-mediated SmgGDS induction conferred female protection against TTS-like acute cardiac injury involving ferritinophagy-mediated ferroptosis. No such cardioprotection was observed in male WT mice and OVX female. A causal role for SmgGDS in this sex-specific cardioprotective adaptation was indicated, inasmuch as SmgGDS deficiency abolished E2-modulated cardioprotection against ferritinophagy and aggravates TTS progression in both sexes. Consistently, knockdown of SmgGDS in HL-1 cardiomyocytes exacerbated ferroptosis in a ferritinophagy-dependent manner and abrogated the protective role of E2 against ferritinophagy. Mechanistically, our findings revealed that SmgGDS regulated E2-dependent cardioprotective effects via AMPK/mTOR signaling pathway. SmgGDS deficiency abolished E2-conferred protection against ferritinophagy through activating AMPK/mTOR pathway, while treatment with recombinant SmgGDS in HL-1 cells significantly mitigated this pathway-associated ferritinophagy activity. CONCLUSIONS These results demonstrate that SmgGDS is a central mediator of E2-conferred female cardioprotection against ferritinophagy-mediated ferroptosis in TTS.
Collapse
Affiliation(s)
- Ti Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China; Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA
| | - Ting Xiong
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxue Yang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Xiwei Chen
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Ziwei Ma
- Clinical Medical College, Dalian Medical University, Dalian, Liaoning, China
| | - Bangyun Zuo
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Dong Ning
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Beibei Zhou
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuesong Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China.
| |
Collapse
|
2
|
Yousefzadeh N, Jeddi S, Zarkesh M, Norouzirad R, Kashfi K, Ghasemi A. Protective effects of long-term nitrate administration against ovariectomy-induced kidney dysfunction in rats. Pharmacol Rep 2023:10.1007/s43440-023-00499-9. [PMID: 37258800 DOI: 10.1007/s43440-023-00499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Menopause is associated with higher risks of chronic kidney disease. We determined the effect of nitrate on ovariectomy-induced kidney dysfunction METHODS: Control, ovariectomized (OVX), control + nitrate, and OVX + nitrate female Wistar rats (n = 10/group); sodium nitrate (100 mg/L) administered in drinking water for 9 months. Glomerular filtration rate (GFR) and albumin excretion rate (AER) were calculated from serum and urine parameters. At month 9, serum and kidney levels of nitric oxide (NO) metabolites (NOx), oxidative stress indices, and mRNA expression of endothelial NO synthase (eNOS) were measured; with histological analyses of the kidney. RESULTS Compared to controls, OVX rats had lower GFR (31%, p = 0.0079), higher glomerular tuft volume (30%, p = 0.0402), and Bowman's capsule space (39%, p = 0.0224). OVX rats had lower serum NOx (33%, p = 0.0061) and kidney eNOS mRNA expression (34%, p = 0.0368). Nitrate administration to: (i) control rats increased serum NOx (59%, p < 0.0001), with no effect on other parameters; (ii) OVX rats increased serum (85%, p < 0.0001) and kidney (106%, p = 0.0008) NOx values, and restored kidney eNOS expression to normal value. Nitrate administration to OVX rats increased GFR (36%, p = 0.0361) and restored glomerular tuft volume and Bowman's capsule space to normal values. In OVX rats, it also increased serum catalase (CAT) activity, serum and kidney total antioxidant capacity (TAC), and decreased serum malondialdehyde (MDA). CONCLUSIONS Low-dose long-term nitrate administration protects against ovariectomy-induced kidney dysfunction in rats. This effect is associated with reducing ovariectomy-induced oxidative stress and restoring eNOS-derived NO deficiency in systemic circulation and the kidney.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- Department of Biochemistry, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, Newyork, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
McClung DM, Kalusche WJ, Jones KE, Ryan MJ, Taylor EB. Hypertension and endothelial dysfunction in the pristane model of systemic lupus erythematosus. Physiol Rep 2021; 9:e14734. [PMID: 33527772 PMCID: PMC7851437 DOI: 10.14814/phy2.14734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023] Open
Abstract
Autoimmune diseases such as psoriasis, rheumatoid arthritis, and systemic lupus erythematosus (SLE) have high rates of hypertension and cardiovascular disease. Systemic lupus erythematosus is a prototypic autoimmune disorder that primarily affects women of childbearing age and is associated with a loss of self-tolerance, autoreactive B and T lymphocytes, and the production of autoantibodies, especially to nuclear components. In this study, we hypothesized that the pristane-inducible model of SLE would develop hypertension and vascular dysfunction as the disease progressed. To test this hypothesis, female C57BL/6 mice were administered PBS or pristane. Seven months after pristane administration, mice developed various autoantibodies, including anti-dsDNA IgG, anti-ssDNA IgG, and anti-nRNP IgG, as well as hypergammaglobulinemia. Several other immunological changes, including increased circulating neutrophils and increased CD4- CD8- (double negative) thymocytes were also detected. Mean arterial pressure (MAP) was elevated in pristane-treated mice when compared to PBS-treated mice. In addition, second-order mesenteric arteries from pristine-treated mice had impaired relaxation to the endothelium-dependent vasodilator acetylcholine compared to PBS-treated mice. These data suggest that the immune system dysfunction present in the pristane model of lupus contributes to the development of hypertension and vascular dysfunction.
Collapse
Affiliation(s)
- Daniel M. McClung
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| | - William J. Kalusche
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Katie E. Jones
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Michael J. Ryan
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- G.V. (Sonny) Montgomery Veterans Affairs Medical CenterJacksonMSUSA
| | - Erin B. Taylor
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
4
|
Fu Y, Yuan PP, Cao YG, Ke YY, Zhang Q, Hou Y, Zhang YL, Feng WS, Zheng XK. Geniposide in Gardenia jasminoides var. radicans Makino modulates blood pressure via inhibiting WNK pathway mediated by the estrogen receptors. J Pharm Pharmacol 2020; 72:1956-1969. [DOI: 10.1111/jphp.13361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Abstract
Objectives
To investigate the effects of geniposide in an iridoid found in Gardenia jasminoides var. radicans Makino (GJRM) in spontaneous hypertensive rat (SHR) and explore the possible mechanisms.
Methods
In this study, we detected the content of geniposide in GJRM by high-performance liquid chromatography (HPLC). Then, we used acute diuretic experiments to determine whether geniposide has diuretic effect. Moreover, we carried out experiments on SHR to further study the mechanism of hypertension, while real-time PCR, Western blot and immunohistochemistry were used for the experiments in vivo test. Hypotonic model was used for in vitro test.
Key findings
Our data showed that the content of geniposide in the extract of GJRM is 27.54%. Meanwhile, 50 mg/kg geniposide showed the strongest effect on promoting urine volume. Further study indicated that the extract of GJRM and geniposide could significantly reduce blood pressure and promote the excretion of urine and Na+ in SHR. In addition, geniposide significantly inhibited the activation of the with-no-lysine kinase (WNK) signalling pathway and significantly increases the protein expressions of estrogen receptor α (ERα), estrogen receptor β (ERβ) and G protein-coupled receptor 30 (GPR30) in SHR. In hypotonic model, geniposide significantly inhibits the phosphorylation of NKCC and NCC and could be antagonistic to estrogen receptor antagonists.
Conclusions
Collectively, we would suggest that geniposide may potentially be utilized as an adjunct to existing thiazide and thiazide-like diuretics to control hypertension, mainly through inhibiting the activation of the WNK signalling pathway mediated by the estrogen receptor.
Collapse
Affiliation(s)
- Yang Fu
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Pei-pei Yuan
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Yan-gang Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Ying-ying Ke
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Qi Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Ying Hou
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Yan-li Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Wei-sheng Feng
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Xiao-ke Zheng
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Khan N. Possible protective role of 17β-estradiol against COVID-19. JOURNAL OF ALLERGY AND INFECTIOUS DISEASES 2020; 1:38-48. [PMID: 33196058 PMCID: PMC7665224 DOI: 10.46439/allergy.1.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19); a worldwide pandemic as declared by the World Health Organization (WHO). SARS-CoV-2 appears to infect cells by first binding and priming its viral-spike proteins with membrane-associated angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Through the coordinated actions of ACE2 and TMPRSS2, SARS-CoV-2 spike proteins fuse with plasma membranes and ultimately the virus enters cells. ACE2 is integral to the renin-angiotensin-aldosterone system (RAAS), and SARS-CoV-2 down-regulates protein expression levels of ACE2. Once infected, patients typically develop acute respiratory distress syndrome (ARDS) and a number of other severe complications that result in a high rate of fatality, especially in older (>60 years) adults and in people with pre-existing medical conditions. Data now indicate clearly that among people of all age groups, COVID-19 fatalities are higher in men than women. Here, attention is focused on these sex differences and posit a role of estrogen in these differences as well as possible therapeutic and protective actions of 17β-estradiol against COVID-19.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| |
Collapse
|
6
|
Wolf VL, Phillips TL, Taylor EB, Sasser JM, Ryan MJ. Human recombinant relaxin-2 does not attenuate hypertension or renal injury but exacerbates vascular dysfunction in a female mouse model of SLE. Am J Physiol Heart Circ Physiol 2019; 317:H234-H242. [PMID: 31125285 DOI: 10.1152/ajpheart.00174.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that disproportionately affects women of reproductive age and increases their risk for developing hypertension, vascular, and renal disease. Relaxin has potential beneficial therapeutic effects in cardiovascular disease through direct actions on the vasculature. The potential therapeutic benefit of relaxin on SLE-associated cardiovascular and renal risk factors like hypertension has not previously been tested. We hypothesized that relaxin would attenuate hypertension, renal injury, and vascular dysfunction in an established female mouse model of SLE (NZBWF1 mice). Serelaxin (human recombinant relaxin-2, 0.5 mg·kg-1·day-1) or vehicle was administered via osmotic mini-pump for 4 wk in female control (NZW) or SLE mice between 28 and 31 wk of age. Serelaxin treatment increased uterine weights in both groups, suggesting that the Serelaxin was bioactive. Mean arterial pressure, measured by carotid artery catheter, was significantly increased in vehicle-treated SLE mice compared with vehicle-treated controls, but was not changed by Serelaxin treatment. Albumin excretion rate, measured by ELISA, was similar between vehicle- and Serelaxin-treated SLE mice and between vehicle- and Serelaxin-treated control mice. Wire myography was performed using isolated carotid arteries to assess endothelial-independent and -dependent vasodilation, and data confirm that SLE mice have impaired endothelium-independent and -dependent relaxation compared with control mice. Serelaxin treatment did not affect endothelium-independent vasodilation, but exacerbated the endothelium-dependent dysfunction. These data suggest that, contrary to our hypothesis, Serelaxin infusion does not attenuate hypertension, renal injury, or vascular dysfunction in SLE, but worsens underlying vascular endothelial dysfunction in this experimental model of SLE. These data do not support the use of human recombinant relaxin-2 as an antihypertensive in the SLE patient population. NEW & NOTEWORTHY Relaxin is a peptide hormone commonly known for its role in pregnancy and for its use in recent clinical trials for the treatment of heart failure. Evidence suggests that relaxin has immunomodulatory effects; however, the potential therapeutic impact of relaxin in chronic immune mediated disease is unclear. This study tests whether recombinant human relaxin (Serelaxin) attenuates the progression of autoimmunity, and the associated cardiovascular consequences, in an experimental model of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Victoria L Wolf
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Taylor L Phillips
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,GV (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| |
Collapse
|
7
|
Wolf VL, Taylor EB, Ryan MJ. Cyclophosphamide treatment for hypertension and renal injury in an experimental model of systemic lupus erythematosus. Physiol Rep 2019; 7:e14059. [PMID: 31124322 PMCID: PMC6533177 DOI: 10.14814/phy2.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease is the major cause of mortality among patients with the autoimmune disorder systemic lupus erythematosus (SLE). Our laboratory previously reported that immunosuppression with mycophenolate mofetil, a common therapy in patients with SLE, attenuates the development of hypertension in an experimental model of SLE. Cyclophosphamide (CYC) is another common therapy for patients with SLE that has contributed to improved disease management; however, its impact on the development of hypertension associated with SLE is not clear. We tested whether treatment with CYC (25 mg/kg, once/week, IP injection) for 4 weeks would attenuate hypertension in an established female mouse model of SLE with hypertension (30-week-old NZBWF1 females). Plasma anti-dsDNA IgG levels, pathogenic for the disease, were lower in CYC-treated SLE mice compared to vehicle-treated SLE mice, suggesting efficacy of the therapy to suppress aberrant immune system function. Mean arterial pressure (MAP) was assessed by carotid artery catheters in conscious mice. Treatment did not attenuate the development of hypertension when compared to vehicle-treated SLE mice; however, urinary albumin excretion was lower in CYC-treated animals. Corresponding with the reduction in autoantibodies, data suggest that CYC treatment lowered circulating CD45R+ B cells. Paradoxically, circulating CD11b+ Ly6G+ neutrophils were increased in CYC-treated SLE mice compared to vehicle treated. Estrus cycling data also suggest that CYC treatment had an impact on ovarian function that may be consistent with reduced circulating estrogen levels. Taken together, these data suggest that CYC treatment attenuates autoantibody production and renal disease during SLE, but that the potential to affect MAP may be blunted by the increase in circulating neutrophils and CYC's impact on ovarian function.
Collapse
Affiliation(s)
- Victoria L. Wolf
- Department of Physiology & BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Erin B. Taylor
- Department of Physiology & BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Michael J. Ryan
- Department of Physiology & BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- G.V. (Sonny) Montgomery Veterans Affairs Medical CenterJacksonMississippiUSA
| |
Collapse
|
8
|
Taylor EB, Wolf VL, Dent E, Ryan MJ. Mechanisms of hypertension in autoimmune rheumatic diseases. Br J Pharmacol 2019; 176:1897-1913. [PMID: 30714094 PMCID: PMC6534791 DOI: 10.1111/bph.14604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with autoimmune rheumatic diseases including rheumatoid arthritis and systemic lupus erythematosus have an increased prevalence of hypertension. There is now a large body of evidence showing that the immune system is a key mediator in both human primary hypertension and experimental models. Many of the proposed immunological mechanisms leading to primary hypertension are paralleled in autoimmune rheumatic disorders. Therefore, examining the link between autoimmunity and hypertension can be informative for understanding primary hypertension. This review examines the prevalent hypertension, the immune mediators that contribute to the prevalent hypertension and their impact on renal function and how the risk of hypertension is potentially influenced by common hormonal changes that are associated with autoimmune rheumatic diseases. Linked Articles This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Victoria L Wolf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Elena Dent
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.,G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
9
|
Abstract
Purpose of Review To highlight important new findings on the topic of autoimmune disease-associated hypertension. Recent Findings Autoimmune diseases including systemic lupus erythematosus and rheumatoid arthritis are associated with an increased risk for hypertension and cardiovascular disease. A complex interaction among genetic, environmental, hormonal, and metabolic factors contribute to autoimmune disease susceptibility while promoting chronic inflammation that can lead to alterations in blood pressure. Recent studies emphasize an important mechanistic role for autoantibodies in autoimmune disease-associated hypertension. Moving forward, understanding how sex hormones, neutrophils, and mitochondrial dysfunction contribute to hypertension in autoimmune disease will be important. Summary This review examines the prevalent hypertension in autoimmune disease with a focus on the impact of immune system dysfunction on vascular dysfunction and renal hemodynamics as primary mediators with oxidative stress as a main contributor.
Collapse
|
10
|
do Carmo JM, da Silva AA, Moak SP, Browning JR, Dai X, Hall JE. Increased sleep time and reduced energy expenditure contribute to obesity after ovariectomy and a high fat diet. Life Sci 2018; 212:119-128. [PMID: 30273560 PMCID: PMC6240909 DOI: 10.1016/j.lfs.2018.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
In this study we examined if sleep time, caloric intake and energy expenditure are important contributors to development of ovariectomy-induced obesity in mice fed control or high fat diet (HFD). Twelve female mice at 6 weeks of age were divided into 2 groups: Sham (n = 5) and ovariectomized (OVX, n = 7). Mice were fed control diet for 9 weeks and shifted to HFD for additional 9 weeks. Food intake and body weight were measured daily and body composition was measured weekly by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), motor activity (MA) and sleep time were monitored at week 9 during control diet and HFD. OVX did not alter caloric intake, body weight or body composition, MA, sleep time or fasting blood glucose, but slightly reduced EE compared to Sham mice on control diet. After HFD feeding, OXV mice had similar caloric intake, lean mass, MA, and blood glucose levels but had significantly greater weight gain (8.2 ± 1.0 vs. 4.8 ± 1.2 g, p < 0.05), increased fat mass and sleep time, and reduced EE (3.3 ± 0.4 vs. 5.5 ± 0.2 kcal/h) and VO2 (1.12 ± 0.01 vs. 1.83 ± 0.05 ml/min) compared to Sham group. Daytime blood pressure was higher while nighttime heart rate was lower in OVX group. These results suggest that OVX may not substantially alter body weight or body composition in mice fed a normal diet, but when combined with HFD it increases sleep time and reduces EE, leading to greater weight gain and adiposity without altering food intake.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America.
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Sydney P Moak
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Jackson R Browning
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Xuemei Dai
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| |
Collapse
|
11
|
Pham GS, Wang LA, Mathis KW. Pharmacological potentiation of the efferent vagus nerve attenuates blood pressure and renal injury in a murine model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1261-R1271. [PMID: 30332305 DOI: 10.1152/ajpregu.00362.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent evidence suggests hypertension may be secondary to chronic inflammation that results from hypoactive neuro-immune regulatory mechanisms. To further understand this association, we used systemic lupus erythematosus (SLE) as a model of inflammation-induced hypertension. In addition to prevalent inflammatory kidney disease and hypertension, SLE patients suffer from dysautonomia in the form of decreased efferent vagal tone. Based on this, the cholinergic anti-inflammatory pathway, an endogenous vagus-to-spleen mechanism that, when activated results in decreases in systemic inflammation, may be compromised in SLE. We hypothesized that stimulation of the cholinergic anti-inflammatory pathway via pharmacological potentiation of the efferent vagus nerve would reduce inflammation and halt the development of hypertension and renal injury in SLE. Female NZBWF1 mice, an established model of murine SLE, and female control mice were treated with galantamine (4 mg/kg daily ip), an acetylcholinesterase inhibitor, or saline for 14 days. At the end of therapy, carotid catheters were surgically implanted and were used to measure mean arterial pressure before the animals were euthanized. Chronic galantamine administration attenuated both splenic and renal cortical inflammation, which likely explains why the hypertension and renal injury (i.e., glomerulosclerosis and fibrosis) typically observed in murine SLE was attenuated following therapy. Based on this, the anti-inflammatory, antihypertensive, and renoprotective effects of galantamine may be mediated through activation of the cholinergic anti-inflammatory pathway. It is possible that dysfunction of the cholinergic anti-inflammatory pathway exists in SLE at the level of the efferent vagus nerve and promoting restoration of its activity through central cholinergic receptor activation may be beneficial.
Collapse
Affiliation(s)
- Grace S Pham
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Lei A Wang
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
12
|
Small HY, Migliarino S, Czesnikiewicz-Guzik M, Guzik TJ. Hypertension: Focus on autoimmunity and oxidative stress. Free Radic Biol Med 2018; 125:104-115. [PMID: 29857140 DOI: 10.1016/j.freeradbiomed.2018.05.085] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
Understanding the causal role of the immune and inflammatory responses in hypertension has led to questions regarding the links between hypertension and autoimmunity. Immune pathology in primary hypertension mimics several autoimmune mechanisms observed in the pathogenesis of systemic lupus erythematosus, psoriasis, systemic sclerosis, rheumatoid arthritis and periodontitis. More importantly, the prevalence of hypertension in patients with these autoimmune diseases is significantly increased, when compared to control populations. Clinical and epidemiological evidence is reviewed along with possible mechanisms linking hypertension and autoimmunity. Inflammation and oxidative stress are linked in a self-perpetuating cycle that significantly contributes to the vascular dysfunction and renal damage associated with hypertension. T cell, B cell, macrophage and NK cell infiltration into these organs is essential for this pathology. Effector cytokines such as IFN-γ, TNF-α and IL-17 affect Na+/H+ exchangers in the kidney. In blood vessels, they lead to endothelial dysfunction and loss of nitric oxide bioavailability and cause vasoconstriction. Both renal and vascular effects are, in part, mediated through induction of reactive oxygen species-producing enzymes such as superoxide anion generating NADPH oxidases and dysfunction of anti-oxidant systems. These mechanisms have recently become important therapeutic targets of novel therapies focused on scavenging oxidative (isolevuglandin) modification of neo-antigenic peptides. Effects of classical immune targeted therapies focused on immunosuppression and anti-cytokine treatments are also reviewed.
Collapse
Affiliation(s)
- Heather Y Small
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Serena Migliarino
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Marta Czesnikiewicz-Guzik
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Dental Prophylaxis and Experimental Dentistry, Dental School of Jagiellonian University, Krakow, Poland
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland.
| |
Collapse
|
13
|
Mathis KW, Taylor EB, Ryan MJ. Anti-CD3 antibody therapy attenuates the progression of hypertension in female mice with systemic lupus erythematosus. Pharmacol Res 2017; 120:252-257. [PMID: 28400152 DOI: 10.1016/j.phrs.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disorder with prevalent hypertension that significantly contributes to the mortality in this patient population. Pre-clinical and clinical evidence suggests that anti-CD3 antibody therapy may attenuate the development of autoimmune diseases like SLE. However, it is unclear whether this treatment impacts the development of the prevalent hypertension associated with SLE. The present study was designed to determine whether anti-CD3 antibody treatment attenuates the progression of hypertension in female SLE mice with already established renal disease (albuminuria ≥100mg/dL). Female SLE (NZBWF1) and control (NZW) mice were administered either an antibody to CD3ε, a component of the T cell receptor complex expressed on all T cells, or IgG antibody (isotype control) for up to 4 weeks (intranasal; 25μg/week). Spleen weight was lower in SLE mice treated with anti-CD3 antibody than in IgG-treated SLE mice, suggesting that immune system hyperactivity is decreased. Circulating anti-dsDNA autoantibodies were increased in SLE mice compared to controls and were blunted in the anti-CD3-treated SLE mice. The development of hypertension was attenuated in anti-CD3 treated mice with SLE independently of changes in renal injury (assessed by urinary albumin). These data suggest anti-CD3 therapy during autoimmune disease may have added clinical benefit to attenuate cardiovascular risk factors like hypertension.
Collapse
Affiliation(s)
- Keisa W Mathis
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
14
|
Taylor EB, Ryan MJ. Immunosuppression With Mycophenolate Mofetil Attenuates Hypertension in an Experimental Model of Autoimmune Disease. J Am Heart Assoc 2017; 6:JAHA.116.005394. [PMID: 28242635 PMCID: PMC5524041 DOI: 10.1161/jaha.116.005394] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that predominantly affects women and is associated with prevalent hypertension, renal injury, and cardiovascular disease. Immune system dysfunction is recognized as an important factor in the pathogenesis of hypertension. We recently showed that preventing autoimmunity prevents the development of hypertension in an experimental model of SLE (female NZBWF1 mice). The present study tests the hypothesis that mycophenolate mofetil (MMF), an immunosuppressive therapy used clinically to treat SLE by depleting proliferating B and T lymphocytes, can improve blood pressure control. Methods and Results Female SLE and control (NZW/LacJ) mice were treated daily for 8 weeks with 60 mg/kg MMF. Circulating CD45R+ B cells were lower in MMF‐treated SLE mice after 4 weeks of treatment, but neither CD4+ nor CD8+ T cells were reduced by MMF. Plasma anti–double‐stranded DNA IgG autoantibodies, a marker of SLE disease activity, were higher in SLE mice compared with controls and were lower in SLE mice after 8 weeks of MMF. Mean arterial pressure was elevated in SLE mice compared with controls and lower in SLE mice treated with MMF compared with vehicle‐treated SLE mice. MMF also reduced both renal injury (urinary albumin excretion and glomerulosclerosis) and the infiltration of CD45R+ B cells and CD3+CD4+ T cells in kidneys from mice with SLE. Conclusions These data suggest that MMF selectively depleted CD45R+ B cells and lowered subsequent autoantibody production, furthering the concept that autoantibodies mechanistically contribute to the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
15
|
Xue L, Liu Z, Hu J, Huang J, Wen J, Liu Z. Estrogen-induced expression of tumor necrosis factor-like weak inducer of apoptosis through ERα accelerates the progression of lupus nephritis. Rheumatology (Oxford) 2016; 55:1880-8. [PMID: 27354685 DOI: 10.1093/rheumatology/kew248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Oestrogens have been shown to play key roles in the pathogenesis of SLE. The aim of this study was to investigate the roles and mechanisms of 17β-estradiol (E2) in TNF-like weak inducer of apoptosis (TWEAK) expression in LN. METHODS Peripheral blood mononuclear cells (PBMCs) obtained from LN patients were used for in vitro experiments, while female MRL/lpr and MRL/MpJ mice were used for in vivo studies. E2, ICI 182 780 [estrogen receptor (ER)-selective antagonist], methyl-piperidino-pyrazole (MPP, ERα-selective modulator), lentivirus (LV)-TWEAK-short hairpin RNA (shRNA) and LV-control-shRNA treatments were used in this study. RESULTS TWEAK mRNA expression in PBMCs was significantly increased following E2 treatment and downregulated after incubation with ICI 182 780 or MPP. Compared with sham-operated MRL/lpr mice, ovariectomized mice, treated with dimethyl sulphoxide vehicle alone, showed lower expression levels of renal TWEAK mRNA and protein. The expression of both mRNA and protein in ovariectomized mice was upregulated after E2 treatment and downregulated after ICI 182 780 or MPP co-treatment. Severe renal damage was observed in E2-treated ovariectomized mice, as were higher serum levels of IL-6, compared with dimethyl sulphoxide vehicle-treated ovariectomized mice. Co-treatment with LV-TWEAK-shRNA reversed these changes, and LV-control-shRNA treatment had no effect on them. CONCLUSION Our results demonstrated that E2 plays an important role in the upregulation of TWEAK expression in LN, most likely through an ERα-dependent pathway, causing kidney damage. This provides a novel insight into the mechanisms of the E2-TWEAK signalling pathway in LN.
Collapse
Affiliation(s)
- Leixi Xue
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Soochow University, Suzhou
| | - Zhiqin Liu
- Department of Biological Science & Engineering, Hebei University of Science & Technology, Hebei, China
| | - Ji Hu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Soochow University, Suzhou
| | - Jun Huang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Soochow University, Suzhou
| | - Jian Wen
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Soochow University, Suzhou
| | - Zhichun Liu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Soochow University, Suzhou
| |
Collapse
|
16
|
Taylor EB, Ryan MJ. Understanding mechanisms of hypertension in systemic lupus erythematosus. Ther Adv Cardiovasc Dis 2016; 11:1753944716637807. [PMID: 26985016 PMCID: PMC5065379 DOI: 10.1177/1753944716637807] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that predominately affects women of reproductive age. Hypertension is an important cardiovascular risk factor that is prevalent in this patient population. Despite the high incidence of hypertension in women with SLE, the pathophysiological mechanisms underlying the development of hypertension remain poorly understood. This review will focus on disease-related factors, including inflammation, autoantibodies, and sex hormones that may contribute to hypertension in patients with SLE. In addition, we will highlight studies performed by our laboratory using the female NZBWF1 (F1 hybrid of New Zealand Black and New Zealand White strains) mouse model, a spontaneous model of SLE that mimics human disease and develops hypertension and renal injury. Specifically, using female NZBWF1 mice, we have demonstrated that multiple factors contribute to the pathogenesis of hypertension, including the inflammatory cytokine, tumor necrosis factor (TNF)-α, oxidative stress, as well as B-cell hyperactivity and autoantibody production.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
17
|
Zickenrott S, Angarica VE, Upadhyaya BB, del Sol A. Prediction of disease-gene-drug relationships following a differential network analysis. Cell Death Dis 2016; 7:e2040. [PMID: 26775695 PMCID: PMC4816176 DOI: 10.1038/cddis.2015.393] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/21/2022]
Abstract
Great efforts are being devoted to get a deeper understanding of disease-related dysregulations, which is central for introducing novel and more effective therapeutics in the clinics. However, most human diseases are highly multifactorial at the molecular level, involving dysregulation of multiple genes and interactions in gene regulatory networks. This issue hinders the elucidation of disease mechanism, including the identification of disease-causing genes and regulatory interactions. Most of current network-based approaches for the study of disease mechanisms do not take into account significant differences in gene regulatory network topology between healthy and disease phenotypes. Moreover, these approaches are not able to efficiently guide database search for connections between drugs, genes and diseases. We propose a differential network-based methodology for identifying candidate target genes and chemical compounds for reverting disease phenotypes. Our method relies on transcriptomics data to reconstruct gene regulatory networks corresponding to healthy and disease states separately. Further, it identifies candidate genes essential for triggering the reversion of the disease phenotype based on network stability determinants underlying differential gene expression. In addition, our method selects and ranks chemical compounds targeting these genes, which could be used as therapeutic interventions for complex diseases.
Collapse
Affiliation(s)
- S Zickenrott
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxemboug, 6, Avenue du Swing, Belvaux 4367, Luxembourg
| | - V E Angarica
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxemboug, 6, Avenue du Swing, Belvaux 4367, Luxembourg
| | - B B Upadhyaya
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxemboug, 6, Avenue du Swing, Belvaux 4367, Luxembourg
| | - A del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxemboug, 6, Avenue du Swing, Belvaux 4367, Luxembourg
| |
Collapse
|
18
|
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- From the Department of Nephrology, Hospital Universitario and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela.
| |
Collapse
|
19
|
Mak A, Tay SH. Environmental factors, toxicants and systemic lupus erythematosus. Int J Mol Sci 2014; 15:16043-56. [PMID: 25216337 PMCID: PMC4200809 DOI: 10.3390/ijms150916043] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/01/2014] [Accepted: 08/27/2014] [Indexed: 01/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an immune-complex-mediated multi-systemic autoimmune condition of multifactorial etiology, which mainly affects young women. It is currently believed that the onset of SLE and lupus flares are triggered by various environmental factors in genetically susceptible individuals. Various environmental agents and toxicants, such as cigarette smoke, alcohol, occupationally- and non-occupationally-related chemicals, ultraviolet light, infections, sex hormones and certain medications and vaccines, have been implicated to induce SLE onset or flares in a number case series, case-control and population-based cohort studies and very few randomized controlled trials. Here, we will describe some of these recognized environmental lupus triggering and perpetuating factors and explain how these factors potentially bias the immune system towards autoimmunity through their interactions with genetic and epigenetic alterations. Further in-depth exploration of how potentially important environmental factors mechanistically interact with the immune system and the genome, which trigger the onset of SLE and lupus flares, will certainly be one of the plausible steps to prevent the onset and to decelerate the progress of the disease.
Collapse
Affiliation(s)
- Anselm Mak
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block 119228, Singapore.
| | - Sen Hee Tay
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block 119228, Singapore.
| |
Collapse
|
20
|
Gilbert EL, Ryan MJ. Estrogen in cardiovascular disease during systemic lupus erythematosus. Clin Ther 2014; 36:1901-1912. [PMID: 25194860 DOI: 10.1016/j.clinthera.2014.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/11/2023]
Abstract
PURPOSE Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that disproportionately affects women during their childbearing years. Cardiovascular disease is the leading cause of mortality in this patient population at an age when women often have low cardiovascular risk. Hypertension is a major cardiovascular disease risk factor, and its prevalence is markedly increased in women with SLE. Estrogen has traditionally been implicated in SLE disease progression because of the prevalence of the disease in women; however, its role in cardiovascular risk factors such as hypertension is unclear. The objective of this review is to discuss evidence for the role of estrogen in both human and murine SLE with emphasis on the effect of estrogen on cardiovascular risk factors, including hypertension. METHODS PubMed was used to search for articles with terms related to estradiol and SLE. The references of retrieved publications were also reviewed. FINDINGS The potential permissive role of estrogen in SLE development is supported by studies from experimental animal models of lupus in which early removal of estrogen or its effects leads to attenuation of SLE disease parameters, including autoantibody production and renal injury. However, data about the role of estrogens in human SLE are much less clear, with most studies not reaching firm conclusions about positive or negative outcomes after hormonal manipulations involving estrogen during SLE (ie, oral contraceptives, hormone therapy). Significant gaps in knowledge remain about the effect of estrogen on cardiovascular risk factors during SLE. Studies in women with SLE were not designed to determine the effect of estrogen or hormone therapy on blood pressure even though hypertension is highly prevalent, and risk of premature ovarian failure could necessitate use of hormone therapy in women with SLE. Recent evidence from an experimental animal model of lupus found that estrogen may protect against cardiovascular risk factors in adulthood. In addition, increasing evidence suggests that estrogen may have distinct temporal effects on cardiovascular risk factors during SLE. IMPLICATIONS Data from experimental models of lupus suggest that estrogens may have an important permissive role for developing SLE early in life. However, their role in adulthood remains unclear, particularly for the effect on cardiovascular disease and its risk factors. Additional work is needed to understand the effect of estrogens in human SLE, and preclinical studies in experimental models of SLE may contribute important mechanistic insight to further advance the field.
Collapse
Affiliation(s)
- Emily L Gilbert
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.
| |
Collapse
|
21
|
Gilbert EL, Ryan MJ. Impact of early life ovariectomy on blood pressure and body composition in a female mouse model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol 2014; 307:R990-7. [PMID: 25324553 DOI: 10.1152/ajpregu.00038.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because of the preponderance of women affected by the chronic autoimmune disease systemic lupus erythematosus (SLE), estrogen is thought to contribute to SLE disease progression. This is supported by evidence from experimental animal models of SLE showing that removal of estrogen in young female mice delays autoantibody production and renal injury and lengthens survival. Blood pressure and changes in body composition are important cardiovascular risk factors that can be regulated by estrogens. Because cardiovascular disease is the leading cause of death in patients with SLE, we used an established female mouse model of SLE (NZBWF1) to test whether early life removal of estrogen impacts the development of hypertension and changes in body composition commonly associated with SLE. Eight-week-old female SLE and control mice (NZW/LacJ) underwent either a sham operation or ovariectomy. Body weight, body composition (fat and lean masses), and renal injury (albuminuria) were monitored until mice reached 34 wk of age, at which time mean arterial pressure was assessed in conscious animals by a carotid catheter. Early life removal of the ovaries delayed the onset of autoantibody production and albuminuria while causing an increase in body weight and fat mass. Blood pressure in the adult was not altered by early life removal of the ovaries. These data suggest that estrogens may have a permissive role for the development of SLE while helping to maintain normal body weight and composition, which is associated with reduced cardiovascular risk.
Collapse
Affiliation(s)
- Emily L Gilbert
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
22
|
Mathis KW, Wallace K, Flynn ER, Maric-Bilkan C, LaMarca B, Ryan MJ. Preventing autoimmunity protects against the development of hypertension and renal injury. Hypertension 2014; 64:792-800. [PMID: 25024282 DOI: 10.1161/hypertensionaha.114.04006] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several studies suggest a link between autoimmunity and essential hypertension in humans. However, whether autoimmunity can drive the development of hypertension remains unclear. The autoimmune disease systemic lupus erythematosus is characterized by autoantibody production, and the prevalence of hypertension is increased markedly in this patient population compared with normal healthy women. We hypothesized that preventing the development of autoimmunity would prevent the development of hypertension in a mouse model of lupus. Female lupus (NZBWF1) and control mice (NZW) were treated weekly with anti-CD20 or immunoglobulin G antibodies (both 10 mg/kg, IV) starting at 20 weeks of age for 14 weeks. Anti-CD20 therapy markedly attenuated lupus disease progression as evidenced by reduced CD45R+ B cells and lower double-stranded DNA autoantibody activity. In addition, renal injury in the form of urinary albumin, glomerulosclerosis, and tubulointerstitial fibrosis, as well as tubular injury (indicated by renal cortical expression of neutrophil gelatinase-associated lipocalin) was prevented by anti-CD20 therapy in lupus mice. Finally, lupus mice treated with anti-CD20 antibody did not develop hypertension. The protection against the development of hypertension was associated with lower renal cortical tumor necrosis factor-α expression, a cytokine that has been previously reported by us to contribute to the hypertension in this model, as well as renal cortical monocyte chemoattractant protein-1 expression and circulating T cells. These data suggest that the development of autoimmunity and the resultant increase in renal inflammation are an important underlying factor in the prevalent hypertension that occurs during systemic lupus erythematosus.
Collapse
Affiliation(s)
- Keisa W Mathis
- From the Departments of Physiology and Biophysics (K.W.M., E.R.F., C.M.-B., M.J.R.), Obstetrics and Gynecology (K.W.), and Pharmacology and Toxicology (B.L.), University of Mississippi Medical Center, Jackson
| | - Kedra Wallace
- From the Departments of Physiology and Biophysics (K.W.M., E.R.F., C.M.-B., M.J.R.), Obstetrics and Gynecology (K.W.), and Pharmacology and Toxicology (B.L.), University of Mississippi Medical Center, Jackson
| | - Elizabeth R Flynn
- From the Departments of Physiology and Biophysics (K.W.M., E.R.F., C.M.-B., M.J.R.), Obstetrics and Gynecology (K.W.), and Pharmacology and Toxicology (B.L.), University of Mississippi Medical Center, Jackson
| | - Christine Maric-Bilkan
- From the Departments of Physiology and Biophysics (K.W.M., E.R.F., C.M.-B., M.J.R.), Obstetrics and Gynecology (K.W.), and Pharmacology and Toxicology (B.L.), University of Mississippi Medical Center, Jackson
| | - Babbette LaMarca
- From the Departments of Physiology and Biophysics (K.W.M., E.R.F., C.M.-B., M.J.R.), Obstetrics and Gynecology (K.W.), and Pharmacology and Toxicology (B.L.), University of Mississippi Medical Center, Jackson
| | - Michael J Ryan
- From the Departments of Physiology and Biophysics (K.W.M., E.R.F., C.M.-B., M.J.R.), Obstetrics and Gynecology (K.W.), and Pharmacology and Toxicology (B.L.), University of Mississippi Medical Center, Jackson.
| |
Collapse
|
23
|
Affiliation(s)
- Olga Rafikova
- Department of Medicine, Georgia Regents University, 1459 Laney Walker Blvd CB-2200, Augusta, GA 30912.
| | | |
Collapse
|