1
|
Li YL, Li Y, Tu H, Evans AJ, Patel TA, Zheng H, Patel KP. Stellate Ganglia: A Key Therapeutic Target for Malignant Ventricular Arrhythmia in Heart Disease. Circ Res 2025; 136:1049-1069. [PMID: 40273204 PMCID: PMC12026290 DOI: 10.1161/circresaha.124.325384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Malignant ventricular arrhythmias (VAs), such as ventricular tachycardia and ventricular fibrillation, are the cause of approximately half a million deaths per year in the United States, which is a common lethal event in heart disease, such as hypertension, catecholaminergic polymorphic ventricular tachycardia, takotsubo cardiomyopathy, long-QT syndrome, and progressing into advanced heart failure. A common characteristic of these heart diseases, and the subsequent development of VAs, is the overactivation of the sympathetic nervous system. Current treatments for VAs in these heart diseases, such as β-adrenergic receptor blockers and cardiac sympathetic ablation, aim at inhibiting cardiac sympathetic overactivation. However, these treatments do not translate into becoming efficacious as long-term suppressors of ventricular tachycardia/ventricular fibrillation events. As a key regulatory component in the heart, cardiac postganglionic sympathetic neurons residing in the stellate ganglia (SGs) release neurotransmitters (such as norepinephrine and NPY [neuropeptide Y]) to perform their regulatory role in dictating cardiac function. Growing evidence from animal experiments and clinical studies has demonstrated that the remodeling of the SG may be intimately involved in malignant arrhythmogenesis. This identifies the SG as a key potential therapeutic target for the treatment of malignant VAs in heart disease. Therefore, this review summarizes the role of SG in ventricular arrhythmogenesis and updates the novel targeting of SG for clinical treatment of VAs in heart disease.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tapan A. Patel
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hong Zheng
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Kaushik P. Patel
- Department of Cellular and Integrated Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Peng JQ, Zhou MM, Xu L, Wang X, Tang YH, Liu Y. Targeted M-Channel Activation in the Left Stellate Ganglion Protects Against Ischemia-Induced Ventricular Arrhythmias in Canines. J Am Heart Assoc 2025; 14:e039059. [PMID: 40094190 DOI: 10.1161/jaha.124.039059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Acute myocardial ischemia (AMI)-triggered ventricular arrhythmias are closely linked to maladaptive sympathetic hyperactivity mediated via the left stellate ganglion (LSG). Although M-type potassium channels regulate neuronal excitability and hold therapeutic potential for neurological disorders, their role in intrinsic LSG neurons during ischemia remains unexplored. We investigated whether pharmacological M-channel activation in the LSG mitigates sympathetic overdrive and arrhythmogenesis in AMI. METHODS AND RESULTS Twenty-four beagles underwent LSG microinjection of either vehicle (n=12) or retigabine (M-channel activator, 50 μM; n=12) 30 minutes before AMI induction. We assessed (1) neural parameters (LSG electrophysiology, plasma norepinephrine levels, and c-fos+/tyrosine hydroxylase+ neuron expression); (2) cardiac electrophysiological parameters (beat-to-beat repolarization variability, spatial dispersion of effective refractory period and action potential duration, ventricular fibrillation threshold, and spontaneous ventricular arrhythmias incidence); and (3) autonomic and hemodynamic measures (heart rate variability and blood pressure). Retigabine pretreatment significantly suppressed ischemia-induced LSG hyperactivity and reduced sympathetic activation markers compared with controls. Treated animals exhibited attenuated repolarization variability and reduced electrophysiological heterogeneity in ischemic myocardium. The retigabine group demonstrated a higher ventricular fibrillation threshold (26.67±2.61 versus 12.33±1.76 voltage (V), P=0.0008) and a lower incidence of ventricular arrhythmias during AMI, with only negligible effects on baseline cardiac repolarization duration or LSG function before ischemia induction. CONCLUSIONS Targeted activation of LSG M-channels with retigabine stabilizes ischemia-induced sympathetic hyperactivity, promotes cardiac autonomic balance, preserves repolarization homogeneity, and ultimately mitigates arrhythmic susceptibility. These findings highlight ganglionic M-channel modulation as a translatable strategy to suppress neurogenic arrhythmogenesis in AMI.
Collapse
Affiliation(s)
- Jin-Qiang Peng
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute of Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| | - Ming-Min Zhou
- Department of Cardiology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Liao Xu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute of Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| | - Xi Wang
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute of Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| | - Yan-Hong Tang
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute of Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| | - Yu Liu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute of Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| |
Collapse
|
3
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2025; 603:1689-1728. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Bussmann B, Ayagama T, Liu K, Li D, Herring N. Bayliss Starling Prize Lecture 2023: Neuropeptide-Y being 'unsympathetic' to the broken hearted. J Physiol 2025; 603:1841-1864. [PMID: 38847435 PMCID: PMC11955873 DOI: 10.1113/jp285370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 04/01/2025] Open
Abstract
William Bayliss and Ernest Starling are not only famous as pioneers in cardiovascular physiology, but also responsible for the discovery of the first hormone (from the Greek 'excite or arouse'), the intestinal signalling molecule and neuropeptide secretin in 1902. Our research group focuses on neuropeptides and neuromodulators that influence cardiovascular autonomic control as potential biomarkers in disease and tractable targets for therapeutic intervention. Acute myocardial infarction (AMI) and chronic heart failure (CHF) result in high levels of cardiac sympathetic stimulation, which is a poor prognostic indicator. Although beta-blockers improve mortality in these conditions by preventing the action of the neurotransmitter noradrenaline, a substantial residual risk remains. Recently, we have identified the sympathetic co-transmitter neuropeptide-Y (NPY) as being released during AMI, leading to larger infarcts and life-threatening arrhythmia in both animal models and patients. Here, we discuss recently published data demonstrating that peripheral venous NPY levels are associated with heart failure hospitalisation and mortality after AMI, and all cause cardiovascular mortality in CHF, even when adjusting for known risk factors (including brain natriuretic peptide). We have investigated the mechanistic basis for these observations in human and rat stellate ganglia and cardiac tissue, manipulating NPY neurochemistry at the same time as using state-of-the-art imaging techniques, to establish the receptor pathways responsible for NPY signalling. We propose NPY as a new mechanistic biomarker in AMI and CHF patients and aim to determine whether specific NPY receptor blockers can prevent arrhythmia and attenuate the development of heart failure.
Collapse
Affiliation(s)
- Benjamin Bussmann
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Thamali Ayagama
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2025; 603:1729-1779. [PMID: 39340173 PMCID: PMC11955874 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N. Herring
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - O. A. Ajijola
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| | - R. D. Foreman
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - A. V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceUniversity College LondonLondonUK
| | - A. L. Green
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - J. Osborn
- Department of SurgeryUniversity of MinnesotaMinneapolisMNUSA
| | - D. J. Paterson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - J. F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - C. M. Ripplinger
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - C. Smith
- Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandOHUSA
| | - T. L. Vrabec
- Department of Physical Medicine and Rehabilitation, School of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - H. J. Wang
- Department of AnesthesiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - I. H. Zucker
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - J. L. Ardell
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| |
Collapse
|
6
|
Arias ER, Sánchez-Tafolla BM, Terrón C, Martínez LA, Zetina ME, Morales MA, Cifuentes F. Long-term potentiation and its neurotrophin-dependent modulation in the superior cervical ganglion of the rat are influenced by KCNQ channel function. Can J Physiol Pharmacol 2023; 101:539-547. [PMID: 37406358 DOI: 10.1139/cjpp-2022-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Ganglionic long-term potentiation (gLTP) in the rat superior cervical ganglion (SCG) is differentially modulated by neurotrophic factors (Nts): brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). KCNQ/M channels, key regulators of neuronal excitability, and firing pattern are modulated by Nts; therefore, they might contribute to gLTP expression and to the Nts-dependent modulation of gLTP. In the SCG of rats, we characterized the presence of the KCNQ2 isoform and the effects of opposite KCNQ/M channel modulators on gLTP in control condition and under Nts modulation. Immunohistochemical and reverse transcriptase polymerase chain reaction analyses showed the expression of the KCNQ2 isoform. We found that 1 µmol/L XE991, a channel inhibitor, significantly reduced gLTP (∼50%), whereas 5 µmol/L flupirtine, a channel activator, significantly increased gLTP (1.3- to 1.7-fold). Both modulators counterbalanced the effects of the Nts on gLTP. Data suggest that KCNQ/M channels are likely involved in gLTP expression and in the modulation exerted by BDNF and NGF.
Collapse
Affiliation(s)
- Erwin R Arias
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Berardo M Sánchez-Tafolla
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Carlos Terrón
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Luis A Martínez
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Maria E Zetina
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Miguel A Morales
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| | - Fredy Cifuentes
- Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México
| |
Collapse
|
7
|
Inoue M, Harada K. Enhancement of muscarinic receptor-mediated excitation in spontaneously hypertensive rat adrenal medullary chromaffin cells. Auton Neurosci 2023; 248:103108. [PMID: 37467550 DOI: 10.1016/j.autneu.2023.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
One of the mechanisms for hypertension is an increase in blood catecholamines due to increased secretion from sympathetic nerve terminals and adrenal medullary chromaffin (AMC) cells. Spontaneously hypertensive rats (SHRs) are used as an animal model of hypertension. Catecholamine secretion in AMC cells occurs in response to humoral factors and neuronal inputs from the sympathetic nerve fibres. Acetylcholine (ACh) released from the nerve terminals activates nicotinic as well as muscarinic ACh receptors. The present experiment aimed to elucidate whether muscarinic receptor-mediated excitation is altered in SHR AMC cells and, if it is, how. Compared with normotensive rat AMC cells, muscarinic stimulation induced greater catecholamine secretion and larger depolarising inward currents in SHR AMC cells. In contrast to normotensive rat AMC cells, the muscarine-induced current consisted of quinine-sensitive and quinine-insensitive components. The former and the latter are possibly ascribed to nonselective cation channel activation and TWIK-related acid-sensitive K+ (TASK) channel inhibition, as noted in guinea pig AMC cells. In fact, immunoreactive material for TASK1 and several isoforms of transient receptor potential canonical (TRPC) channels was detected in SHR AMC cells. Stromal interaction molecule 1 (STIM1), which plays an essential role for heteromeric TRPC1-TRPC4 channel formation and is not expressed in normotensive rat AMC cells, was detected in the cytoplasm and co-localised with TRPC1. The expression of muscarinic M1 receptors was enhanced in SHR AMC cells compared with normotensive rats. The results indicate that muscarinic excitation is enhanced in SHR AMC cells, probably through facilitation of TRPC channel signalling.
Collapse
Affiliation(s)
- Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807-8555, Japan.
| | - Keita Harada
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807-8555, Japan
| |
Collapse
|
8
|
van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023; 33:491-517. [PMID: 37166736 PMCID: PMC10173946 DOI: 10.1007/s10286-023-00948-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the autonomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure. METHODS Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical practice are summarized. RESULTS A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimental cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors that mediate progressive sympathoexcitation and parasympathetic dysfunction remain. CONCLUSIONS Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and neuromodulatory therapies are still lagging.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Abstract
Cardiac dysfunction triggers immune-mediated loss of pineal gland melatonin release.
Collapse
Affiliation(s)
- Harvey Davis
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
10
|
Nimitvilai-Roberts S, Gioia D, Lopez MF, Glaser CM, Woodward JJ. Chronic intermittent ethanol exposure differentially alters the excitability of neurons in the orbitofrontal cortex and basolateral amygdala that project to the dorsal striatum. Neuropharmacology 2023; 228:109463. [PMID: 36792030 PMCID: PMC10006395 DOI: 10.1016/j.neuropharm.2023.109463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Alcohol use disorder is associated with altered neuron function including those in orbitofrontal cortex (OFC) and basolateral amygdala (BLA) that send glutamatergic inputs to areas of the dorsal striatum (DS) that mediate goal and habit directed actions. Previous studies reported that chronic intermittent (CIE) exposure to ethanol alters the electrophysiological properties of OFC and BLA neurons, although projection targets for these neurons were not identified. In this study, we used male and female mice and recorded current-evoked spiking of retrobead labeled DS-projecting OFC and BLA neurons in the same animals following air or CIE treatment. DS-projecting OFC neurons were hyperexcitable 3- and 7-days following CIE exposure and spiking returned to control levels after 14 days of withdrawal. In contrast, firing was decreased in DS-projecting BLA neurons at 3-days withdrawal, increased at 7- and 14-days and returned to baseline at 28 days post-CIE. CIE exposure enhanced the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of DS-projecting OFC neurons but had no effect on inhibitory postsynaptic currents (sIPSCs). In DS-projecting BLA neurons, the amplitude and frequency of sIPSCs was enhanced 3 days post-CIE with no change in sEPSCs while at 7-days post-withdrawal, sEPSC amplitude and frequency were increased and sIPSCs had returned to normal. Finally, in CIE-treated mice, acute ethanol no longer inhibited spike firing of DS-projecting OFC and BLA neurons. Overall, these results suggest that CIE-induced changes in the excitability of DS-projecting OFC and BLA neurons could underlie deficits in behavioral control often observed in alcohol-dependent individuals.
Collapse
Affiliation(s)
| | - Dominic Gioia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christina M Glaser
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
11
|
Cheng L, Yu L, Zhan X, Tse G, Liu T, Fu H, Li G. Ticagrelor Can Regulate the Ion Channel Characteristics of Superior Cervical Ganglion Neurons after Myocardial Infarction. J Cardiovasc Dev Dis 2023; 10:71. [PMID: 36826567 PMCID: PMC9966694 DOI: 10.3390/jcdd10020071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The superior cervical ganglion (SCG) plays a key role in cardiovascular diseases. The aim of this study was to determine the changes in the ion channel characteristics of the SCG following myocardial infarction (MI) and the role of pretreatment with the P2Y12 receptor antagonist ticagrelor (TIC). METHODS A total of 18 male rabbits were randomly divided into a control group, MI group, and P2Y12 receptor antagonist (TIC) group (abbreviated as the TIC group). Rabbit MI was performed via two abdominal subcutaneous injections of 150 mg·kg-1·d-1 of isoproterenol (ISO) with an interval of 24 h. TIC pretreatment at 20 mg·kg-1·d-1 was administered via gavage for two consecutive days. The cardiac function of each group was evaluated with echocardiography. ADP receptor P2Y12 expressions in SCGs were determined using RT-PCR and immunofluorescence staining. Ion channel characteristics of SCG neurons were measured using a whole-cell patch clamp. Intracellular calcium concentrations for SCG neurons were measured using confocal microscopy. RESULTS Cardiac function was reduced in the rabbits of the MI group, the sympathetic nerve activity of SCGs was increased, and the current amplitude of the neuron ion channel was increased. MI led to alterations in the activation and inactivation characteristics of INa channels accompanied by increased expression of P2Y12 in SCGs. Most of these abnormalities were prevented by TIC pretreatment in the TIC group. CONCLUSIONS TIC pretreatment could attenuate the increase in P2Y12 expression in SCGs and the changes to the ion channel characteristics of SCG neurons after MI. This may be the mechanism underlying the cardiac protective effects of TIC.
Collapse
Affiliation(s)
- Lijun Cheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lin Yu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaoping Zhan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Huaying Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
12
|
Sharma S, Littman R, Tompkins J, Arneson D, Contreras J, Dajani AH, Ang K, Tsanhani A, Sun X, Jay PY, Herzog H, Yang X, Ajijola OA. Tiered Sympathetic Control of Cardiac Function Revealed by Viral Tracing and Single Cell Transcriptome Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524575. [PMID: 36711942 PMCID: PMC9882306 DOI: 10.1101/2023.01.18.524575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell bodies of postganglionic sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), alongside neurons innervating other organs and tissues. Whether cardiac-innervating stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other tissues is not known. To identify and resolve the transcriptomic profiles of SGNs innervating the heart we leveraged retrograde tracing techniques using adeno-associated virus (AAV) expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing. We investigated electrophysiologic, morphologic, and physiologic roles for subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes innervate the heart. These three subtypes stratify into two subpopulations; high (NA1a) and low (NA1b and NA1c) Npy-expressing cells, exhibit distinct morphological, neurochemical, and electrophysiologic characteristics. In physiologic studies in transgenic mouse models modulating NPY signaling, we identified differential control of cardiac responses by these two subpopulations to high and low stress states. These findings provide novel insights into the unique properties of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies to target specific neuronal subtypes for sympathetic blockade in cardiac disease.
Collapse
|
13
|
Emerging mechanisms involving brain Kv7 channel in the pathogenesis of hypertension. Biochem Pharmacol 2022; 206:115318. [PMID: 36283445 DOI: 10.1016/j.bcp.2022.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Hypertension is a prevalent health problem inducing many organ damages. The pathogenesis of hypertension involves a complex integration of different organ systems including the brain. The elevated sympathetic nerve activity is closely related to the etiology of hypertension. Ion channels are critical regulators of neuronal excitability. Several mechanisms have been proposed to contribute to hypothalamic-driven elevated sympathetic activity, including altered ion channel function. Recent findings indicate one of the voltage-gated potassium channels, Kv7 channels (M channels), plays a vital role in regulating cardiovascular-related neurons activity, and the expression of Kv7 channels is downregulated in hypertension. This review highlights recent findings that the Kv7 channels in the brain, blood vessels, and kidneys are emerging targets involved in the pathogenesis of hypertension, suggesting new therapeutic targets for treating drug-resistant, neurogenic hypertension.
Collapse
|
14
|
Haburčák M, Harrison J, Buyukozturk MM, Sona S, Bates S, Birren SJ. Heightened sympathetic neuron activity and altered cardiomyocyte properties in spontaneously hypertensive rats during the postnatal period. Front Synaptic Neurosci 2022; 14:995474. [PMID: 36247695 PMCID: PMC9561918 DOI: 10.3389/fnsyn.2022.995474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The Spontaneously Hypertensive Rat (SHR) has increased sympathetic drive to the periphery that precedes and contributes to the development of high blood pressure, making it a useful model for the study of neurogenic hypertension. Comparisons to the normotensive Wistar Kyoto (WKY) rat have demonstrated altered active and intrinsic properties of SHR sympathetic neurons shortly before the onset of hypertension. Here we examine the structural and functional plasticity of postnatal SHR and WKY sympathetic neurons cultured alone or co-cultured with cardiomyocytes under conditions of limited extrinsic signaling. SHR neurons have an increased number of structural synaptic sites compared to age-matched WKY neurons, measured by the co-localization of presynaptic vesicular acetylcholine transporter and postsynaptic shank proteins. Whole cell recordings show that SHR neurons have a higher synaptic charge than WKY neurons, demonstrating that the increase in synaptic sites is associated with increased synaptic transmission. Differences in synaptic properties are not associated with altered firing rates between postnatal WKY and SHR neurons and are not influenced by interactions with target cardiomyocytes from either strain. Both SHR and WKY neurons show tonic firing patterns in our cultures, which are depleted of non-neuronal ganglionic cells and provide limited neurotrophic signaling. This suggests that the normal mature, phasic firing of sympathetic neurons requires extrinsic signaling, with potentially differential responses in the prehypertensive SHR, which have been reported to maintain tonic firing at later developmental stages. While cardiomyocytes do not drive neuronal differences in our cultures, SHR cardiomyocytes display decreased hypertrophy compared to WKY cells and altered responses to co-cultured sympathetic neurons. These experiments suggest that altered signaling in SHR neurons and cardiomyocytes contributes to changes in the cardiac-sympathetic circuit in prehypertensive rats as early as the postnatal period.
Collapse
Affiliation(s)
- Marián Haburčák
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Joshua Harrison
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Melda M. Buyukozturk
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Surbhi Sona
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Samuel Bates
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Susan J. Birren
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States,*Correspondence: Susan J. Birren
| |
Collapse
|
15
|
Zhou Z, Liu C, Xu S, Wang J, Guo F, Duan S, Deng Q, Sun J, Yu F, Zhou Y, Wang M, Wang Y, Zhou L, Jiang H, Yu L. Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model. Basic Res Cardiol 2022; 117:34. [PMID: 35819552 DOI: 10.1007/s00395-022-00939-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
The stellate ganglia play an important role in cardiac remodeling after myocardial infarction (MI). This study aimed to investigate whether adiponectin (APN), an adipokine mainly secreted by adipose tissue, could modulate the left stellate ganglion (LSG) and exert cardioprotective effects through the sympathetic nervous system (SNS) in a canine model of MI. APN microinjection and APN overexpression with recombinant adeno-associated virus vector in the LSG were performed in acute and chronic MI models, respectively. The results showed that acute APN microinjection decreased LSG function and neural activity, and suppressed ischemia-induced ventricular arrhythmia. Chronic MI led to a decrease in the effective refractory period and action potential duration at 90% and deterioration in echocardiography performance, all of which was blunted by APN overexpression. Moreover, APN gene transfer resulted in favorable heart rate variability alteration, and decreased cardiac SNS activity, serum noradrenaline and neuropeptide Y, which were augmented after MI. APN overexpression also decreased the expression of nerve growth factor and growth associated protein 43 in the LSG and peri-infarct myocardium, respectively. Furthermore, RNA sequencing of LSG indicated that 4-week MI up-regulated the mRNA levels of macrophage/microglia activation marker Iba1, chemokine ligands (CXCL10, CCL20), chemokine receptor CCR5 and pro-inflammatory cytokine IL6, and downregulated IL1RN and IL10 mRNA, which were reversed by APN overexpression. Our results reveal that APN inhibits cardiac sympathetic remodeling and mitigates cardiac remodeling after MI. APN-mediated gene therapy may provide a potential therapeutic strategy for the treatment of MI.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Chengzhe Liu
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Saiting Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Jun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Shoupeng Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Qiang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Fu Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yuyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China.,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China. .,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China. .,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China. .,Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, People's Republic of China. .,Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
16
|
Davis H, Paterson DJ, Herring N. Post-Ganglionic Sympathetic Neurons can Directly Sense Raised Extracellular Na + via SCN7a/Na x. Front Physiol 2022; 13:931094. [PMID: 35784866 PMCID: PMC9247455 DOI: 10.3389/fphys.2022.931094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between dietary NaCl intake and high blood pressure is well-established, and occurs primarily through activation of the sympathetic nervous system. Nax, a Na+-sensitive Na+ channel, plays a pivotal role in driving sympathetic excitability, which is thought to originate from central regions controlling neural outflow. We investigated whether post-ganglionic sympathetic neurons from different ganglia innervating cardiac and vasculature tissue can also directly sense extracellular Na+. Using whole-cell patch clamp recordings we demonstrate that sympathetic neurons from three sympathetic ganglia (superior cervical, stellate and superior mesenteric/coeliac) respond to elevated extracellular NaCl concentration. In sympathetic stellate ganglia neurons, we established that the effect of NaCl was dose-dependent and independent of osmolarity, Cl- and membrane Ca2+ flux, and critically dependent on extracellular Na+ concentration. We show that Nax is expressed in sympathetic stellate ganglia neurons at a transcript and protein level using single-cell RNA-sequencing and immunohistochemistry respectively. Additionally, the response to NaCl was prevented by siRNA-mediated knockdown of Nax, but not by inhibition of other membrane Na+ pathways. Together, these results demonstrate that post-ganglionic sympathetic neurons are direct sensors of extracellular Na+ via Nax, which could contribute to sympathetic driven hypertension.
Collapse
Affiliation(s)
- Harvey Davis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
17
|
Neely OC, Domingos AI, Paterson DJ. Macrophages Can Drive Sympathetic Excitability in the Early Stages of Hypertension. Front Cardiovasc Med 2022; 8:807904. [PMID: 35155614 PMCID: PMC8828732 DOI: 10.3389/fcvm.2021.807904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Hypertension is a major health burden worldwide with many cases resistant to current treatments. Hyperactivity of the sympathetic nervous contributes to the etiology and progression of the disease, where emerging evidence suggests that inflammation may underpin the development of sympathetic dysautonomia. This study examined whether macrophages could drive the sympathetic phenotype in Spontaneously Hypertensive Rats (SHR) before animals develop high pressure. Stellate neurons from wild-type control Wistar rats and SHRs were co-cultured with blood leukocytes from their own strain, and also crossed cultured between strains. The calcium transient response to nicotinic stimulation was recorded using Fura-2 calcium imaging, where SHR neurons had a greater calcium transient compared with Wistar neurons. However, when co-cultured with leukocytes, Wistar neurons began to phenocopy the SHR sympathetic hyperactivity, while the SHR neurons themselves were unaltered. Resident leukocyte populations of the SHR and Wistar stellate ganglia were then compared using flow cytometry, where there was a shift in monocyte-macrophage subset proportions. While classical monocyte-macrophages were predominant in the Wistar, there were relatively more of the non-classical subset in the SHR, which have been implicated in pro-inflammatory roles in a number of diseases. When bone marrow-derived macrophages (BMDMs) were co-cultured with stellate neurons, they made Wistar neurons recapitulate the SHR nicotinic stimulated calcium transient. Wistar BMDMs however, had no effect on SHR neurons, even though SHR BMDMs increased SHR neuron responsiveness further above their hyper-responsive state. Taken together, these findings show that macrophages can be potent enhancers of sympathetic neuronal calcium responsiveness, and thus could conceivably play a role in peripheral sympathetic hyperactivity observed in the early stages of hypertension.
Collapse
Affiliation(s)
- Oliver C Neely
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Davis H, Liu K, Li N, Li D, Paterson DJ. Healthy cardiac myocytes can decrease sympathetic hyperexcitability in the early stages of hypertension. Front Synaptic Neurosci 2022; 14:949150. [PMID: 35989710 PMCID: PMC9386373 DOI: 10.3389/fnsyn.2022.949150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 01/08/2023] Open
Abstract
Sympathetic neurons are powerful drivers of cardiac excitability. In the early stages of hypertension, sympathetic hyperactivity is underpinned by down regulation of M current and increased activity of Cav2.2 that is associated with greater intracellular calcium transients and enhanced neurotransmission. Emerging evidence suggests that retrograde signaling from the myocyte itself can modulate synaptic plasticity. Here we tested the hypothesis that cross culturing healthy myocytes onto diseased stellate neurons could influence sympathetic excitability. We employed neuronal mono-cultures, co-cultures of neonatal ventricular myocytes and sympathetic stellate neurons, and mono-cultures of sympathetic neurons with media conditioned by myocytes from normal (Wistar) and pre-hypertensive (SHR) rats, which have heightened sympathetic responsiveness. Neuronal firing properties were measured by current-clamp as a proxy for neuronal excitability. SHR neurons had a maximum higher firing rate, and reduced rheobase compared to Wistar neurons. There was no difference in firing rate or other biophysical properties in Wistar neurons when they were co-cultured with healthy myocytes. However, the firing rate decreased, phenocopying the Wistar response when either healthy myocytes or media in which healthy myocytes were grown was cross-cultured with SHR neurons. This supports the idea of a paracrine signaling pathway from the healthy myocyte to the diseased neuron, which can act as a modulator of sympathetic excitability.
Collapse
Affiliation(s)
- Harvey Davis
- Burson Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Kun Liu
- Burson Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Ni Li
- Burson Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Dan Li
- Burson Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Burson Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Clyburn C, Sepe JJ, Habecker BA. What gets on the nerves of cardiac patients? Pathophysiological changes in cardiac innervation. J Physiol 2021; 600:451-461. [PMID: 34921407 PMCID: PMC8810748 DOI: 10.1113/jp281118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
The autonomic nervous system regulates cardiac function by balancing the actions of sympathetic and parasympathetic inputs to the heart. Intrinsic cardiac neurocircuits integrate these autonomic signals to fine-tune cardiac control, and sensory feedback loops regulate autonomic transmission in the face of external stimuli. These interconnected neural systems allow the heart to adapt to constantly changing circumstances that range from simple fluctuations in body position to running a marathon. The cardiac reflexes that serve to maintain homeostasis in health are disrupted in many disease states. This is often characterized by increased sympathetic and decreased parasympathetic transmission. Studies of cardiovascular disease reveal remodelling of cardiac neurocircuits at several functional and anatomical levels. Central circuits change so that sympathetic pathways become hyperactive, while parasympathetic circuits exhibit decreased activity. Peripheral sensory nerves also become hyperactive in disease, which increases patients' risk for poor cardiac outcomes. Injury and disease also alter the types of neurotransmitters and neuropeptides released by autonomic nerves in the heart, and can lead to regional hyperinnervation (increased nerve density) or denervation (decreased nerve density) of cardiac tissue. The mechanisms responsible for neural remodelling are not fully understood, but neurotrophins and inflammatory cytokines are likely involved. Areas of active investigation include the role of immune cells and inflammation in neural remodelling, as well as the role of glia in modulating peripheral neuronal activity. Our growing understanding of autonomic dysfunction in disease has facilitated development of new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Joseph J Sepe
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
Stoyek MR, Hortells L, Quinn TA. From Mice to Mainframes: Experimental Models for Investigation of the Intracardiac Nervous System. J Cardiovasc Dev Dis 2021; 8:149. [PMID: 34821702 PMCID: PMC8620975 DOI: 10.3390/jcdd8110149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
The intracardiac nervous system (IcNS), sometimes referred to as the "little brain" of the heart, is involved in modulating many aspects of cardiac physiology. In recent years our fundamental understanding of autonomic control of the heart has drastically improved, and the IcNS is increasingly being viewed as a therapeutic target in cardiovascular disease. However, investigations of the physiology and specific roles of intracardiac neurons within the neural circuitry mediating cardiac control has been hampered by an incomplete knowledge of the anatomical organisation of the IcNS. A more thorough understanding of the IcNS is hoped to promote the development of new, highly targeted therapies to modulate IcNS activity in cardiovascular disease. In this paper, we first provide an overview of IcNS anatomy and function derived from experiments in mammals. We then provide descriptions of alternate experimental models for investigation of the IcNS, focusing on a non-mammalian model (zebrafish), neuron-cardiomyocyte co-cultures, and computational models to demonstrate how the similarity of the relevant processes in each model can help to further our understanding of the IcNS in health and disease.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
| | - Luis Hortells
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg–Bad Krozingen, 79110 Freiburg, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
- School of Biomedical Engineering, Dalhousie University, Halifax, NS 15000, Canada
| |
Collapse
|
21
|
Affiliation(s)
- Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| |
Collapse
|