1
|
Medrano S, Yamaguchi M, Almeida LFD, Smith JP, Yamaguchi H, Sigmund CD, Sequeira-Lopez MLS, Gomez RA. An efficient inducible model for the control of gene expression in renin cells. Am J Physiol Renal Physiol 2024; 327:F489-F503. [PMID: 38991008 PMCID: PMC11460331 DOI: 10.1152/ajprenal.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Fate mapping and genetic manipulation of renin cells have relied on either noninducible Cre lines that can introduce the developmental effects of gene deletion or bacterial artificial chromosome transgene-based inducible models that may be prone to spurious and/or ectopic gene expression. To circumvent these problems, we generated an inducible mouse model in which CreERT2 is under the control of the endogenous Akr1b7 gene, an independent marker of renin cells that is expressed in a few extrarenal tissues. We confirmed the proper expression of Cre using Akr1b7CreERT2/+;R26RmTmG/+ mice in which Akr1b7+/renin+ cells become green fluorescent protein (GFP)+ upon tamoxifen administration. In embryos and neonates, GFP was found in juxtaglomerular cells, along the arterioles, and in the mesangium, and in adults, GFP was present mainly in juxtaglomerular cells. In mice treated with captopril and a low-salt diet to induce recruitment of renin cells, GFP extended along the afferent arterioles and in the mesangium. We generated Akr1b7CreERT2/+;Ren1cFl/-;R26RmTmG/+ mice to conditionally delete renin in adult mice and found a marked reduction in kidney renin mRNA and protein and mean arterial pressure in mutant animals. When subjected to a homeostatic threat, mutant mice were unable to recruit renin+ cells. Most importantly, these mice developed concentric vascular hypertrophy ruling out potential developmental effects on the vasculature due to the lack of renin. We conclude that Akr1b7CreERT2 mice constitute an excellent model for the fate mapping of renin cells and for the spatial and temporal control of gene expression in renin cells.NEW & NOTEWORTHY Fate mapping and genetic manipulation are important tools to study the identity of renin cells. Here, we report on a novel Cre mouse model, Akr1b7CreERT2, for the spatial and temporal regulation of gene expression in renin cells. Cre is properly expressed in renin cells during development and in the adult under basal conditions and under physiological stress. Moreover, renin can be efficiently deleted in the adult, leading to the development of concentric vascular hypertrophy.
Collapse
Affiliation(s)
- Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Manako Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Lucas Ferreira de Almeida
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Jason P Smith
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Hiroki Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Maria Luisa S Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, United States
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States
| | - R Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, United States
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
2
|
Xia Y, Coffman TM. Hold the salt for kidney regeneration. J Clin Invest 2024; 134:e181397. [PMID: 38828728 PMCID: PMC11142728 DOI: 10.1172/jci181397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
The macula densa (MD) is a distinct cluster of approximately 20 specialized kidney epithelial cells that constitute a key component of the juxtaglomerular apparatus. Unlike other renal tubular epithelial cell populations with functions relating to reclamation or secretion of electrolytes and solutes, the MD acts as a cell sensor, exerting homeostatic actions in response to sodium and chloride changes within the tubular fluid. Electrolyte flux through apical sodium transporters in MD cells triggers release of paracrine mediators, affecting blood pressure and glomerular hemodynamics. In this issue of the JCI, Gyarmati and authors explored a program of MD that resulted in activation of regeneration pathways. Notably, regeneration was triggered by feeding mice a low-salt diet. Furthermore, the MD cells showed neuron-like properties that may contribute to their regulation of glomerular structure and function. These findings suggest that dietary sodium restriction and/or targeting MD signaling might attenuate glomerular injury.
Collapse
Affiliation(s)
- Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Thomas M. Coffman
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
3
|
Daniel EA, Sommer NA, Sharma M. Polycystic kidneys: interaction of notch and renin. Clin Sci (Lond) 2023; 137:1145-1150. [PMID: 37553961 PMCID: PMC11132639 DOI: 10.1042/cs20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Polycystic kidney disease (PKD) is a developmental disorder, which either manifests in early childhood or later in life, depending on the genetic mutation one harbors. The mechanisms of cyst initiation are not well understood. Increasing literature is now suggesting that Notch signaling may play a critical role in PKD. Activation of Notch signaling is important during nephrogenesis and slows down after development. Deletion of various Notch molecules in the cap mesenchyme leads to formation of cysts and early death in mice. A new study by Belyea et al. has now found that cells of renin lineage may link Notch expression and cystic kidney disease. Here, we use our understanding of Notch signaling and PKD to speculate about the significance of these interactions.
Collapse
Affiliation(s)
- Emily A Daniel
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Nicole A Sommer
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| |
Collapse
|
4
|
Yamaguchi H, Gomez RA, Sequeira-Lopez MLS. Renin Cells, From Vascular Development to Blood Pressure Sensing. Hypertension 2023; 80:1580-1589. [PMID: 37313725 PMCID: PMC10526986 DOI: 10.1161/hypertensionaha.123.20577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During embryonic and neonatal life, renin cells contribute to the assembly and branching of the intrarenal arterial tree. During kidney arteriolar development renin cells are widely distributed throughout the renal vasculature. As the arterioles mature, renin cells differentiate into smooth muscle cells, pericytes, and mesangial cells. In adult life, renin cells are confined to the tips of the renal arterioles, thus their name juxtaglomerular cells. Juxtaglomerular cells are sensors that release renin to control blood pressure and fluid-electrolyte homeostasis. Three major mechanisms control renin release: (1) β-adrenergic stimulation, (2) macula densa signaling, and (3) the renin baroreceptor, whereby a decrease in arterial pressure leads to increased renin release whereas an increase in pressure results in decrease renin release. Cells from the renin lineage exhibit plasticity in response to hypotension or hypovolemia, whereas relentless, chronic stimulation induces concentric arterial and arteriolar hypertrophy, leading to focal renal ischemia. The renin cell baroreceptor is a nuclear mechanotransducer within the renin cell that transmits external forces to the chromatin to regulate Ren1 gene expression. In addition to mechanotransduction, the pressure sensor of the renin cell may enlist additional molecules and structures including soluble signals and membrane proteins such as gap junctions and ion channels. How these various components integrate their actions to deliver the exact amounts of renin to meet the organism needs is unknown. This review describes the nature and origins of renin cells, their role in kidney vascular development and arteriolar diseases, and the current understanding of the blood pressure sensing mechanism.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
5
|
Maggiore JC, LeGraw R, Przepiorski A, Velazquez J, Chaney C, Streeter E, Silva-Barbosa A, Franks J, Hislop J, Hill A, Wu H, Pfister K, Howden SE, Watkins SC, Little M, Humphreys BD, Watson A, Stolz DB, Kiani S, Davidson AJ, Carroll TJ, Cleaver O, Sims-Lucas S, Ebrahimkhani MR, Hukriede NA. Genetically engineering endothelial niche in human kidney organoids enables multilineage maturation, vascularization and de novo cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542848. [PMID: 37333155 PMCID: PMC10274893 DOI: 10.1101/2023.05.30.542848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Vascularization plays a critical role in organ maturation and cell type development. Drug discovery, organ mimicry, and ultimately transplantation in a clinical setting thereby hinges on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcome this hurdle by combining an inducible ETS translocation variant 2 (ETV2) human induced pluripotent stem cell (iPSC) line, which directs endothelial fate, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive vascularization by endothelial cells with an identity most closely related to endogenous kidney endothelia. Vascularized organoids also show increased maturation of nephron structures including more mature podocytes with improved marker expression, foot process interdigitation, an associated fenestrated endothelium, and the presence of renin+ cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Furthermore, this approach is orthogonal to native tissue differentiation paths, hence readily adaptable to other organoid systems and thus has the potential for a broad impact on basic and translational organoid studies.
Collapse
Affiliation(s)
- Joseph C Maggiore
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Aneta Przepiorski
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christopher Chaney
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan Streeter
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Anne Silva-Barbosa
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Hislop
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alex Hill
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
| | - Katherine Pfister
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melissa Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
| | - Alan Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| | - Thomas J Carroll
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sunder Sims-Lucas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Neil A Hukriede
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| |
Collapse
|
6
|
Broeker KAE, Schrankl J, Fuchs MAA, Kurtz A. Flexible and multifaceted: the plasticity of renin-expressing cells. Pflugers Arch 2022; 474:799-812. [PMID: 35511367 PMCID: PMC9338909 DOI: 10.1007/s00424-022-02694-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
The protease renin, the key enzyme of the renin–angiotensin–aldosterone system, is mainly produced and secreted by juxtaglomerular cells in the kidney, which are located in the walls of the afferent arterioles at their entrance into the glomeruli. When the body’s demand for renin rises, the renin production capacity of the kidneys commonly increases by induction of renin expression in vascular smooth muscle cells and in extraglomerular mesangial cells. These cells undergo a reversible metaplastic cellular transformation in order to produce renin. Juxtaglomerular cells of the renin lineage have also been described to migrate into the glomerulus and differentiate into podocytes, epithelial cells or mesangial cells to restore damaged cells in states of glomerular disease. More recently, it could be shown that renin cells can also undergo an endocrine and metaplastic switch to erythropoietin-producing cells. This review aims to describe the high degree of plasticity of renin-producing cells of the kidneys and to analyze the underlying mechanisms.
Collapse
Affiliation(s)
- Katharina A E Broeker
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany.
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| | - Michaela A A Fuchs
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| |
Collapse
|
7
|
Watanabe H, Martini AG, Brown EA, Liang X, Medrano S, Goto S, Narita I, Arend LJ, Sequeira-Lopez MLS, Gomez RA. Inhibition of the renin-angiotensin system causes concentric hypertrophy of renal arterioles in mice and humans. JCI Insight 2021; 6:e154337. [PMID: 34762601 PMCID: PMC8783690 DOI: 10.1172/jci.insight.154337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of the renin-angiotensin system (RAS) are widely used to treat hypertension. Using mice harboring fluorescent cell lineage tracers, single-cell RNA-Seq, and long-term inhibition of RAS in both mice and humans, we found that deletion of renin or inhibition of the RAS leads to concentric thickening of the intrarenal arteries and arterioles. This severe disease was caused by the multiclonal expansion and transformation of renin cells from a classical endocrine phenotype to a matrix-secretory phenotype: the cells surrounded the vessel walls and induced the accumulation of adjacent smooth muscle cells and extracellular matrix, resulting in blood flow obstruction, focal ischemia, and fibrosis. Ablation of the renin cells via conditional deletion of β1 integrin prevented arteriolar hypertrophy, indicating that renin cells are responsible for vascular disease. Given these findings, prospective morphological studies in humans are necessary to determine the extent of renal vascular damage caused by the widespread use of inhibitors of the RAS.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Alexandre G. Martini
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Evan A. Brown
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiuyin Liang
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Abstract
Renin cells are essential for survival perfected throughout evolution to ensure normal development and defend the organism against a variety of homeostatic threats. During embryonic and early postnatal life, they are progenitors that participate in the morphogenesis of the renal arterial tree. In adult life, they are capable of regenerating injured glomeruli, control blood pressure, fluid-electrolyte balance, tissue perfusion, and in turn, the delivery of oxygen and nutrients to cells. Throughout life, renin cell descendants retain the plasticity or memory to regain the renin phenotype when homeostasis is threatened. To perform all of these functions and maintain well-being, renin cells must regulate their identity and fate. Here, we review the major mechanisms that control the differentiation and fate of renin cells, the chromatin events that control the memory of the renin phenotype, and the major pathways that determine their plasticity. We also examine how chronic stimulation of renin cells alters their fate leading to the development of a severe and concentric hypertrophy of the intrarenal arteries and arterioles. Lastly, we provide examples of additional changes in renin cell fate that contribute to equally severe kidney disorders.
Collapse
Affiliation(s)
- Maria Luisa S. Sequeira-Lopez
- Departments of Pediatrics an Biology, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R. Ariel Gomez
- Departments of Pediatrics an Biology, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
9
|
Kosovic I, Filipovic N, Benzon B, Bocina I, Glavina Durdov M, Vukojevic K, Saraga M, Saraga-Babic M. Connexin Signaling in the Juxtaglomerular Apparatus (JGA) of Developing, Postnatal Healthy and Nephrotic Human Kidneys. Int J Mol Sci 2020; 21:E8349. [PMID: 33172216 PMCID: PMC7664435 DOI: 10.3390/ijms21218349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Our study analyzed the expression pattern of different connexins (Cxs) and renin positive cells in the juxtaglomerular apparatus (JGA) of developing, postnatal healthy human kidneys and in nephrotic syndrome of the Finnish type (CNF), by using double immunofluorescence, electron microscopy and statistical measuring. The JGA contained several cell types connected by Cxs, and consisting of macula densa, extraglomerular mesangium (EM) and juxtaglomerular cells (JC), which release renin involved in renin-angiotensin- aldosteron system (RAS) of arterial blood pressure control. During JGA development, strong Cx40 expression gradually decreased, while expression of Cx37, Cx43 and Cx45 increased, postnatally showing more equalized expression patterning. In parallel, initially dispersed renin cells localized to JGA, and greatly increased expression in postnatal kidneys. In CNF kidneys, increased levels of Cx43, Cx37 and Cx45 co-localized with accumulations of renin cells in JGA. Additionally, they reappeared in extraglomerular mesangial cells, indicating association between return to embryonic Cxs patterning and pathologically changed kidney tissue. Based on the described Cxs and renin expression patterning, we suggest involvement of Cx40 primarily in the formation of JGA in developing kidneys, while Cx37, Cx43 and Cx45 might participate in JGA signal transfer important for postnatal maintenance of kidney function and blood pressure control.
Collapse
Affiliation(s)
- Ivona Kosovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Ivana Bocina
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital in Split, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| | - Marijan Saraga
- Department of Paediatrics, University Hospital in Split, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (I.K.); (N.F.); (B.B.); (K.V.)
| |
Collapse
|
10
|
Lumbers ER, Kandasamy Y, Delforce SJ, Boyce AC, Gibson KJ, Pringle KG. Programming of Renal Development and Chronic Disease in Adult Life. Front Physiol 2020; 11:757. [PMID: 32765290 PMCID: PMC7378775 DOI: 10.3389/fphys.2020.00757] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) can have an insidious onset because there is a gradual decline in nephron number throughout life. There may be no overt symptoms of renal dysfunction until about two thirds or more of the nephrons have been destroyed and glomerular filtration rate (GFR) falls to below 25% of normal (often in mid-late life) (Martinez-Maldonaldo et al., 1992). Once End Stage Renal Disease (ESRD) has been reached, survival depends on renal replacement therapy (RRT). CKD causes hypertension and cardiovascular disease; and hypertension causes CKD. Albuminuria is also a risk factor for cardiovascular disease. The age of onset of CKD is partly determined during fetal life. This review describes the mechanisms underlying the development of CKD in adult life that results from abnormal renal development caused by an adverse intrauterine environment. The basis of this form of CKD is thought to be mainly due to a reduction in the number of nephrons formed in utero which impacts on the age dependent decline in glomerular function. Factors that affect the risk of reduced nephron formation during intrauterine life are discussed and include maternal nutrition (malnutrition and obesity, micronutrients), smoking and alcohol, use of drugs that block the maternal renin-angiotensin system, glucocorticoid excess and maternal renal dysfunction and prematurity. Since CKD, hypertension and cardiovascular disease add to the disease burden in the community we recommend that kidney size at birth should be recorded using ultrasound and those individuals who are born premature or who have small kidneys at this time should be monitored regularly by determining GFR and albumin:creatinine clearance ratio. Furthermore, public health measures aimed at limiting the prevalence of obesity and diabetes mellitus as well as providing advice on limiting the amount of protein ingested during a single meal, because they are all associated with increased glomerular hyperfiltration and subsequent glomerulosclerosis would be beneficial.
Collapse
Affiliation(s)
- Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Yoga Kandasamy
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Neonatology, Townsville University Hospital, Douglas, QLD, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Amanda C Boyce
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Karen J Gibson
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
11
|
Inam R, Gandhi J, Joshi G, Smith NL, Khan SA. Juxtaglomerular Cell Tumor: Reviewing a Cryptic Cause of Surgically Correctable Hypertension. Curr Urol 2019; 13:7-12. [PMID: 31579192 DOI: 10.1159/000499301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 12/16/2022] Open
Abstract
Juxtaglomerular cell tumor (JGCT), or reninoma, is a typically benign neoplasm generally affecting adolescents and young adults due to modified smooth muscle cells from the afferent arteriole of the juxtaglomerular apparatus. Patients experience symptoms related to hypertension and hypoka-lemia due to renin-secretion by the tumor. MRI, PET, CT, and renal vein catheterizations can be used to capture JGCTs, with laparoscopic ultrasonography being most cost-efective. Surgical removal is the best option for management; electrolyte imbalances are a potential complication which may be assuaged via pre-surgical administration of aliskiren, a renin inhibitor. Considering the vast etiology for hypertension and rarity of JGCT, the diagnosing physician must have a high index of suspicion for JGCT. Early recognition and management can help prevent cardiovascular or pregnancy complications and fatalities, vascular invasion and metastasis, improve quality of life, and limit socioeconomic liabilities. Herein we review the epidemiology, genetics, histopathol-ogy, clinical presentation, and management of this rare condition. The impact of genetics on prognosis warrant further research.
Collapse
Affiliation(s)
- Rafid Inam
- Department of Physiology and Biophysics, Stony Brook Renaissance University School of Medicine, Stony Brook, NY, USA
| | - Jason Gandhi
- Department of Physiology and Biophysics, Stony Brook Renaissance University School of Medicine, Stony Brook, NY, USA.,Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies
| | - Gunjan Joshi
- Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, NY
| | | | - Sardar Ali Khan
- Department of Physiology and Biophysics, Stony Brook Renaissance University School of Medicine, Stony Brook, NY, USA.,Department of Urology, Stony Brook Renaissance University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
12
|
Singh N, Avigan ZM, Kliegel JA, Shuch BM, Montgomery RR, Moeckel GW, Cantley LG. Development of a 2-dimensional atlas of the human kidney with imaging mass cytometry. JCI Insight 2019; 4:129477. [PMID: 31217358 DOI: 10.1172/jci.insight.129477] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
An incomplete understanding of the biology of the human kidney, including the relative abundances of and interactions between intrinsic and immune cells, has long constrained the development of therapies for kidney disease. The small amount of tissue obtained by renal biopsy has previously limited the ability to use patient samples for discovery purposes. Imaging mass cytometry (IMC) is an ideal technology for quantitative interrogation of scarce samples, permitting concurrent analysis of more than 40 markers on a single tissue section. Using a validated panel of metal-conjugated antibodies designed to confer unique signatures on the structural and infiltrating cells comprising the human kidney, we performed simultaneous multiplexed imaging with IMC in 23 channels on 16 histopathologically normal human samples. We devised a machine-learning pipeline (Kidney-MAPPS) to perform single-cell segmentation, phenotyping, and quantification, thus creating a spatially preserved quantitative atlas of the normal human kidney. These data define selected baseline renal cell types, respective numbers, organization, and variability. We demonstrate the utility of IMC coupled to Kidney-MAPPS to qualitatively and quantitatively distinguish individual cell types and reveal expected as well as potentially novel abnormalities in diseased versus normal tissue. Our studies define a critical baseline data set for future quantitative analysis of human kidney disease.
Collapse
Affiliation(s)
- Nikhil Singh
- Section of Nephrology, Department of Internal Medicine
| | | | | | | | | | - Gilbert W Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
13
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
14
|
Abstract
An accumulating body of evidence suggests that renin-expressing cells have developed throughout evolution as a mechanism to preserve blood pressure and fluid volume homeostasis as well as to counteract a number of homeostatic and immunological threats. In the developing embryo, renin precursor cells emerge in multiple tissues, where they differentiate into a variety of cell types. The function of those precursors and their progeny is beginning to be unravelled. In the developing kidney, renin-expressing cells control the morphogenesis and branching of the renal arterial tree. The cells do not seem to fully differentiate but instead retain a degree of developmental plasticity or molecular memory, which enables them to regenerate injured glomeruli or to alter their phenotype to control blood pressure and fluid-electrolyte homeostasis. In haematopoietic tissues, renin-expressing cells might regulate bone marrow differentiation and participate in a circulating leukocyte renin-angiotensin system, which acts as a defence mechanism against infections or tissue injury. Furthermore, renin-expressing cells have an intricate lineage and functional relationship with erythropoietin-producing cells and are therefore central to two endocrine systems - the renin-angiotensin and erythropoietin systems - that sustain life by controlling fluid volume and composition, perfusion pressure and oxygen delivery to tissues. However, loss of the homeostatic control of these systems following dysregulation of renin-expressing cells can be detrimental, with serious pathological events.
Collapse
|
15
|
Rodríguez-Lara SQ, García-Benavides L, Miranda-Díaz AG. The Renin-Angiotensin-Aldosterone System as a Therapeutic Target in Late Injury Caused by Ischemia-Reperfusion. Int J Endocrinol 2018; 2018:3614303. [PMID: 29849615 PMCID: PMC5904808 DOI: 10.1155/2018/3614303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/09/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a well-known phenomenon that involves different pathophysiological processes. Connection in diverse systems of survival brings about cellular dysfunction or even apoptosis. One of the survival systems of the cells, to the assault caused by ischemia, is the activation of the renin-angiotensin-aldosterone system (also known as an axis), which is focused on activating diverse signaling pathways to favor adaptation to the decrease in metabolic supports caused by the hypoxia. In trying to adapt to the I/R event, great changes occur that unchain cellular dysfunction with the capacity to lead to cell death, which translates into a poor prognosis due to the progression of dysfunction of the cellular activity. The search for the understanding of the diverse therapeutic alternatives in molecular coupling could favor the prognosis and evolution of patients who are subject to the I/R process.
Collapse
Affiliation(s)
- Simón Quetzalcóatl Rodríguez-Lara
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Leonel García-Benavides
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| |
Collapse
|
16
|
Abstract
This review aims to summarize the knowledge about the sensor and endocrine response functions of resident interstitial cells of the kidney. By the production of renin, erythropoietin and arachidonate metabolites (medullipin) subsets of renal interstitial fibroblasts and pericytes in different kidney zones play a central role in salt, blood pressure and oxygen homeostasis of the body. Common to these endocrine functions is that their regulation mainly occurs by (de)recruitment of active cells.
Collapse
Affiliation(s)
- Armin Kurtz
- Physiologisches Institut der Universität Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
17
|
Oka M, Medrano S, Sequeira-Lόpez MLS, Gómez RA. Chronic Stimulation of Renin Cells Leads to Vascular Pathology. Hypertension 2017; 70:119-128. [PMID: 28533331 DOI: 10.1161/hypertensionaha.117.09283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/09/2017] [Accepted: 04/04/2017] [Indexed: 01/14/2023]
Abstract
Experimental or spontaneous genomic mutations of the renin-angiotensin system or its pharmacological inhibition in early life leads to renal abnormalities, including poorly developed renal medulla, papillary atrophy, hydronephrosis, inability to concentrate the urine, polyuria, polydipsia, renal failure, and anemia. At the core of such complex phenotype is the presence of unique vascular abnormalities: the renal arterioles do not branch or elongate properly and they have disorganized, concentric hypertrophy. This lesion has been puzzling because it is often found in hypertensive individuals whereas mutant or pharmacologically inhibited animals are hypotensive. Remarkably, when renin cells are ablated with diphtheria toxin, the vascular hypertrophy does not occur, suggesting that renin cells per se may contribute to the vascular disease. To test this hypothesis, on a Ren1c-/- background, we generated mutant mice with reporter expression (Ren1c-/-;Ren1c-Cre;R26R.mTmG and Ren1c-/-;Ren1c-Cre;R26R.LacZ) to trace the fate of reninnull cells. To assess whether reninnull cells maintain their renin promoter active, we used Ren1c-/-;Ren1c-YFP mice that transcribe YFP (yellow fluorescent protein) directed by the renin promoter. We also followed the expression of Akr1b7 and miR-330-5p, markers of cells programmed for the renin phenotype. Contrary to what we expected, reninnull cells did not die or disappear. Instead, they survived, increased in number along the renal arterial tree, and maintained an active molecular memory of the myoepitheliod renin phenotype. Furthermore, null cells of the renin lineage occupied the walls of the arteries and arterioles in a chaotic, directionless pattern directly contributing to the concentric arterial hypertrophy.
Collapse
Affiliation(s)
- Masafumi Oka
- From the Department of Pediatrics, University of Virginia, Charlottesville
| | - Silvia Medrano
- From the Department of Pediatrics, University of Virginia, Charlottesville
| | | | - R Ariel Gómez
- From the Department of Pediatrics, University of Virginia, Charlottesville.
| |
Collapse
|
18
|
Affiliation(s)
- Michael Bader
- From the Max Delbrück Center of Molecular Medicine, Berlin, Germany; Charite-University Medicine, Berlin, Germany; Berlin Institute of Health (BIH), Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany; and Institute for Biology, University of Lübeck, Germany.
| |
Collapse
|