1
|
Kazi RNA. Silent Effects of High Salt: Risks Beyond Hypertension and Body's Adaptation to High Salt. Biomedicines 2025; 13:746. [PMID: 40149722 PMCID: PMC11940015 DOI: 10.3390/biomedicines13030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Hypertension is a major contributor to heart disease, renal failure, and stroke. High salt is one of the significant risk factors associated with the onset and persistence of hypertension. Experimental and observational studies have confirmed cardiovascular and non-cardiovascular detrimental effects associated with chronic intake of high salt. Because of convenience and present urban lifestyles, consumption of fast food has led to daily salt intake above the recommended level by the World Health Organization. This study provides an understanding of the body regulatory mechanisms that maintain sodium homeostasis under conditions of high salt intake, without health consequences, and how these mechanisms adapt to chronic high salt load, leading to adverse cardiovascular, renal, and non-cardiovascular outcomes. Recent research has identified several mechanisms through which high sodium intake contributes to hypertension. Of them, heightened renin-angiotensin-aldosterone and sympathetic activity associated with impaired pressure diuresis and natriuresis and decreased renal excretory response are reported. Additionally, there is the possibility of endothelial and nitric oxide dysfunction leading to vascular remodeling. These changes raise cardiac output and peripheral vascular resistance. Knowing how these collective mechanisms adapt to chronic intakes of high salt helps develop effective therapeutic policies to fight salt-induced hypertension.
Collapse
Affiliation(s)
- Raisa Nazir Ahmed Kazi
- Department Respiratory Therapy, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 37912, Saudi Arabia
| |
Collapse
|
2
|
Frame AA, Nist KM, Kim K, Puleo F, Moreira JD, Swaldi H, McKenna J, Wainford RD. Integrated renal and sympathetic mechanisms underlying the development of sex- and age-dependent hypertension and the salt sensitivity of blood pressure. GeroScience 2024; 46:6435-6458. [PMID: 38976131 PMCID: PMC11494650 DOI: 10.1007/s11357-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Aging is a non-modifiable understudied risk factor for hypertension. We hypothesized that sympathetically mediated activation of renal sodium reabsorption drives age-dependent hypertension and the salt sensitivity of blood pressure (BP). Using 3-, 8-, and 16-month-old male and female Sprague-Dawley rats as a model of normal aging, we assessed BP, indices of sympathetic tone, and the physiological responses to acute and chronic sodium challenge including sodium chloride cotransporter (NCC) regulation. The effects of renal nerve ablation and NCC antagonism were assessed in hypertensive male rats. We observed sex-dependent impaired renal sodium handling (24 h sodium balance (meq), male 3-month 0.36 ± 0.1 vs. 16-month 0.84 ± 0.2; sodium load excreted during 5% bodyweight isotonic saline volume expansion (%) male 3-month 77 ± 5 vs. 16-month 22 ± 8), hypertension (MAP (mmHg) male 3-month 123 ± 4 vs. 16-month 148 ± 6), and the salt sensitivity of BP in aged male, but not female, rats. Attenuated sympathoinhibitory afferent renal nerve (ARN) responses contributed to increased sympathetic tone and hypertension in male rats. Increased sympathetic tone contributes to renal sodium retention, in part through increased NCC activity via a dysfunctional with-no-lysine kinase-(WNK) STE20/SPS1-related proline/alanine-rich kinase signaling pathway, to drive hypertension and the salt sensitivity of BP in aged male rats. NCC antagonism and renal nerve ablation, which reduced WNK dysfunction and decreased NCC activity, attenuated age-dependent hypertension in male Sprague-Dawley rats. The contribution of an impaired sympathoinhibitory ARN reflex to sex- and age-dependent hypertension in an NCC-dependent manner, via an impaired WNK1/WNK4 dynamic, suggests this pathway as a mechanism-based target for the treatment of age-dependent hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kayla M Nist
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Franco Puleo
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse D Moreira
- Department of Health Sciences, Sargent College, Boston University, Boston, MA, USA
| | - Hailey Swaldi
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA
| | - James McKenna
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Division of Cardiology, Emory University School of Medicine, 1750 Haygood Drive, Atlanta, GA, N22030322, USA.
| |
Collapse
|
3
|
Kim K, Nist KM, Puleo F, McKenna J, Wainford RD. Sex differences in dietary sodium evoked NCC regulation and blood pressure in male and female Sprague-Dawley, Dahl salt-resistant, and Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2024; 327:F277-F289. [PMID: 38813592 PMCID: PMC11460337 DOI: 10.1152/ajprenal.00150.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Hypertension affects approximately one in two United States adults and sex plays an important role in the pathogenesis of hypertension. The Na+-Cl- cotransporter (NCC), regulated by a kinase network including with-no-lysine kinase (WNK)1 and WNK4, STE20/SPS1-related proline alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1), is critical to Na+ reabsorption and blood pressure regulation. Dietary salt differentially modulates NCC in salt-sensitive and salt-resistant rats, in part by modulation of WNK/SPAK/OxSR1 signaling. In this study, we tested the hypothesis that sex-dependent differences in NCC regulation contribute to the development of the salt sensitivity of blood pressure using male and female Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. In normotensive salt-resistant SD and DSR rats, a high-salt diet evoked significant decreases in NCC activity, expression, and phosphorylation. In males, these changes were associated with no change in WNK1 expression, a decrease in WNK4 levels, and suppression of SPAK/OxSR1 expression and phosphorylation. In contrast, in females, there was decreased NCC activity associated with suppression of SPAK/OxSR1 expression and phosphorylation. In hypertensive DSS rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension. Collectively, our findings support the existence of sex differences in male versus female rats with NCC regulation during dietary salt intake involving suppression of WNK4 expression in male rats only and the involvement of SPAK/OxSR1 signaling in both males and females.NEW & NOTEWORTHY NCC regulation is sex dependent. In normotensive male and female Sprague-Dawley and Dahl salt-resistant rats, which exhibit dietary Na+-evoked NCC suppression, male rats exhibit decreased WNK4 expression and decreased SPAK and OxSR1 levels, whereas female rats only suppress SPAK and OxSR1. In hypertensive Dahl salt-sensitive rats, the ability of females to suppress NCC (in opposition to males) via a SPAK/OxSR1 mechanism likely contributes to their lower magnitude of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kayla M Nist
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Franco Puleo
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - James McKenna
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics, Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
4
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. Sci Rep 2024; 14:495. [PMID: 38177257 PMCID: PMC10767006 DOI: 10.1038/s41598-023-50816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) excised from 3-month, 8-month, and 8-month denervated rats were subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
- Anastasia Gkousioudi
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Margherita Razzoli
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Jesse D Moreira
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA.
- Division of Cardiology, School of Medicine, HSRB II, Emory University, 1750 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Division of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. RESEARCH SQUARE 2023:rs.3.rs-3273236. [PMID: 37720022 PMCID: PMC10503847 DOI: 10.21203/rs.3.rs-3273236/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) were excised from 3-, 8- and 8-month-old denervated rats, and subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
| | | | - Jesse D Moreira
- Boston University Avedisian and Chobanian School of Medicine
| | | | | |
Collapse
|
6
|
Amraei R, Moreira JD, Wainford RD. Central Gαi 2 Protein Mediated Neuro-Hormonal Control of Blood Pressure and Salt Sensitivity. Front Endocrinol (Lausanne) 2022; 13:895466. [PMID: 35837296 PMCID: PMC9275552 DOI: 10.3389/fendo.2022.895466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension, a major public health issue, is estimated to contribute to 10% of all deaths worldwide. Further, the salt sensitivity of blood pressure is a critical risk factor for the development of hypertension. The hypothalamic paraventricular nucleus (PVN) coordinates neuro-hormonal responses to alterations in plasma sodium and osmolality and multiple G Protein-Coupled Receptors (GPCRs) are involved in fluid and electrolyte homeostasis. In acute animal studies, our laboratory has shown that central Gαi/o subunit protein signal transduction mediates hypotensive and bradycardic responses and that Gz/q, proteins mediate the release of arginine vasopressin (AVP) and subsequent aquaretic responses to acute pharmacological stimuli. Extending these studies, our laboratory has shown that central Gαi2 proteins selectively mediate the hypotensive, sympathoinhibitory and natriuretic responses to acute pharmacological activation of GPCRs and in response to acute physiological challenges to fluid and electrolyte balance. In addition, following chronically elevated dietary sodium intake, salt resistant rats demonstrate site-specific and subunit-specific upregulation of Gαi2 proteins in the PVN, resulting in sympathoinhibition and normotension. In contrast, chronic dietary sodium intake in salt sensitive animals, which fail to upregulate PVN Gαi2 proteins, results in the absence of dietary sodium-evoked sympathoinhibition and salt sensitive hypertension. Using in situ hybridization, we observed that Gαi2 expressing neurons in parvocellular division of the PVN strongly (85%) colocalize with GABAergic neurons. Our data suggest that central Gαi2 protein-dependent responses to an acute isotonic volume expansion (VE) and elevated dietary sodium intake are mediated by the peripheral sensory afferent renal nerves and do not depend on the anteroventral third ventricle (AV3V) sodium sensitive region or the actions of central angiotensin II type 1 receptors. Our translational human genomic studies have identified three G protein subunit alpha I2 (GNAI2) single nucleotide polymorphisms (SNPs) as potential biomarkers in individuals with salt sensitivity and essential hypertension. Collectively, PVN Gαi2 proteins-gated pathways appear to be highly conserved in salt resistance to counter the effects of acute and chronic challenges to fluid and electrolyte homeostasis on blood pressure via a renal sympathetic nerve-dependent mechanism.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jesse D. Moreira
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Richard D. Wainford
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Frame AA, Nist KM, Kim K, Kuwabara JT, Wainford RD. Natriuresis During an Acute Intravenous Sodium Chloride Infusion in Conscious Sprague Dawley Rats Is Mediated by a Blood Pressure-Independent α1-Adrenoceptor-Mediated Mechanism. Front Physiol 2022; 12:784957. [PMID: 35111076 PMCID: PMC8802910 DOI: 10.3389/fphys.2021.784957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that sense alterations in total body sodium content to facilitate sodium homeostasis in response to an acute sodium challenge that does not increase blood pressure have not been fully elucidated. We hypothesized that the renal sympathetic nerves are critical to mediate natriuresis via α1- or β-adrenoceptors signal transduction pathways to maintain sodium balance in the face of acute increases in total body sodium content that do not activate the pressure-natriuresis mechanism. To address this hypothesis, we used acute bilateral renal denervation (RDNX), an anteroventral third ventricle (AV3V) lesion and α1- or β-antagonism during an acute 1M NaCl sodium challenge in conscious male Sprague Dawley rats. An acute 1M NaCl infusion did not alter blood pressure and evoked profound natriuresis and sympathoinhibition. Acute bilateral RDNX attenuated the natriuretic and sympathoinhibitory responses evoked by a 1M NaCl infusion [peak natriuresis (μeq/min) sham 14.5 ± 1.3 vs. acute RDNX: 9.2 ± 1.4, p < 0.05; plasma NE (nmol/L) sham control: 44 ± 4 vs. sham 1M NaCl infusion 11 ± 2, p < 0.05; acute RDNX control: 42 ± 6 vs. acute RDNX 1M NaCl infusion 25 ± 3, p < 0.05]. In contrast, an AV3V lesion did not impact the cardiovascular, renal excretory or sympathoinhibitory responses to an acute 1M NaCl infusion. Acute i.v. α1-adrenoceptor antagonism with terazosin evoked a significant drop in baseline blood pressure and significantly attenuated the natriuretic response to a 1M NaCl load [peak natriuresis (μeq/min) saline 17.2 ± 1.4 vs. i.v. terazosin 7.8 ± 2.5, p < 0.05]. In contrast, acute β-adrenoceptor antagonism with i.v. propranolol infusion did not impact the cardiovascular or renal excretory responses to an acute 1M NaCl infusion. Critically, the natriuretic response to an acute 1M NaCl infusion was significantly blunted in rats receiving a s.c. infusion of the α1-adrenoceptor antagonist terazosin at a dose that did not lower baseline blood pressure [peak natriuresis (μeq/min) sc saline: 18 ± 1 vs. sc terazosin 7 ± 2, p < 0.05]. Additionally, a s.c. infusion of the α1-adrenoceptor antagonist terazosin further attenuated the natriuretic response to a 1M NaCl infusion in acutely RDNX animals. Collectively these data indicate a specific role of a blood pressure-independent renal sympathetic nerve-dependent α1-adrenoceptor-mediated pathway in the natriuretic and sympathoinhibitory responses evoked by acute increases in total body sodium.
Collapse
Affiliation(s)
- Alissa A. Frame
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Kayla M. Nist
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Jill T. Kuwabara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Richard D. Wainford
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Richard D. Wainford,
| |
Collapse
|
8
|
Moreira JD, Nist KM, Carmichael CY, Kuwabara JT, Wainford RD. Sensory Afferent Renal Nerve Activated Gαi 2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges. Front Physiol 2021; 12:771167. [PMID: 34916958 PMCID: PMC8669768 DOI: 10.3389/fphys.2021.771167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022] Open
Abstract
We have previously reported that brain Gαi2 subunit proteins are required to maintain sodium homeostasis and are endogenously upregulated in the hypothalamic paraventricular nucleus (PVN) in response to increased dietary salt intake to maintain a salt resistant phenotype in rats. However, the origin of the signal that drives the endogenous activation and up-regulation of PVN Gαi2 subunit protein signal transduction pathways is unknown. By central oligodeoxynucleotide (ODN) administration we show that the pressor responses to central acute administration and central infusion of sodium chloride occur independently of brain Gαi2 protein pathways. In response to an acute volume expansion, we demonstrate, via the use of selective afferent renal denervation (ADNX) and anteroventral third ventricle (AV3V) lesions, that the sensory afferent renal nerves, but not the sodium sensitive AV3V region, are mechanistically involved in Gαi2 protein mediated natriuresis to an acute volume expansion [peak natriuresis (μeq/min) sham AV3V: 43 ± 4 vs. AV3V 45 ± 4 vs. AV3V + Gαi2 ODN 25 ± 4, p < 0.05; sham ADNX: 43 ± 4 vs. ADNX 23 ± 6, AV3V + Gαi2 ODN 25 ± 3, p < 0.05]. Furthermore, in response to chronically elevated dietary sodium intake, endogenous up-regulation of PVN specific Gαi2 proteins does not involve the AV3V region and is mediated by the sensory afferent renal nerves to counter the development of the salt sensitivity of blood pressure (MAP [mmHg] 4% NaCl; Sham ADNX 124 ± 4 vs. ADNX 145 ± 4, p < 0.05; Sham AV3V 125 ± 4 vs. AV3V 121 ± 5). Additionally, the development of the salt sensitivity of blood pressure following central ODN-mediated Gαi2 protein down-regulation occurs independently of the actions of the brain angiotensin II type 1 receptor. Collectively, our data suggest that in response to alterations in whole body sodium the peripheral sensory afferent renal nerves, but not the central AV3V sodium sensitive region, evoke the up-regulation and activation of PVN Gαi2 protein gated pathways to maintain a salt resistant phenotype. As such, both the sensory afferent renal nerves and PVN Gαi2 protein gated pathways, represent potential targets for the treatment of the salt sensitivity of blood pressure.
Collapse
Affiliation(s)
- Jesse D. Moreira
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Medicine, School of Medicine, Boston University, Boston, MA, United States
| | - Kayla M. Nist
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Anatomy & Neurobiology, School of Medicine, Boston University, Boston, MA, United States
| | - Casey Y. Carmichael
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Jill T. Kuwabara
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Richard D. Wainford
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
9
|
The Emerging Scenario of the Gut-Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10111845. [PMID: 34829716 PMCID: PMC8614795 DOI: 10.3390/antiox10111845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The fact that millions of people worldwide suffer from Alzheimer’s disease (AD) or Parkinson’s disease (PD), the two most prevalent neurodegenerative diseases (NDs), has been a permanent challenge to science. New tools were developed over the past two decades and were immediately incorporated into routines in many laboratories, but the most valuable scientific contribution was the “waking up” of the gut microbiota. Disturbances in the gut microbiota, such as an imbalance in the beneficial/pathogenic effects and a decrease in diversity, can result in the passage of undesired chemicals and cells to the systemic circulation. Recently, the potential effect of probiotics on restoring/preserving the microbiota was also evaluated regarding important metabolite and vitamin production, pathogen exclusion, immune system maturation, and intestinal mucosal barrier integrity. Therefore, the focus of the present review is to discuss the available data and conclude what has been accomplished over the past two decades. This perspective fosters program development of the next steps that are necessary to obtain confirmation through clinical trials on the magnitude of the effects of kefir in large samples.
Collapse
|
10
|
Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacol Sin 2021; 42:1390-1400. [PMID: 33214697 PMCID: PMC8379181 DOI: 10.1038/s41401-020-00557-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular and metabolic diseases are the leading causes of death and disability worldwide and impose a tremendous socioeconomic burden on individuals as well as the healthcare system. Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein that can be proteolytically cleaved and secreted as irisin to regulate glycolipid metabolism and cardiovascular homeostasis. In this review, we present the current knowledge on the predictive and therapeutic role of FNDC5 in a variety of cardiovascular and metabolic diseases, such as hypertension, atherosclerosis, ischemic heart disease, arrhythmia, metabolic cardiomyopathy, cardiac remodeling, heart failure, diabetes mellitus, and obesity.
Collapse
|
11
|
Chaudhary P, Wainford RD. Neuroanatomical characterization of Gαi 2-expressing neurons in the hypothalamic paraventricular nucleus of male and female Sprague-Dawley rats. Physiol Genomics 2021; 53:12-21. [PMID: 33252993 PMCID: PMC7847047 DOI: 10.1152/physiolgenomics.00097.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022] Open
Abstract
Hypertension is a global health burden. The hypothalamic paraventricular nucleus (PVN) is an essential component of the neuronal network that regulates sodium homeostasis and blood pressure (BP). Previously, we have shown PVN-specific G protein-coupled receptor-coupled Gαi2 subunit proteins are essential to counter the development of salt-sensitive hypertension by mediating the sympathoinhibitory and natriuretic responses to increased dietary sodium intake to maintain sodium homeostasis and normotension. However, the cellular localization and identity of PVN Gαi2-expressing neurons are currently unknown. In this study using in situ hybridization, we determined the neuroanatomical characterization of Gαi2-expressing PVN neurons in 3-mo-old male and female Sprague-Dawley rats. We observed that Gαi2-expressing neurons containing Gnai2 mRNA are highly localized in the parvocellular region of the hypothalamic PVN. At level 2 of the hypothalamic PVN, Gnai2 mRNA colocalized with ∼ 85% of GABA-expressing neurons and ∼28% of glutamatergic neurons. Additionally, within level 2 Gnai2 mRNA colocalized with ∼75% of corticotrophin-releasing hormone PVN neurons. Gnai2 neurons had lower colocalization with tyrosine hydroxylase (∼33%)-, oxytocin (∼6%)-, and arginine vasopressin (∼10%)-expressing parvocellular neurons in level 2 PVN. Colocalization was similar among male and female rats. The high colocalization of Gnai2 mRNA with GABAergic neurons, in conjunction with our previous findings that PVN Gαi2 proteins mediate sympathoinhibition, suggests that Gαi2 proteins potentially modulate GABAergic signaling to impact sympathetic outflow and BP.
Collapse
Affiliation(s)
- Parul Chaudhary
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
- The Whitaker Cardiovascular Institute, Boston University, Boston, Massachusetts
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
- The Whitaker Cardiovascular Institute, Boston University, Boston, Massachusetts
- Department of Health Sciences, Boston University Sargent College, Boston, Massachusetts
| |
Collapse
|
12
|
Salt sensitivity and hypertension. J Hum Hypertens 2020; 35:184-192. [PMID: 32862203 DOI: 10.1038/s41371-020-00407-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Salt sensitivity refers to the physiological trait present in mammals, including humans, by which the blood pressure (BP) of some members of the population exhibits changes parallel to changes in salt intake. It is commoner in elderly, females, Afro-Americans, patients with chronic kidney disease (CKD) and insulin resistance. Increased salt intake promotes an expansion of extracellular fluid volume and increases cardiac output. Salt-sensitive individuals present an abnormal kidney reaction to salt intake; the kidneys retain most of the salt due to an abnormal over-reactivity of sympathetic nervous system and a blunted suppression of renin-angiotensin axis. Moreover, instead of peripheral vascular resistance falling, salt-sensitive subjects present increased vascular resistance due mainly to impaired nitric oxide synthesis in endothelium. Recent studies have shown that part of the dietary salt loading accumulates in skin. Hypertensive and patients with CKD seem to have more sodium in skin comparing to healthy ones. However, we still have not fully explained the link between skin sodium, BP and salt sensitivity. Finally, although salt sensitivity plays a meaningful role in BP pathophysiology, it cannot be used by the physician in everyday patient's care, mainly due to lack of a simple and practical diagnostic test.
Collapse
|