1
|
Xie Y, Mahai G, Zheng D, Zhang X, Yu L, Liu H, Li Y, Xu S, Xiao H, Xia W. Newborn metabolomic signatures of maternal vanadium exposure and reduced birth size. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137625. [PMID: 39978194 DOI: 10.1016/j.jhazmat.2025.137625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Prenatal exposure to vanadium has been associated with reduced birth size, however, the specific molecular mechanism underlying this effect remains largely unexplored. We measured vanadium in maternal plasma during early pregnancy, and characterized metabolomics profiling in cord blood among 1020 mother-infant pairs from the Wuhan Healthy Baby Cohort, China. After adjusting for potential confounders, a 2-fold increase in maternal plasma vanadium concentration was associated with a decrease of 25.1 g (95 % CI: -45.1, -5.1) and 0.429 g/cm (95 % CI -0.758 to -0.101) in birth weight and weight-for-length (WFL), respectively. Of the 423 metabolites detected, 42 metabolites and 10 metabolic pathways were significantly linked to both vanadium and birth size. The effect of vanadium on reduced birth weight and WFL was significantly mediated by 14 metabolites, including 2 hormones (cortisol and corticosterone), 1 amino acid (lysine), and 11 lipids, with a mediating effect range of 7 % to 17 %. In addition, the lysine degradation pathway significantly mediated a 19 % change in the association between vanadium exposure and both lower birth weight and WFL. Higher maternal vanadium exposure was linked to reduced birth size, and the perturbed metabolites and pathways involved in hormones, amino acids, oxidative stress, and lipid peroxidation may explain the mechanism.
Collapse
Affiliation(s)
- Ya Xie
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Wuhan 430015, Hubei, P.R. China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology / Key Laboratory of Environment and Health, Ministry of Education/ Key Laboratory of Environmental Pollution and Health Effects of the Ministry of Ecology and Environment, No.13, Hangkong Road, Wuhan, Hubei, P.R. China
| | - Gaga Mahai
- School of Environmental Science and Engineering, Hainan University, China
| | - Dejuan Zheng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology / Key Laboratory of Environment and Health, Ministry of Education/ Key Laboratory of Environmental Pollution and Health Effects of the Ministry of Ecology and Environment, No.13, Hangkong Road, Wuhan, Hubei, P.R. China
| | - Xinyu Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology / Key Laboratory of Environment and Health, Ministry of Education/ Key Laboratory of Environmental Pollution and Health Effects of the Ministry of Ecology and Environment, No.13, Hangkong Road, Wuhan, Hubei, P.R. China
| | - Ling Yu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology / Key Laboratory of Environment and Health, Ministry of Education/ Key Laboratory of Environmental Pollution and Health Effects of the Ministry of Ecology and Environment, No.13, Hangkong Road, Wuhan, Hubei, P.R. China
| | - Hongxiu Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Wuhan 430015, Hubei, P.R. China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology / Key Laboratory of Environment and Health, Ministry of Education/ Key Laboratory of Environmental Pollution and Health Effects of the Ministry of Ecology and Environment, No.13, Hangkong Road, Wuhan, Hubei, P.R. China
| | - Yuanyuan Li
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Wuhan 430015, Hubei, P.R. China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology / Key Laboratory of Environment and Health, Ministry of Education/ Key Laboratory of Environmental Pollution and Health Effects of the Ministry of Ecology and Environment, No.13, Hangkong Road, Wuhan, Hubei, P.R. China
| | - Shunqing Xu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Wuhan 430015, Hubei, P.R. China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology / Key Laboratory of Environment and Health, Ministry of Education/ Key Laboratory of Environmental Pollution and Health Effects of the Ministry of Ecology and Environment, No.13, Hangkong Road, Wuhan, Hubei, P.R. China; School of Environmental Science and Engineering, Hainan University, China
| | - Han Xiao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Wuhan 430015, Hubei, P.R. China.
| | - Wei Xia
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Wuhan 430015, Hubei, P.R. China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology / Key Laboratory of Environment and Health, Ministry of Education/ Key Laboratory of Environmental Pollution and Health Effects of the Ministry of Ecology and Environment, No.13, Hangkong Road, Wuhan, Hubei, P.R. China.
| |
Collapse
|
2
|
Mahan VL. Heme oxygenase/carbon monoxide system affects the placenta and preeclampsia. Med Gas Res 2025; 15:276-287. [PMID: 39829164 PMCID: PMC11918472 DOI: 10.4103/mgr.medgasres-d-24-00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
Preeclampsia affects 2% to 8% of pregnancies worldwide and results in significantly high maternal and perinatal morbidity and mortality, with delivery being the only definitive treatment. It is not a single disorder, but rather a manifestation of an insult(s) to the uteroplacental unit -whether maternal, fetal, and/or placental. Multiple etiologies have been implicated, including uteroplacental ischemia, maternal infection and/or inflammation, maternal obesity, sleep disorders, hydatidiform mole, maternal intestinal dysbiosis, autoimmune disorders, fetal diseases, breakdown of maternal-fetal immune tolerance, placental aging, and endocrine disorders. Early- and late-onset preeclampsia are associated with different etiologies: early-onset preeclampsia develops because of poor placentation, while late-onset preeclampsia occurs in women with latent maternal endothelial dysfunction. In preeclamptic placentas, acquired, genetic, and immune risk factors may result in impaired trophoblast invasion and spiral artery remodeling, which affects uteroplacental perfusion. The resulting placental hypoxia affects the heme oxygenase system-a known stress response pathway affected by hypoxia that is important during normal pregnancy and may offer a therapeutic approach in preeclampsia. This review will address the effect of the heme oxygenase/carbon monoxide system on the placenta and preeclampsia.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Drexel University Medical School, Philadelphia, PA, USA
| |
Collapse
|
3
|
Xiong Z, Guan H, Pei S, Wang C. Identification of metabolism-related subtypes and feature genes of pre-eclampsia. Sci Rep 2025; 15:4986. [PMID: 39930027 PMCID: PMC11811273 DOI: 10.1038/s41598-025-89140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The heterogeneity of pre-eclampsia (PE) complicates its pathogenesis, which remains incompletely understood. Emerging evidence indicates a significant role of metabolism in the pathophysiology of PE. We procured the PE dataset from the Gene Expression Omnibus database and sourced a published compilation of metabolism-related genes, then employed consensus clustering to classify PE subtypes. Subsequently, we examined the relationships of these subtypes with metabolic features and immune infiltration. Feature genes were identified using weighted gene co-expression network analysis (WGCNA) and further scrutinized through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. To refine the selection of feature genes, we applied two machine learning algorithms. Additionally, we assessed the expression profiles of RAG1, RBBP7, RFTN2, SPATA7, and ZNF16 at the single-cell RNA sequencing (scRNA-seq) level. Finally, we validated the diagnostic value and expression of these genes using PE datasets and quantitative reverse transcription-PCR (qRT-PCR) analysis. We identified three PE subtypes on the basis of the number of distinct metabolic characteristics, namely Metabolism Correlated (MC) A (MCA), MCB, and MCC subclasses. Through WGCNA, we pinpointed 101 metabolic genes that were strongly associated with PE progression. Machine learning algorithms helped to narrow the list to five key signature genes, which were then used to construct a predictive model offering significant clinical benefits for PE patients. qRT-PCR analysis confirmed that these genes are closely linked to PE progression, while scRNA-seq data revealed high expression of RBBP7 in trophoblast cells. In conclusion, the five genes identified here-RAG1, RBBP7, RFTN2, SPATA7, and ZNF16-were found to be strongly associated with PE progression.
Collapse
Affiliation(s)
- Zhihui Xiong
- Obstetrical Department, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310007, China
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Hailian Guan
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Shuping Pei
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Caijiao Wang
- Neurology Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
4
|
Kaihara JNS, de Moraes FR, Nunes PR, Alves MG, Cavalli RC, Tasic L, Sandrim VC. Plasma metabolic profile reveals signatures of maternal health during gestational hypertension and preeclampsia without and with severe features. PLoS One 2024; 19:e0314053. [PMID: 39591465 PMCID: PMC11594399 DOI: 10.1371/journal.pone.0314053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Preeclampsia, a pregnancy-specific syndrome, poses substantial risks to maternal and neonatal health, particularly in cases with severe features. Our study focuses on evaluating the impact of low molecular weight metabolites on the intricate mechanisms and pathways involved in the pathophysiology of preeclampsia when severe features are present. We aim to pinpoint the distinct metabolomic profile in maternal plasma during pregnancies affected by hypertensive disorders and to correlate the metabolite levels with the clinical characteristics of the study cohort. A total of 173 plasma samples were collected, comprising 36 healthy pregnant women (HP), 52 patients with gestational hypertension (GH), 43 with preeclampsia without (PE-), and 42 with severe features (PE+). Nuclear magnetic resonance spectroscopy and metabolite identification were conducted to establish the metabolomic profiles. Univariate and chemometric analyses were conducted using MetaboAnalyst, and correlations were performed using GraphPad Prism. Our study unveils distinct metabolomic profiles differentiating HP women, patients featuring GH, and patients with PE-and PE+. Our analysis highlights an increase in acetate, N,N-dimethylglycine, glutamine, alanine, valine, and creatine levels in the PE+ group compared to the HP and GH groups. The PE+ group exhibited higher concentrations of N,N-dimethylglycine, glutamine, alanine, and valine compared to the PE-group. Moreover, elevated levels of specific metabolites, including N,N-dimethylglycine, alanine, and valine, were associated with increased blood pressure, worse obstetric outcomes, and poorer end-organ function, particularly renal and hepatic damage. Metabolomic analysis of PE+ individuals indicates heightened disturbances in nitrogen metabolism, methionine, and urea cycles. Additionally, the exacerbated metabolic disturbance may have disclosed renal impairment and hepatic dysfunction, evidenced by elevated levels of creatine and alanine. These findings not only contribute novel insights but also provide a more comprehensive understanding of the pathophysiological mechanisms at play in cases of PE+.
Collapse
Affiliation(s)
- Julyane N. S. Kaihara
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Fabio Rogerio de Moraes
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences, Sao Paulo State University (UNESP), Sao Jose do Rio Preto, SP, Brazil
| | - Priscila Rezeck Nunes
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marco G. Alves
- Institute of Biomedicine and Department of Medical Science (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ricardo C. Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
5
|
Festa J, Trefely S. Acetate to the rescue: Acetyl-CoA facilitates placental development. Cell Stem Cell 2024; 31:1241-1243. [PMID: 39241753 DOI: 10.1016/j.stem.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
While the placenta regulates nutritional exchange between mother and fetus, Yu et al. reveal that human placental development is itself nutrient-sensitive. They elucidate entwined metabolic and epigenetic transitions driving syncytialization and pinpoint a requirement for the metabolite acetyl-CoA, which is sensitive to glucose metabolism.
Collapse
Affiliation(s)
- Joseph Festa
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK
| | - Sophie Trefely
- Epigenetics and Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
6
|
Yu X, Wu H, Su J, Liu X, Liang K, Li Q, Yu R, Shao X, Wang H, Wang YL, Shyh-Chang N. Acetyl-CoA metabolism maintains histone acetylation for syncytialization of human placental trophoblast stem cells. Cell Stem Cell 2024; 31:1280-1297.e7. [PMID: 39084220 DOI: 10.1016/j.stem.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/15/2023] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
During pregnancy, placental-fetal nutrient allocation is crucial for fetal and maternal health. However, the regulatory mechanisms for nutrient metabolism and allocation in placental trophoblasts have remained unclear. Here, we used human first-trimester placenta samples and human trophoblast stem cells (hTSCs) to discover that glucose metabolism is highly active in hTSCs and cytotrophoblasts, but during syncytialization, it decreases to basal levels, remaining necessary for fueling acetyl-CoA and differentiation potential. Acetate supplementation could rescue syncytiotrophoblast fusion from glycolysis deficiency by replenishing acetyl-CoA and maintaining histone acetylation, thus rescuing the activation of syncytialization genes. Even brief glycolysis deficiency could permanently inhibit differentiation potential and promote inflammation, which could also be permanently rescued by brief acetate supplementation in vivo. These results suggest that hTSCs retain only basal glycolytic acetyl-CoA metabolism during syncytialization to regulate cell fates via nutrient-responsive histone acetylation, with implications for our understanding of the balance between placental and fetal nutrition.
Collapse
Affiliation(s)
- Xin Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiali Su
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xupeng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kun Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qianqian Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruoxuan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuan Shao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yan-Ling Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
7
|
Ho SY, Yuliana ME, Chou HC, Chen CM. Intrauterine growth restriction alters kidney metabolism at the end of nephrogenesis. Nutr Metab (Lond) 2023; 20:50. [PMID: 37990266 PMCID: PMC10664663 DOI: 10.1186/s12986-023-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND This study investigated the effect of uteroplacental insufficiency (UPI) on renal development by detecting metabolic alterations in the kidneys of rats with intrauterine growth restriction (IUGR). METHODS On gestational day 17, pregnant Sprague Dawley rats were selected and allocated randomly to either the IUGR group or the control group. The IUGR group received a protocol involving the closure of bilateral uterine vessels, while the control group underwent a sham surgery. The rat pups were delivered on gestational day 22 by natural means. Pups were randomly recruited from both the control and IUGR groups on the seventh day after birth. The kidneys were surgically removed to conduct Western blot and metabolomic analyses. RESULTS IUGR was produced by UPI, as evidenced by the significantly lower body weights of the pups with IUGR compared to the control pups on postnatal day 7. UPI significantly increased the levels of cleaved caspase-3 (p < 0.05) and BAX/Bcl-2 (p < 0.01) in the pups with IUGR. Ten metabolites exhibited statistically significant differences between the groups (q < 0.05). Metabolic pathway enrichment analysis demonstrated statistically significant variations between the groups in the metabolism related to fructose and mannose, amino and nucleotide sugars, and inositol phosphate. CONCLUSIONS UPI alters kidney metabolism in growth-restricted newborn rats and induces renal apoptosis. The results of our study have the potential to provide new insights into biomarkers and metabolic pathways that are involved in the kidney changes generated by IUGR.
Collapse
Affiliation(s)
- Sheng-Yuan Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Merryl Esther Yuliana
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Faculty of Medicine, Christian University of Indonesia, Jakarta, Indonesia
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Barak O, Lovelace T, Piekos S, Chu T, Cao Z, Sadovsky E, Mouillet JF, Ouyang Y, Parks WT, Hood L, Price ND, Benos PV, Sadovsky Y. Integrated unbiased multiomics defines disease-independent placental clusters in common obstetrical syndromes. BMC Med 2023; 21:349. [PMID: 37679695 PMCID: PMC10485945 DOI: 10.1186/s12916-023-03054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Placental dysfunction, a root cause of common syndromes affecting human pregnancy, such as preeclampsia (PE), fetal growth restriction (FGR), and spontaneous preterm delivery (sPTD), remains poorly defined. These common, yet clinically disparate obstetrical syndromes share similar placental histopathologic patterns, while individuals within each syndrome present distinct molecular changes, challenging our understanding and hindering our ability to prevent and treat these syndromes. METHODS Using our extensive biobank, we identified women with severe PE (n = 75), FGR (n = 40), FGR with a hypertensive disorder (FGR + HDP; n = 33), sPTD (n = 72), and two uncomplicated control groups, term (n = 113), and preterm without PE, FGR, or sPTD (n = 16). We used placental biopsies for transcriptomics, proteomics, metabolomics data, and histological evaluation. After conventional pairwise comparison, we deployed an unbiased, AI-based similarity network fusion (SNF) to integrate the datatypes and identify omics-defined placental clusters. We used Bayesian model selection to compare the association between the histopathological features and disease conditions vs SNF clusters. RESULTS Pairwise, disease-based comparisons exhibited relatively few differences, likely reflecting the heterogeneity of the clinical syndromes. Therefore, we deployed the unbiased, omics-based SNF method. Our analysis resulted in four distinct clusters, which were mostly dominated by a specific syndrome. Notably, the cluster dominated by early-onset PE exhibited strong placental dysfunction patterns, with weaker injury patterns in the cluster dominated by sPTD. The SNF-defined clusters exhibited better correlation with the histopathology than the predefined disease groups. CONCLUSIONS Our results demonstrate that integrated omics-based SNF distinctively reclassifies placental dysfunction patterns underlying the common obstetrical syndromes, improves our understanding of the pathological processes, and could promote a search for more personalized interventions.
Collapse
Affiliation(s)
- Oren Barak
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA, 15213, USA
| | - Tyler Lovelace
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
- Joint CMU-Pitt PhD Program in Computational Biology, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Samantha Piekos
- Institute for Systems Biology, 401 Terri Avenue North, Seattle, WA, 98109, USA
| | - Tianjiao Chu
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA, 15213, USA
| | - Zhishen Cao
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA, 15213, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA, 15213, USA
| | - W Tony Parks
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Simcoe Hall, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Leroy Hood
- Institute for Systems Biology, 401 Terri Avenue North, Seattle, WA, 98109, USA
| | - Nathan D Price
- Institute for Systems Biology, 401 Terri Avenue North, Seattle, WA, 98109, USA
- Thorne HealthTech, 152 West 57th Street, New York, NY, 10019, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
- Joint CMU-Pitt PhD Program in Computational Biology, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA, 15213, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
9
|
Yang Z, Luo X, Huang B, Jia X, Luan X, Shan N, An Z, Cao J, Qi H. Altered distribution of fatty acid exerting lipid metabolism and transport at the maternal-fetal interface in fetal growth restriction. Placenta 2023; 139:159-171. [PMID: 37406553 DOI: 10.1016/j.placenta.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a common complication of pregnancy. Lipid metabolism and distribution may contribute to the progression of FGR. However, the metabolism-related mechanisms of FGR remain unclear. The aim of this study was to identify metabolic profiles associated with FGR, as well as probable genes and signaling pathways. METHODS Metabolomic profiles at the maternal-fetal interface (including the placenta, maternal and fetal serum) from pregnant women with (n = 35) and without (n = 35) FGR were analyzed by gas chromatography-mass spectrometry (GC-MS). Combined with differentially expressed genes (DEGs) from the GSE35574 dataset, analysis was performed for differential metabolites, and identified by the Metabo Analyst dataset. Finally, the pathology and screened DEGs were further identified. RESULTS The results showed that fatty acids (FAs) accumulated in the placenta and decreased in fetal blood in FGR cases compared to controls. The linoleic acid metabolism was the focus of placental differential metabolites and genes enrichment analysis. In this pathway, phosphatidylcholine can interact with PLA2G2A and PLA2G4C, and 12(13)-EpOME can interact with CYP2J2. PLA2G2A and CYP2J2 were elevated, and PLA2G4C was decreased in the FGR placenta. DISCUSSION In conclusion, accumulation of FAs in the placental ischemic environments, may involve linoleic acid metabolism, which may be regulated by PLA2G2A, CYP2J2, and PLA2G4C. This study may contribute to understanding the underlying metabolic and molecular mechanisms of FGR.
Collapse
Affiliation(s)
- Zhongmei Yang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Xiaofang Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Biao Huang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Xiaoyan Jia
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Xiaojin Luan
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Nan Shan
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Zhongling An
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Jinfeng Cao
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Hongbo Qi
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
10
|
Skytte HN, Christensen JJ, Gunnes N, Holven KB, Lekva T, Henriksen T, Michelsen TM, Roland MCP. Metabolic profiling of pregnancies complicated by preeclampsia: A longitudinal study. Acta Obstet Gynecol Scand 2023; 102:334-343. [PMID: 36647289 PMCID: PMC9951333 DOI: 10.1111/aogs.14505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Preeclampsia is associated with maternal metabolic disturbances, but longitudinal studies with comprehensive metabolic profiling are lacking. We aimed to determine metabolic profiles across gestation in women who developed preeclampsia compared with women with healthy pregnancies. We also explored the respective effects of body mass index (BMI) and preeclampsia on various metabolic measures. MATERIAL AND METHODS We measured 91 metabolites by high-throughput nuclear magnetic resonance spectroscopy at four time points (visits) during pregnancy (weeks 14-16, 22-24, 30-32 and 36-38). Samples were taken from a Norwegian pregnancy cohort. We fitted a linear regression model for each metabolic measure to compare women who developed preeclampsia (n = 38) and healthy controls (n = 70). RESULTS Among women who developed preeclampsia, 92% gave birth after 34 weeks of gestation. Compared to women with healthy pregnancies, women who developed preeclampsia had higher levels of several lipid-related metabolites at visit 1, whereas fewer differences were observed at visit 2. At visit 3, the pattern from visit 1 reappeared. At visit 4 the differences were larger in most subgroups of very-low-density lipoprotein particles, the smallest high-density lipoprotein, total lipids and triglycerides. Total fatty acids were also increased, of which monounsaturated fatty acids and saturated fatty acids showed more pronounced differences. Concentration of glycine tended to be lower in pregnancies with preeclampsia until visit 3, although this was not significant after correction for multiple testing. After adjustment for age, BMI, parity and gestational weight gain, all significant differences were attenuated at visits 1 and 2. The estimates were less affected by adjustment at visits 3 and 4. CONCLUSIONS In early pregnancy, the metabolic differences between preeclamptic and healthy pregnancies were primarily driven by maternal BMI, probably representing the women's pre-pregnancy metabolic status. In early third trimester, several weeks before clinical manifestation, the differences were less influenced by BMI, indicating preeclampsia-specific changes. Near term, women with preeclampsia developed an atherogenic metabolic profile, including elevated total lipids, very-low-density lipoprotein, triglycerides, and total fatty acids.
Collapse
Affiliation(s)
- Hege N. Skytte
- Norwegian Research Center for Women's HealthOslo University HospitalOsloNorway,Faculty of MedicineUniversity of OsloOsloNorway
| | | | - Nina Gunnes
- Norwegian Research Center for Women's HealthOslo University HospitalOsloNorway
| | - Kirsten B. Holven
- Department of NutritionUniversity of OsloOsloNorway,Norwegian National Advisory Unit on Familial HypercholesterolemiaOslo University HospitalOsloNorway
| | - Tove Lekva
- Research Institute of Internal MedicineOslo University HospitalOsloNorway
| | - Tore Henriksen
- Division of Obstetrics and GynecologyOslo University HospitalOsloNorway
| | - Trond M. Michelsen
- Faculty of MedicineUniversity of OsloOsloNorway,Division of Obstetrics and GynecologyOslo University HospitalOsloNorway
| | | |
Collapse
|
11
|
Yao M, Xiao Y, Yang Z, Ge W, Liang F, Teng H, Gu Y, Yin J. Identification of Biomarkers for Preeclampsia Based on Metabolomics. Clin Epidemiol 2022; 14:337-360. [PMID: 35342309 PMCID: PMC8943653 DOI: 10.2147/clep.s353019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 01/15/2023] Open
Abstract
Background Preeclampsia (PE) is a significant cause of maternal and neonatal morbidity and mortality worldwide. However, the pathogenesis of PE is unclear and reliable early diagnostic methods are still lacking. The purpose of this review is to summarize potential metabolic biomarkers and pathways of PE, which might facilitate risk prediction and clinical diagnosis, and obtain a better understanding of specific metabolic mechanisms of PE. Methods This review included human metabolomics studies related to PE in the PubMed, Google Scholar, and Web of Science databases from January 2000 to November 2021. The reported metabolic biomarkers were systematically examined and compared. Pathway analysis was conducted through the online software MetaboAnalyst 5.0. Results Forty-one human studies were included in this systematic review. Several metabolites, such as creatinine, glycine, L-isoleucine, and glucose and biomarkers with consistent trends (decanoylcarnitine, 3-hydroxyisovaleric acid, and octenoylcarnitine), were frequently reported. In addition, eight amino acid metabolism-related, three carbohydrate metabolism-related, one translation-related and one lipid metabolism-related pathways were identified. These biomarkers and pathways, closely related to renal dysfunction, insulin resistance, lipid metabolism disorder, activated inflammation, and impaired nitric oxide production, were very likely to contribute to the progression of PE. Conclusion This study summarized several metabolites and metabolic pathways, which may be associated with PE. These high-frequency differential metabolites are promising to be biomarkers of PE for early diagnosis, and the prominent metabolic pathway may provide new insights for the understanding of the pathogenesis of PE.
Collapse
Affiliation(s)
- Mengxin Yao
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Yue Xiao
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Zhuoqiao Yang
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Wenxin Ge
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Fei Liang
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Haoyue Teng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
| | - Yingjie Gu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jieyun Yin
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, People’s Republic of China
- Correspondence: Jieyun Yin, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, People’s Republic of China, Tel/Fax +86 0512 6588036, Email
| |
Collapse
|
12
|
Karaer A, Mumcu A, Arda Düz S, Tuncay G, Doğan B. Metabolomics analysis of placental tissue obtained from patients with fetal growth restriction. J Obstet Gynaecol Res 2022; 48:920-929. [PMID: 35104920 DOI: 10.1111/jog.15173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
AIM The aim of this study was to determine whether there was a difference in placental metabolite profiles between patients with fetal growth restriction (FGR) and healthy controls. METHODS The study included 10 patients with FGR diagnosis with 14 healthy controls with both matched maternal age and body mass index. 1 H HR-MAS NMR spectroscopy data obtained from placental tissue samples of patients with FGR and healthy control group were analyzed with bioinformatics methods. The obtained results of metabolite levels were further validated with the internal standard (IS) quantification method. RESULTS Principal component analysis (PCA) and the partial least squares discriminant analysis (PLS-DA) score plots obtained with the multivariate statistical analysis of preprocessed spectral data shows a separation between the samples from patients with FGR and healthy controls. Bioinformatics analysis results suggest that the placental levels of lactate, glutamine, glycerophosphocholine, phosphocholine, taurine, and myoinositol are increased in patients with FGR compared to the healthy controls. CONCLUSIONS Placental metabolic dysfunctions are a common occurrence in FGR.
Collapse
Affiliation(s)
- Abdullah Karaer
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Turkey
| | - Akın Mumcu
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Laboratory of NMR, Scientific and Technological Research Center, Inonu University, Malatya, Turkey
| | - Senem Arda Düz
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Turkey
| | - Görkem Tuncay
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Inonu University, School of Medicine, Malatya, Turkey
| | - Berat Doğan
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, Malatya, Turkey.,Department of Biomedical Engineering, School of Engineering, Inonu University, Malatya, Turkey
| |
Collapse
|
13
|
Placental Development and Pregnancy-Associated Diseases. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Li Y, Zhao X, He B, Wu W, Zhang H, Yang X, Cheng W. Autophagy Activation by Hypoxia Regulates Angiogenesis and Apoptosis in Oxidized Low-Density Lipoprotein-Induced Preeclampsia. Front Mol Biosci 2021; 8:709751. [PMID: 34568425 PMCID: PMC8458810 DOI: 10.3389/fmolb.2021.709751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 01/07/2023] Open
Abstract
Objective: Autophagy influences a wide range of physiological and pathological processes in the human body. In this study, we aimed to investigate the role of autophagy in early-onset preeclampsia (EOPE); autophagy activation by hypoxia could rescue impaired angiogenesis and apoptosis in preeclampsia, leading by ox-LDL. Methods: Transmission electron microscopy was applied to identify autolysosomes in trophoblast cells of the placenta apical region. Quantitative real-time polymerase chain reaction, Western blot, flow cytometry, and wound-healing assays were adopted to determine autophagy activity, angiogenesis, and apoptosis in placenta tissues or HTR8/SVneo cells. Results: Autophagy activity was inhibited in the placenta of women who experienced EOPE; autophagy activation by hypoxia enhanced the migration ability, rescued ox-LDL–mediated impaired angiogenesis in HTR8/SVneo cells [vascular endothelial growth factor A (VEGFA) downregulation and FMS-like tyrosine kinase-1 (FLT1) upregulation], and protected against cell apoptosis (BAX downregulation). Conclusion: Autophagy could maintain the function of trophoblast cells by differentially regulating the expression of VEGFA and FLT1 and protecting against cell apoptosis at the maternal–fetal interface, potentially related to prevention of preeclampsia.
Collapse
Affiliation(s)
- Yamei Li
- International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Xueya Zhao
- International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Biwei He
- International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Weibin Wu
- International Peace Maternity and Child Health Hospital, Shanghai, China.,Shagnhai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Huijuan Zhang
- International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Xingyu Yang
- International Peace Maternity and Child Health Hospital, Shanghai, China.,Shagnhai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, Shanghai, China.,Shagnhai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
15
|
Navajas R, Corrales F, Paradela A. Quantitative proteomics-based analyses performed on pre-eclampsia samples in the 2004-2020 period: a systematic review. Clin Proteomics 2021; 18:6. [PMID: 33499801 PMCID: PMC7836571 DOI: 10.1186/s12014-021-09313-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Quantitative proteomics is an invaluable tool in biomedicine for the massive comparative analysis of protein component of complex biological samples. In the last two decades, this technique has been used to describe proteins potentially involved in the pathophysiological mechanisms of preeclampsia as well as to identify protein biomarkers that could be used with diagnostic/prognostic purposes in pre-eclampsia. RESULTS We have done a systematic review of all proteomics-based papers describing differentially expressed proteins in this disease. Searching Pubmed with the terms pre-eclampsia and proteomics, restricted to the Title/Abstract and to MeSH fields, and following manual curation of the original list, retrieved 69 original articles corresponding to the 2004-2020 period. We have only considered those results based on quantitative, unbiased proteomics studies conducted in a controlled manner on a cohort of control and pre-eclamptic individuals. The sources of biological material used were serum/plasma (n = 32), placenta (n = 23), urine (n = 9), cerebrospinal fluid (n = 2), amniotic fluid (n = 2) and decidual tissue (n = 1). Overall results were filtered based on two complementary criteria. First, we have only accounted all those proteins described in at least two (urine), three (placenta) and four (serum/plasma) independent studies. Secondly, we considered the consistency of the quantitative data, that is, inter-study agreement in the protein abundance control/pre-eclamptic ratio. The total number of differential proteins in serum/plasma (n = 559), placenta (n = 912), urine (n = 132) and other sources of biological material (n = 26), reached 1631 proteins. Data were highly complementary among studies, resulting from differences on biological sources, sampling strategies, patient stratification, quantitative proteomic analysis methods and statistical data analysis. Therefore, stringent filtering was applied to end up with a cluster of 18, 29 and 16 proteins consistently regulated in pre-eclampsia in placenta, serum/plasma and urine, respectively. The systematic collection, standardization and evaluation of the results, using diverse filtering criteria, provided a panel of 63 proteins whose levels are consistently modified in the context of pre-eclampsia.
Collapse
Affiliation(s)
- Rosana Navajas
- Functional Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed-ISCIII, Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed-ISCIII, Madrid, Spain
| | - Alberto Paradela
- Functional Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), ProteoRed-ISCIII, Madrid, Spain.
| |
Collapse
|
16
|
Teng L, Liu P, Song X, Wang H, Sun J, Yin Z. Long Non-Coding RNA Nuclear-Enriched Abundant Transcript 1 (NEAT1) Represses Proliferation of Trophoblast Cells in Rats with Preeclampsia via the MicroRNA-373/FLT1 Axis. Med Sci Monit 2020; 26:e927305. [PMID: 33093438 PMCID: PMC7590520 DOI: 10.12659/msm.927305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Preeclampsia (PE) remains one of the primary causes of maternal morbidity and mortality worldwide. This study was designed to investigate the relevance of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) and downstream molecules in trophoblast cell proliferation and apoptosis. Material/Methods NEAT1 expression in the placental tissues of rats with PE was analyzed by reverse transcriptionquantitative polymerase chain reaction. The role of NEAT in trophoblast cell proliferation, migration, invasion, and apoptosis was assessed by transfecting pcDNA-NEAT1 and siRNA-NEAT1 into trophoblast cells. The microRNA (miRNA) binding to NEAT1 and the genes targeted by the screened miRNAs were predicted by Starbase, and the mechanism of action of NEAT1 in PE was further investigated. Results The expression of NEAT1 lncRNA was markedly higher in placental samples of PE than control rats. Ectopic expression of NEAT1 repressed trophoblast cell proliferation, migration, invasion, and colony formation, but facilitated cell apoptosis, whereas NEAT1 downregulation resulted in the opposite effects. NEAT1 was found to act as a molecular sponge for miR-373, regulating Fms-like tyrosine kinase-1 (FLT-1) to modulate PE development. Conclusions NEAT1 may contribute to PE development by regulating trophoblast cell proliferation and apoptosis. These findings may provide a new perspective for understanding the etiology and pathogenesis of PE.
Collapse
Affiliation(s)
- Lingling Teng
- Department of Obstetrics, Liaocheng Second People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Pingping Liu
- Department of Clinical Laboratory, Qingdao Sixth People's Hospital, Qingdao, Shandong, China (mainland)
| | - Xiao Song
- Department of Clinical Laboratory Medicine, Chiping County People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Hui Wang
- Department of Pathology, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng, Shandong, China (mainland)
| | - Jing Sun
- Department of Neonatology, Liaocheng Dongchangfu District Maternal and Child Health Hospital, Liaocheng, Shandong, China (mainland)
| | - Zhongxia Yin
- Department of High Risk Obstetrics, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, Shandong, China (mainland)
| |
Collapse
|
17
|
Gierman LM, Silva GB, Pervaiz Z, Rakner JJ, Mundal SB, Thaning AJ, Nervik I, Elschot M, Mathew S, Thomsen LCV, Bjørge L, Iversen AC. TLR3 expression by maternal and fetal cells at the maternal-fetal interface in normal and preeclamptic pregnancies. J Leukoc Biol 2020; 109:173-183. [PMID: 32573856 DOI: 10.1002/jlb.3ma0620-728rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation and oxidative stress at the maternal-fetal interface characterize the placental dysfunction that underlies the pregnancy disorder preeclampsia. Specialized fetal trophoblasts directly interact with leukocytes at both sites of the maternal-fetal interface; the uterine wall decidua; and the placenta. TLR3 has been implicated in the harmful inflammation at the maternal-fetal interface in preeclampsia, but the cellular involvement in the decidua and placenta has not been determined. This study aimed to characterize and quantify cell-specific TLR3 expression and function at the maternal-fetal interface in normal and preeclamptic pregnancies. TLR3 expression was assessed by immunohistochemistry and quantified by a novel image-based and cell-specific quantitation method. TLR3 was expressed at the maternal-fetal interface by all decidual and placental trophoblast types and by maternal and fetal leukocytes. Placental, but not decidual, TLR3 expression was significantly higher in preeclampsia compared to normal pregnancies. This increase was attributed to placental intravillous tissue and associated with both moderate and severe placental dysfunction. TLR3 pathway functionality in the decidua and placenta was confirmed by TLR3 ligand-induced cytokine response, but the TLR3 expression levels did not correlate between the two sites. In conclusion, functional TLR3 was broadly expressed by maternal and fetal cells at both sites of the maternal-fetal interface and the placental intravillous expression was increased in preeclampsia. This suggests TLR3-mediated inflammatory involvement with local regulation at both sites of the maternal-fetal interface in normal and preeclamptic pregnancies.
Collapse
Affiliation(s)
- Lobke M Gierman
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gabriela B Silva
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Zahra Pervaiz
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Johanne J Rakner
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siv B Mundal
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid J Thaning
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingunn Nervik
- Cellular & Molecular Imaging Core Facility (CMIC), Faculty of Medicine and Health Science, NTNU, Trondheim, Norway
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Seema Mathew
- Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Liv Cecilie V Thomsen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
18
|
Abstract
In the last years, 'omics' technologies, and especially metabolomics, emerged as expanding scientific disciplines and promising technologies in the characterization of several pathophysiological processes.In detail, metabolomics, able to detect in a dynamic way the whole set of molecules of low molecular weight in cells, tissues, organs, and biological fluids, can provide a detailed phenotypic portray, representing a metabolic "snapshot."Thanks to its numerous strength points, metabolomics could become a fundamental tool in human health, allowing the exact evaluation of individual metabolic responses to pathophysiological stimuli including drugs, environmental changes, lifestyle, a great number of diseases and other epigenetics factors.Moreover, if current metabolomics data will be confirmed on larger samples, such technology could become useful in the early diagnosis of diseases, maybe even before the clinical onset, allowing a clinical monitoring of disease progression and helping in performing the best therapeutic approach, potentially predicting the therapy response and avoiding overtreatments. Moreover, the application of metabolomics in nutrition could provide significant information on the best nutrition regimen, optimal infantile growth and even in the characterization and improvement of commercial products' composition.These are only some of the fields in which metabolomics was applied, in the perspective of a precision-based, personalized care of human health.In this review, we discuss the available literature on such topic and provide some evidence regarding clinical application of metabolomics in heart diseases, auditory disturbance, nephrouropathies, adult and pediatric cancer, obstetrics, perinatal conditions like asphyxia, neonatal nutrition, neonatal sepsis and even some neuropsychiatric disorders, including autism.Our research group has been interested in metabolomics since several years, performing a wide spectrum of experimental and clinical studies, including the first metabolomics analysis of human breast milk. In the future, it is reasonable to predict that the current knowledge could be applied in daily clinical practice, and that sensible metabolomics biomarkers could be easily detected through cheap and accurate sticks, evaluating biofluids at the patient's bed, improving diagnosis, management and prognosis of sick patients and allowing a personalized medicine. A dream? May be I am a dreamer, but I am not the only one.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, SS 554 km 4,500, 09042, Monserrato, CA, Italy.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, SS 554 km 4,500, 09042, Monserrato, CA, Italy
| |
Collapse
|