1
|
Xu Y, Liao P, Song X, Guo W, Liu B, Ye T, Zhang T, Xiao R, Zhu L, Shen Y, Xing Y, Wang J, Hu Q. A novel dual fixation method for improving the reliable assessment of pulmonary vascular morphology in pulmonary hypertension rats. Respir Res 2025; 26:26. [PMID: 39827111 PMCID: PMC11742800 DOI: 10.1186/s12931-024-03091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
This study introduced a novel dual fixation method for the pulmonary vasculature and lung tissue in pulmonary hypertension (PH) rats, addressing the limitations of traditional fixation methods that failed to accurately preserve the in vivo status of pulmonary vascular morphology. The modified method involved a dual fixation process, combining individualized ventilation support and vascular perfusion to simulate the respiratory motion, pulmonary artery pressure and right ventricular output of the rat under in vivo conditions. Utilizing a monocrotaline-induced PH rat model, this study compared the dual fixation with the traditional immersion fixation, focusing on the quantitative assessment of alveolar expansion degree, capillary patency, endothelial cell quantity and wall thickness of pulmonary vein and artery. The results demonstrated that the dual fixation is superior in maintaining the authenticity and integrity of lung tissue and more sensitive in the evaluation of pulmonary artery hypertrophy, providing a more reliable representation of pulmonary vascular remodeling associated with PH.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, HUST, Wuhan, 430022, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, 13 Hangkong Road, Wuhan, 430030, China.
| | - Xinyu Song
- Department of Respiratory and Critical Care Medicine, Affiliated Yichang Central People's Hospital of China Three Gorges University, Yichang, 443003, China.
| | - Wenchuan Guo
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, 13 Hangkong Road, Wuhan, 430030, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, HUST, 13 Hangkong Road, Wuhan, 430030, China
| | - Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, 13 Hangkong Road, Wuhan, 430030, China
| | - Tong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, 13 Hangkong Road, Wuhan, 430030, China
| | - Ting Zhang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, 13 Hangkong Road, Wuhan, 430030, China
- Department of Pulmonary and Critical Care Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, 168 Hongkong Road, Wuhan, 430000, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, 13 Hangkong Road, Wuhan, 430030, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, HUST, 13 Hangkong Road, Wuhan, 430030, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, 13 Hangkong Road, Wuhan, 430030, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, HUST, 13 Hangkong Road, Wuhan, 430030, China
| | - Yujun Shen
- Department of Pharmacology, Tianjing Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjing Medical University, 22 Qixiangtai Road, Heping District, Tianjing, 300070, China
| | - Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, 13 Hangkong Road, Wuhan, 430030, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, HUST, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
2
|
Liu B, Wen CJ, Zhou G, Wei YP, Wu Z, Zhang T, Zhou Y, Qiu S, Wang T, Ruiz M, Dupuis J, Yuan P, Liu J, Zhu L, Jing ZC, Hu Q. Identification of Noncoding Functional Regulatory Variants of STIM1 Gene in Idiopathic Pulmonary Arterial Hypertension. Hypertension 2024; 81:1895-1909. [PMID: 38989583 DOI: 10.1161/hypertensionaha.124.22766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND STIM1 (stromal interaction molecule 1) regulates store-operated calcium entry and is involved in pulmonary artery vasoconstriction and pulmonary artery smooth muscle cell proliferation, leading to pulmonary arterial hypertension (PAH). METHODS Bioinformatics analysis and a 2-stage matched case-control study were conducted to screen for noncoding variants that may potentially affect STIM1 transcriptional regulation in 242 patients with idiopathic PAH and 414 healthy controls. Luciferase reporter assay, real-time quantitative polymerase chain reaction, western blot, 5-ethynyl-2'-deoxyuridine (EdU) assay, and intracellular Ca2+ measurement were performed to study the mechanistic roles of those STIM1 noncoding variants in PAH. RESULTS Five noncoding variants (rs3794050, rs7934581, rs3750996, rs1561876, and rs3750994) were identified and genotyped using Sanger sequencing. Rs3794050, rs7934581, and rs1561876 were associated with idiopathic PAH (recessive model, all P<0.05). Bioinformatics analysis showed that these 3 noncoding variants possibly affect the enhancer function of STIM1 or the microRNA (miRNA) binding to STIM1. Functional validation performed in HEK293 and pulmonary artery smooth muscle cells demonstrated that the noncoding variant rs1561876-G (STIM1 mutant) had significantly stronger transcriptional activity than the wild-type counterpart, rs1561876-A, by affecting the transcriptional regulatory function of both hsa-miRNA-3140-5p and hsa-miRNA-4766-5p. rs1561876-G enhanced intracellular Ca2+ signaling in human pulmonary artery smooth muscle cells secondary to calcium-sensing receptor activation and promoted proliferation of pulmonary artery smooth muscle cells under both normoxia and hypoxia conditions, suggesting a possible contribution to PAH development. CONCLUSIONS The potential clinical implications of the 3 noncoding variants of STIM1, rs3794050, rs7934581, and rs1561876, are 2-fold, as they may help predict the risk and prognosis of idiopathic PAH and guide investigations on novel therapeutic pathway(s).
Collapse
Affiliation(s)
- Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cen-Jin Wen
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.-J.W., Y.-P.W.)
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (C.-J.W., Z.-C.J.)
| | - Guangyuan Zhou
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (C.-J.W., Y.-P.W.)
| | - Zeang Wu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yudan Zhou
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Qiu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital (T.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition (M.R.), Université de Montréal, Québec, Canada
- Montreal Heart Institute, Québec, Canada (M.R., J.D.)
| | - Jocelyn Dupuis
- Department of Medicine (J.D.), Université de Montréal, Québec, Canada
- Montreal Heart Institute, Québec, Canada (M.R., J.D.)
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.)
| | - Jinming Liu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.)
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (C.-J.W., Z.-C.J.)
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health (B.L., G.Z., Z.W., T.Z., Y.Z., S.Q., T.W., L.Z., Q.H.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Xiao R, Liu J, Shi L, Zhang T, Liu J, Qiu S, Ruiz M, Dupuis J, Zhu L, Wang L, Wang Z, Hu Q. Au-modified ceria nanozyme prevents and treats hypoxia-induced pulmonary hypertension with greatly improved enzymatic activity and safety. J Nanobiotechnology 2024; 22:492. [PMID: 39160624 PMCID: PMC11331617 DOI: 10.1186/s12951-024-02738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Despite recent advances the prognosis of pulmonary hypertension remains poor and warrants novel therapeutic options. Extensive studies, including ours, have revealed that hypoxia-induced pulmonary hypertension is associated with high oxidative stress. Cerium oxide nanozyme or nanoparticles (CeNPs) have displayed catalytic activity mimicking both catalase and superoxide dismutase functions and have been widely used as an anti-oxidative stress approach. However, whether CeNPs can attenuate hypoxia-induced pulmonary vascular oxidative stress and pulmonary hypertension is unknown. RESULTS In this study, we designed a new ceria nanozyme or nanoparticle (AuCeNPs) exhibiting enhanced enzyme activity. The AuCeNPs significantly blunted the increase of reactive oxygen species and intracellular calcium concentration while limiting proliferation of pulmonary artery smooth muscle cells and pulmonary vasoconstriction in a model of hypoxia-induced pulmonary hypertension. In addition, the inhalation of nebulized AuCeNPs, but not CeNPs, not only prevented but also blunted hypoxia-induced pulmonary hypertension in rats. The benefits of AuCeNPs were associated with limited increase of intracellular calcium concentration as well as enhancement of extracellular calcium-sensing receptor (CaSR) activity and expression in rat pulmonary artery smooth muscle cells. Nebulised AuCeNPs showed a favorable safety profile, systemic arterial pressure, liver and kidney function, plasma Ca2+ level, and blood biochemical parameters were not affected. CONCLUSION We conclude that AuCeNPs is an improved reactive oxygen species scavenger that effectively prevents and treats hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Shuyi Qiu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of medicine, Université de Montréal, Montréal, Québec, Canada
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
4
|
Li Y, Wei X, Xiao R, Chen Y, Xiong T, Fang ZM, Huo B, Guo X, Luo H, Wu X, Liu L, Zhu XH, Hu Q, Jiang DS, Yi X. SMYD2-Methylated PPARγ Facilitates Hypoxia-Induced Pulmonary Hypertension by Activating Mitophagy. Circ Res 2024; 135:93-109. [PMID: 38770649 DOI: 10.1161/circresaha.124.323698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Rats
- Cell Proliferation
- Cells, Cultured
- Histone-Lysine N-Methyltransferase/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia/complications
- Hypoxia/metabolism
- Methylation
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitophagy
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- PPAR gamma/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Rats, Sprague-Dawley
- Vascular Remodeling
Collapse
Affiliation(s)
- Yi Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
- Key Laboratory of Organ Transplantation, Ministry of Education (X. Wei, D.-S.J.), Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation (X. Wei, D.-S.J.), Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation (X. Wei, D.-S.J.), Chinese Academy of Medical Sciences, Wuhan, China
| | - Rui Xiao
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Wuhan (R.X., Q.H.)
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China (R.X., Q.H.)
| | - Yongjie Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China (Y.C.)
| | - Tianxin Xiong
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
| | - Ze-Min Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
| | - Bo Huo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
| | - Xian Guo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
| | - Hanshen Luo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
| | - Xingliang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, China (X. Wu, L.L., X.Y.)
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China (X. Wu, L.L., X.Y.)
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
| | - Qinghua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Wuhan (R.X., Q.H.)
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China (R.X., Q.H.)
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L., X. Wei, T.X., Z.-M.F., B.H., X.G., H.L., X.-H.Z., D.-S.J.)
- Key Laboratory of Organ Transplantation, Ministry of Education (X. Wei, D.-S.J.), Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation (X. Wei, D.-S.J.), Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation (X. Wei, D.-S.J.), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, China (X. Wu, L.L., X.Y.)
| |
Collapse
|
5
|
Zhang J, Li Q, Liao P, Xiao R, Zhu L, Hu Q. Calcium sensing receptor: A promising therapeutic target in pulmonary hypertension. Life Sci 2024; 340:122472. [PMID: 38290572 DOI: 10.1016/j.lfs.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Pulmonary hypertension (PH) is characterized by elevation of pulmonary arterial pressure and pulmonary vascular resistance. The increased pulmonary arterial pressure and pulmonary vascular resistance due to sustained pulmonary vasoconstriction and pulmonary vascular remodeling can lead to right heart failure and eventual death. A rise in intracellular Ca2+ concentration ([Ca2+]i) and enhanced pulmonary arterial smooth muscle cells (PASMCs) proliferation contribute to pulmonary vasoconstriction and pulmonary vascular remodeling. Recent studies demonstrated that extracellular calcium sensing receptor (CaSR) as a G-protein coupled receptor participates in [Ca2+]i increase induced by hypoxia in the experimental animals of PH and in PH patients. Pharmacological blockade or gene knockout of CaSR significantly attenuates the development of PH. This review will aim to discuss and update the pathogenicity of CaSR attributed to onset and progression in PH.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinli Li
- Department of Clinical Laboratory Medicine, People's Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Yu D, Zhang T, Zhou G, Wu Z, Xiao R, Zhang H, Liu B, Li X, Ruiz M, Dupuis J, Zhu L, Hu Q. Co-profiling reveals distinct patterns of genomic chromatin accessibility and gene expression in pulmonary hypertension caused by chronic hypoxia. Respir Res 2023; 24:104. [PMID: 37031175 PMCID: PMC10082509 DOI: 10.1186/s12931-023-02389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 04/10/2023] Open
Abstract
INTRODUCTION Aberrant gene expression is a key mechanism underlying pulmonary hypertension (PH) development. The alterations of genomic chromatin accessibility and their relationship with the aberrant gene expressions in PH are poorly understood. We used bulk Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) in pulmonary artery smooth muscle cells (PASMCs) of chronic hypoxia-exposed rats mimicking group 3 human PH. METHODS Adult Sprague Dawley rats were commercially obtained from Hunan SJA (Hunan SJA Laboratory Animal Co., Changsha, China) and randomizedly allocated into four groups exposing to nomobaric hypoxia or normoxia for 1 or 28 days respectively. After the assessment of pulmonary hemodynamics, smooth muscle cells were isolated from intralobular arteries and simultaneously subjected to bulk Assay of ATAC-seq and RNA-seq. RESULTS Hypoxic exposure for continuous 28-days, but not for 1-day, induced established PH phenotypes in rats. ATAC-seq revealed a major distribution of differential accessibility regions (DARs) annotated to the genome in out-of-promoter regions, following 1-day or 28-days hypoxia. 1188 DAR-associated genes and 378 differentially expressed genes (DEGs) were identified in rats after exposure to 1-day hypoxia, while 238 DAR-associated genes and 452 DEGs for 28-days hypoxia. Most of the DAR-associated genes or DEGs in 1-day did not overlap with that of 28-days hypoxia. A Pearson correlation analysis indicated no significant correlation between ATAC-seq and RNA-seq. CONCLUSIONS The alterations in genomic chromatin accessibility and genes expression of PASMCs in the initial stage of hypoxia are distinct from the established stage of hypoxia-induced PH. The genomic differential accessibility regions may not be the main mechanisms directly underlying the differentially expressed genes observed either in the initial or established stages of PH. Thus the time-course alterations of gene expression and their possible indirect link with genomic chromatin accessibility warrant more attention in mechanistic study of pulmonary hypertension.
Collapse
Affiliation(s)
- Dongdong Yu
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangyuan Zhou
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zeang Wu
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Han Zhang
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, QC, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Wuhan, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Tan R, You Q, Yu D, Xiao C, Adu-Amankwaah J, Cui J, Zhang T. Novel hub genes associated with pulmonary artery remodeling in pulmonary hypertension. Front Cardiovasc Med 2022; 9:945854. [PMID: 36531719 PMCID: PMC9748075 DOI: 10.3389/fcvm.2022.945854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease with complex pathogenesis. According to etiology, PH is divided into five major groups in clinical classification. However, pulmonary artery (PA) remodeling is their common feature, in addition to bone morphogenetic protein receptor type 2; it is elusive whether there are other novel common genes and similar underlying mechanisms. To identify novel common hub genes involved in PA remodeling at different PH groups, we analyzed mRNA-Seq data located in the general gene expression profile GSE130391 utilizing bioinformatics technology. This database contains PA samples from different PH groups of hospitalized patients with chronic thromboembolic pulmonary hypertension (CTEPH), idiopathic pulmonary artery hypertension (IPAH), and PA samples from organ donors without known pulmonary vascular diseases as control. We screened 22 hub genes that affect PA remodeling, most of which have not been reported in PH. We verified the top 10 common hub genes in hypoxia with Sugen-induced PAH rat models by qRT-PCR. The three upregulated candidate genes are WASF1, ARHGEF1 and RB1 and the seven downregulated candidate genes are IL1R1, RHOB, DAPK1, TNFAIP6, PKN1, PLOD2, and MYOF. WASF1, ARHGEF1, and RB1 were upregulated significantly in hypoxia with Sugen-induced PAH, while IL1R1, DAPK1, and TNFA1P6 were upregulated significantly in hypoxia with Sugen-induced PAH. The DEGs detected by mRNA-Seq in hospitalized patients with PH are different from those in animal models. This study will provide some novel target genes to further study PH mechanisms and treatment.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Rubin Tan
| | - Qiang You
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongdong Yu
- Department of Tumor Radiotherapy, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chushu Xiao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jie Cui
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Zhu Y, Shu D, Gong X, Lu M, Feng Q, Zeng XB, Zhang H, Gao J, Guo YW, Liu L, Ma R, Zhu L, Hu Q, Ming ZY. Platelet-Derived TGF (Transforming Growth Factor)-β1 Enhances the Aerobic Glycolysis of Pulmonary Arterial Smooth Muscle Cells by PKM2 Upregulation. Hypertension 2022; 79:932-945. [PMID: 35232222 DOI: 10.1161/hypertensionaha.121.18684] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of pulmonary arterial hypertension. Platelet activation has been implicated in pulmonary arterial hypertension (PAH), whereas the role of platelet in the pathogenesis of PAH remains unclear. METHODS First, we explored the platelet function of SU5416/hypoxia mice and monocrotaline-injected rats PAH model. Then we investigated pulmonary arterial smooth muscle cell aerobic glycolysis after being treated with platelet supernatant. TGF (transforming growth factor)-βRI, PKM2, and other antagonists were applied to identify the underlying mechanism. In addition, platelet-specific deletion TGF-β1 mice were exposed to chronic hypoxia and SU5416. Cardiopulmonary hemodynamics, vascular remodeling, and aerobic glycolysis of pulmonary arterial smooth muscle cell were determined. RESULTS Here, we demonstrate that platelet-released TGF-β1 enhances the aerobic glycolysis of pulmonary arterial smooth muscle cells after platelet activation via increasing PKM2 expression. Mechanistically, platelet-derived TGF-β1 regulates PKM2 expression through mTOR (mammalian target of rapamycin)/c-Myc/PTBP1-hnRNPA1 pathway. Platelet TGF-β1 deficiency mice are significantly protected from SU5416 plus chronic hypoxia-induced PAH, including attenuated increases in right ventricular systolic pressure and less pulmonary vascular remodeling. Also, in Pf4cre+ Tgfb1fl/fl mice, pulmonary arterial smooth muscle cells showed lower glycolysis capacity and their PKM2 expression decreased. CONCLUSIONS Our data demonstrate that TGF-β1 released by platelet contributes to the pathogenesis of PAH and further highlights the role of platelet in PAH.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Dan Shu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,Department of Pharmacy, School of Medicine, Wuhan University of Science and Technology, Wuhan, China (D.S.)
| | - Xue Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Qinyu Feng
- Department of Gastroenterology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Q.F.)
| | - Xiang-Bin Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Han Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan China (H.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Wuhan China (H.Z., L.Z., Q.H.)
| | - Jiahui Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Ya-Wei Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Luman Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan China (H.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Wuhan China (H.Z., L.Z., Q.H.)
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Liping Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan China (H.Z., L.Z., Q.H.).,Key Laboratory of Pulmonary Diseases of Ministry of Health, Wuhan China (H.Z., L.Z., Q.H.)
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.).,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China (Y.Z., D.S., X.G., M.L., X.-B.Z., J.G., Y.W.G., L.L., R.M., Z.-Y.M.)
| |
Collapse
|