1
|
Göbel S, Braun AS, Hahad O, von Henning U, Brandt M, Keller K, Gaida MM, Gori T, Schultheiss HP, Escher F, Münzel T, Wenzel P. Etiologies and predictors of mortality in an all-comer population of patients with non-ischemic heart failure. Clin Res Cardiol 2024; 113:737-749. [PMID: 38224373 PMCID: PMC11026225 DOI: 10.1007/s00392-023-02354-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Despite progress in diagnosis and therapy of heart failure (HF), etiology and risk stratification remain elusive in many patients. METHODS The My Biopsy HF Study (German clinical trials register number: DRKS22178) is a retrospective monocentric study investigating an all-comer population of patients with unexplained HF based on a thorough workup including endomyocardial biopsy (EMB). RESULTS 655 patients (70.9% men, median age 55 [45/66] years) with non-ischemic, non-valvular HF were included in the analyses. 489 patients were diagnosed with HF with reduced ejection fraction (HFrEF), 52 patients with HF with mildly reduced ejection fraction (HFmrEF) and 114 patients with HF with preserved ejection fraction (HFpEF). After a median follow-up of 4.6 (2.5/6.6) years, 94 deaths were enumerated (HFrEF: 68; HFmrEF: 8; HFpEF: 18), equating to mortality rates of 3.3% and 11.6% for patients with HFrEF, 7.7% and 15.4% for patients with HFmrEF and 5.3% and 11.4% for patients with HFpEF after 1 and 5 years, respectively. In EMB, we detected a variety of putative etiologies of HF, including incidental cardiac amyloidosis (CA, 5.8%). In multivariate logistic regression analysis adjusting for age, sex and comorbidities only CA, age and NYHA functional class III + IV remained independently associated with all-cause mortality (CA: HRperui 3.13, 95% CI 1.5-6.51; p = 0.002). CONCLUSIONS In an all-comer population of patients presenting with HF of unknown etiology, incidental finding of CA stands out to be independently associated with all-cause mortality. Our findings suggest that prospective trials would be helpful to test the added value of a systematic and holistic work-up of HF of unknown etiology.
Collapse
Affiliation(s)
- S Göbel
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - A S Braun
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany
| | - O Hahad
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - U von Henning
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany
| | - M Brandt
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany
| | - K Keller
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany
| | - M M Gaida
- Institute of Pathology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Mainz, Germany
- TRON, Translational Oncology at the University Medical Center Mainz, Mainz, Germany
| | - T Gori
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - H P Schultheiss
- Institute of Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany
| | - F Escher
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Virchow Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - T Münzel
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - P Wenzel
- Cardiology I - Department of Cardiology, University Medical Center Mainz (Johannes Gutenberg University Mainz), Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), Mainz, Germany.
| |
Collapse
|
2
|
Baumeier C, Harms D, Aleshcheva G, Gross U, Escher F, Schultheiss HP. Advancing Precision Medicine in Myocarditis: Current Status and Future Perspectives in Endomyocardial Biopsy-Based Diagnostics and Therapeutic Approaches. J Clin Med 2023; 12:5050. [PMID: 37568452 PMCID: PMC10419903 DOI: 10.3390/jcm12155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The diagnosis and specific and causal treatment of myocarditis and inflammatory cardiomyopathy remain a major clinical challenge. Despite the rapid development of new imaging techniques, endomyocardial biopsies remain the gold standard for accurate diagnosis of inflammatory myocardial disease. With the introduction and continued development of immunohistochemical inflammation diagnostics in combination with viral nucleic acid testing, myocarditis diagnostics have improved significantly since their introduction. Together with new technologies such as miRNA and gene expression profiling, quantification of specific immune cell markers, and determination of viral activity, diagnostic accuracy and patient prognosis will continue to improve in the future. In this review, we summarize the current knowledge on the pathogenesis and diagnosis of myocarditis and inflammatory cardiomyopathies and highlight future perspectives for more in-depth and specialized biopsy diagnostics and precision, personalized medicine approaches.
Collapse
Affiliation(s)
- Christian Baumeier
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Dominik Harms
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Ganna Aleshcheva
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Ulrich Gross
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| | - Felicitas Escher
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Virchow Klinikum, 13353 Berlin, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Heinz-Peter Schultheiss
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (D.H.); (G.A.); (U.G.); (H.-P.S.)
| |
Collapse
|
3
|
Tri Saputra PB, Kurniawan RB, Trilistyoati D, Al Farabi MJ, Susilo H, Alsagaff MY, Oktaviono YH, Sutanto H, Gusnanto A, Dyah Kencono Wungu C. Myocarditis and coronavirus disease 2019 vaccination: A systematic review and meta-summary of cases. BIOMOLECULES & BIOMEDICINE 2023; 23:546-567. [PMID: 36803547 PMCID: PMC10351100 DOI: 10.17305/bb.2022.8779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Vaccination is significant to control, mitigate, and recover from the destructive effects of coronavirus disease 2019 (COVID-19). The incidence of myocarditis following COVID-19 vaccination has been increasing and growing public concern; however, little is known about it. This study aimed to systematically review myocarditis following COVID-19 vaccination. We included studies containing individual patient data of myocarditis following COVID-19 vaccination published between January 1, 2020 and September 7, 2022 and excluded review articles. Joanna Briggs Institute critical appraisals were used for risk of bias assessment. Descriptive and analytic statistics were performed. A total of 121 reports and 43 case series from five databases were included. We identified 396 published cases of myocarditis and observed that the majority of cases was male patients, happened following the second dose of mRNA vaccine administration, and experienced chest pain as a symptom. Previous COVID-19 infection was significantly associated (p < 0.01; OR, 5.74; 95% CI, 2.42-13.64) with the risk of myocarditis following the administration of the first dose, indicating that its primary mechanism is immune-mediated. Moreover, 63 histopathology examinations were dominated by non-infective subtypes. Electrocardiography and cardiac marker combination is a sensitive screening modality. However, cardiac magnetic resonance is a significant noninvasive examination to confirm myocarditis. Endomyocardial biopsy may be considered in confusing and severe cases. Myocarditis following COVID-19 vaccination is relatively benign, with a median length of hospitalization of 5 days, intensive care unit admission of <12%, and mortality of <2%. The majority was treated with nonsteroidal anti-inflammatory drugs, colchicine, and steroids. Surprisingly, deceased cases had characteristics of being female, older age, non-chest pain symptoms, first-dose vaccination, left ventricular ejection fraction of <30%, fulminant myocarditis, and eosinophil infiltrate histopathology.
Collapse
Affiliation(s)
- Pandit Bagus Tri Saputra
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga–Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | | | - Makhyan Jibril Al Farabi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga–Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga–Dr Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia
| | - Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga–Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Henry Sutanto
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | | | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Neves EGA, Koh CC, Lucinda PPD, Souza-Silva TG, Medeiros NI, Pantaleão A, Mutarelli A, Gomes JDAS, Silva SDA, Gollob KJ, Nunes MDCP, Dutra WO. Blocking activation of CD4 -CD8 - T cells modulates their cytotoxic potential and decreases the expression of inflammatory and chemotactic receptors. Clin Immunol 2023; 251:109331. [PMID: 37088297 PMCID: PMC10257888 DOI: 10.1016/j.clim.2023.109331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
CD4-CD8- (double negative - DN) T cells represent a small fraction of circulating T lymphocytes but are a major source of pro-inflammatory cytokines in patients with infectious diseases, including chronic Chagas cardiomyopathy (CCC), one of the deadliest cardiopathies known. Chagas disease is caused by an infection with the protozoan parasite Trypanosoma cruzi and can lead to either an asymptomatic form or a high-mortality cardiac disease. While circulating DN T cells represent a major inflammatory cytokine-expressing cell population in Chagas disease, their potential to be recruited to the heart and to perform cytotoxicity has not been determined. Our previous studies showed that blocking DN T cell activation decreases the expression of IFN-gamma, a cytokine involved in the severity of CCC. Here, studying a well-characterized cohort of Chagas patients with CCC or the asymptomatic form of Chagas disease (indeterminate form, IND), we evaluated the expression of cytotoxic molecules, cytokine and chemokine receptors in γδ+ and αβ+ DN T cells by multiparameter flow cytometry, and investigated whether blocking the activation of DN T cells influences the expression of these molecules. We observed that DN T cells from CCC display a higher expression of granzyme A, perforin, inflammatory molecules, and inflammatory chemokine receptors than cells from IND. Messenger RNA coding for these molecules is also upregulated in the heart of CCC patients. Importantly, blocking the activation of DN T cells from CCC modulates their cytotoxic potential and the expression of inflammatory and of chemokine receptors, suggesting that targeting DN T cell activation may be a valid strategy to reduce recruitment to the heart, inflammation, cytotoxicity and, thereby diminish CCC progression and severity.
Collapse
Affiliation(s)
- Eula Graciele Amorim Neves
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Carolina Cattoni Koh
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Pedro Paulo Diniz Lucinda
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Thaiany Goulart Souza-Silva
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Nayara I Medeiros
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Alexandre Pantaleão
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Antônio Mutarelli
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Juliana de Assis Silva Gomes
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Silvana de Araújo Silva
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Kenneth John Gollob
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701 - Morumbi, São Paulo, SP 05652-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, BA, Brazil
| | - Maria do Carmo Pereira Nunes
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Walderez Ornelas Dutra
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, BA, Brazil.
| |
Collapse
|
5
|
Baumeier C, Aleshcheva G, Harms D, Gross U, Hamm C, Assmus B, Westenfeld R, Kelm M, Rammos S, Wenzel P, Münzel T, Elsässer A, Gailani M, Perings C, Bourakkadi A, Flesch M, Kempf T, Bauersachs J, Escher F, Schultheiss HP. Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial Biopsy-Proven Case Series. Int J Mol Sci 2022; 23:6940. [PMID: 35805941 PMCID: PMC9266869 DOI: 10.3390/ijms23136940] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022] Open
Abstract
Myocarditis in response to COVID-19 vaccination has been reported since early 2021. In particular, young male individuals have been identified to exhibit an increased risk of myocardial inflammation following the administration of mRNA-based vaccines. Even though the first epidemiological analyses and numerous case reports investigated potential relationships, endomyocardial biopsy (EMB)-proven cases are limited. Here, we present a comprehensive histopathological analysis of EMBs from 15 patients with reduced ejection fraction (LVEF = 30 (14-39)%) and the clinical suspicion of myocarditis following vaccination with Comirnaty® (Pfizer-BioNTech) (n = 11), Vaxzevria® (AstraZenica) (n = 2) and Janssen® (Johnson & Johnson) (n = 2). Immunohistochemical EMB analyses reveal myocardial inflammation in 14 of 15 patients, with the histopathological diagnosis of active myocarditis according the Dallas criteria (n = 2), severe giant cell myocarditis (n = 2) and inflammatory cardiomyopathy (n = 10). Importantly, infectious causes have been excluded in all patients. The SARS-CoV-2 spike protein has been detected sparsely on cardiomyocytes of nine patients, and differential analysis of inflammatory markers such as CD4+ and CD8+ T cells suggests that the inflammatory response triggered by the vaccine may be of autoimmunological origin. Although a definitive causal relationship between COVID-19 vaccination and the occurrence of myocardial inflammation cannot be demonstrated in this study, data suggest a temporal connection. The expression of SARS-CoV-2 spike protein within the heart and the dominance of CD4+ lymphocytic infiltrates indicate an autoimmunological response to the vaccination.
Collapse
Affiliation(s)
- Christian Baumeier
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (G.A.); (D.H.); (U.G.); (F.E.); (H.-P.S.)
| | - Ganna Aleshcheva
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (G.A.); (D.H.); (U.G.); (F.E.); (H.-P.S.)
| | - Dominik Harms
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (G.A.); (D.H.); (U.G.); (F.E.); (H.-P.S.)
| | - Ulrich Gross
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (G.A.); (D.H.); (U.G.); (F.E.); (H.-P.S.)
| | - Christian Hamm
- Kerckhoff Heart Center, Department of Cardiology, 61231 Bad Nauheim, Germany;
- Department of Cardiology and Angiology, Universitätsklinikum Gießen und Marburg, 35391 Gießen, Germany;
| | - Birgit Assmus
- Department of Cardiology and Angiology, Universitätsklinikum Gießen und Marburg, 35391 Gießen, Germany;
| | - Ralf Westenfeld
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (R.W.); (M.K.)
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (R.W.); (M.K.)
| | - Spyros Rammos
- Onassis Cardiac Surgery Center, 176 74 Athens, Greece;
| | - Philip Wenzel
- Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany; (P.W.); (T.M.)
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany; (P.W.); (T.M.)
| | - Albrecht Elsässer
- Department of Cardiology, Klinikum Oldenburg, 26133 Oldenburg, Germany;
| | | | - Christian Perings
- Department of Cardiology, St. Marien-Hospital, 44534 Lünen, Germany;
| | - Alae Bourakkadi
- Department of Internal Medicine, Cardiology, Geriatrics and Palliative Medicine, Gemeinschaftsklinikum Mittelrhein gGmbH, 56727 Mayen, Germany;
| | - Markus Flesch
- Department of Cardiology, Marienkrankenhaus gGmbH, 59494 Soest, Germany;
| | - Tibor Kempf
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany; (T.K.); (J.B.)
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany; (T.K.); (J.B.)
| | - Felicitas Escher
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (G.A.); (D.H.); (U.G.); (F.E.); (H.-P.S.)
- Department of Cardiology, Campus Virchow-Klinikum, Charité University Medicine Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Heinz-Peter Schultheiss
- Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, 12203 Berlin, Germany; (G.A.); (D.H.); (U.G.); (F.E.); (H.-P.S.)
| |
Collapse
|
6
|
Pașatu‑Cornea AM, Ciciu E, Tuță LA. Perforin: An intriguing protein in allograft rejection immunology (Review). Exp Ther Med 2022; 24:519. [DOI: 10.3892/etm.2022.11446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Elena Ciciu
- Department of Nephrology, Constanta County Emergency Hospital, 900591 Constanta, Romania
| | - Liliana-Ana Tuță
- Department of Nephrology, Constanta County Emergency Hospital, 900591 Constanta, Romania
| |
Collapse
|
7
|
Levetiracetam Attenuates the Spinal Cord Injury Induced by Acute Trauma via Suppressing the Expression of Perforin. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7218666. [PMID: 35633929 PMCID: PMC9135510 DOI: 10.1155/2022/7218666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The spinal cord injury (SCI) is one of the major reasons causing the motor dysfunctions of the patients. At present, few therapeutic strategies can effectively improve the symptom of SCI. Levetiracetam has been confirmed to alleviate the injury of nerve cells, while its functions in SCI remains unclear. In this study, C57BL/6J mice were used to establish SCI models to observe the effect of levetiracetam on SCI. The mice were fed with 180 mg/kg levetiracetam when suffering from SCI, and Basso mouse score (BMS) and CatWalk-assisted gait analysis were used to observe the motor functions of the mice. Nissl staining and TUNEL staining were used to observe the injury of nerve cells. The abundance of inflammatory factors was measured by ELISA. The permeability of blood-spinal cord barrier (BSCB) in mice was detected with macrophage infiltration analysis. Moreover, the abundance of perforin in the tissues was detected by western blot. The results showed that the SCI mice treated with levetiracetam exhibited lighter motor dysfunction compared with the mice treated with saline. Levetiracetam can effectively reduce the inflammatory reactions and alleviate apoptosis of the nerve cells. Moreover, levetiracetam remarkably decreased the BSCB permeability of SCI mice. Besides, it was also found that levetiracetam can significantly inhibit the expression of perforin. In conclusion, this study suggests that levetiracetam can attenuate the injury of BSCB to block the progression of SCI via suppressing the expression of perforin.
Collapse
|
8
|
Neves EGA, Koh CC, Souza-Silva TG, Passos LSA, Silva ACC, Velikkakam T, Villani F, Coelho JS, Brodskyn CI, Teixeira A, Gollob KJ, Nunes MDCP, Dutra WO. T-Cell Subpopulations Exhibit Distinct Recruitment Potential, Immunoregulatory Profile and Functional Characteristics in Chagas versus Idiopathic Dilated Cardiomyopathies. Front Cardiovasc Med 2022; 9:787423. [PMID: 35187122 PMCID: PMC8847602 DOI: 10.3389/fcvm.2022.787423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic Chagas cardiomyopathy (CCC) is one of the deadliest cardiomyopathies known and the most severe manifestation of Chagas disease, which is caused by infection with the parasite Trypanosoma cruzi. Idiopathic dilated cardiomyopathies (IDC) are a diverse group of inflammatory heart diseases that affect the myocardium and are clinically similar to CCC, often causing heart failure and death. While T-cells are critical for mediating cardiac pathology in CCC and IDC, the mechanisms underlying T-cell function in these cardiomyopathies are not well-defined. In this study, we sought to investigate the phenotypic and functional characteristics of T-cell subpopulations in CCC and IDC, aiming to clarify whether the inflammatory response is similar or distinct in these cardiomyopathies. We evaluated the expression of systemic cytokines, determined the sources of the different cytokines, the expression of their receptors, of cytotoxic molecules, and of molecules associated with recruitment to the heart by circulating CD4+, CD8+, and CD4-CD8- T-cells from CCC and IDC patients, using multiparameter flow cytometry combined with conventional and unsupervised machine-learning strategies. We also used an in silico approach to identify the expression of genes that code for key molecules related to T-cell function in hearts of patient with CCC and IDC. Our data demonstrated that CCC patients displayed a more robust systemic inflammatory cytokine production as compared to IDC. While CD8+ T-cells were highly activated in CCC as compared to IDC, CD4+ T-cells were more activated in IDC. In addition to differential expression of functional molecules, these cells also displayed distinct expression of molecules associated with recruitment to the heart. In silico analysis of gene transcripts in the cardiac tissue demonstrated a significant correlation between CD8 and inflammatory, cytotoxic and cardiotropic molecules in CCC transcripts, while no correlation with CD4 was observed. A positive correlation was observed between CD4 and perforin transcripts in hearts from IDC but not CCC, as compared to normal tissue. These data show a clearly distinct systemic and local cellular response in CCC and IDC, despite their similar cardiac impairment, which may contribute to identifying specific immunotherapeutic targets in these diseases.
Collapse
Affiliation(s)
- Eula G. A. Neves
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carolina C. Koh
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaiany G. Souza-Silva
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lívia Silva Araújo Passos
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Brigham and Womens Hospital, Harvard University, Boston, MA, United States
| | - Ana Carolina C. Silva
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Teresiama Velikkakam
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Villani
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Minas Gerais State University, Divinópolis, Brazil
| | - Janete Soares Coelho
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Claudia Ida Brodskyn
- Gonçalo Moniz Research Center, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Andrea Teixeira
- Rene Rachou Institute, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
| | - Maria do Carmo P. Nunes
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Walderez O. Dutra
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Grabowski K, Herlan L, Witten A, Qadri F, Eisenreich A, Lindner D, Schädlich M, Schulz A, Subrova J, Mhatre KN, Primessnig U, Plehm R, van Linthout S, Escher F, Bader M, Stoll M, Westermann D, Heinzel FR, Kreutz R. Cpxm2 as a novel candidate for cardiac hypertrophy and failure in hypertension. Hypertens Res 2022; 45:292-307. [PMID: 34916661 PMCID: PMC8766285 DOI: 10.1038/s41440-021-00826-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.
Collapse
Affiliation(s)
- Katja Grabowski
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Laura Herlan
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Anika Witten
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Fatimunnisa Qadri
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany
| | - Andreas Eisenreich
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Diana Lindner
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Clinic for Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schädlich
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Angela Schulz
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Jana Subrova
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Ketaki Nitin Mhatre
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany
| | - Uwe Primessnig
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ralph Plehm
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany
| | - Sophie van Linthout
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Charité—Universitätsmedizin Berlin, BCRT—Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Felicitas Escher
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.486773.9Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, Berlin, Germany
| | - Michael Bader
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10178 Berlin, Germany ,grid.4562.50000 0001 0057 2672University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Monika Stoll
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany ,grid.5012.60000 0001 0481 6099Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dirk Westermann
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Clinic for Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Frank R. Heinzel
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178, Berlin, Germany.
| |
Collapse
|
10
|
Plasminogen activator inhibitor-1 reduces cardiac fibrosis and promotes M2 macrophage polarization in inflammatory cardiomyopathy. Basic Res Cardiol 2021; 116:1. [PMID: 33432417 PMCID: PMC7801308 DOI: 10.1007/s00395-020-00840-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 11/01/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has a cardioprotective function in mice by repressing cardiac fibrosis through TGF-β and plasminogen-mediated pathways. In addition it is known to be involved in the recruitment and polarization of monocytes/macrophages towards a M2 phenotype in cancer. Here, we investigated the expression of PAI-1 in human dilated cardiomyopathy (DCM) and inflammatory dilated cardiomyopathy (DCMi) and its effect on cardiac fibrosis and macrophage polarization. We retrospectively analyzed endomyocardial biopsies (EMBs) of patients with DCM or DCMi for PAI-1 expression by immunohistochemistry. Furthermore, EMBs were evaluated for the content of fibrotic tissue, number of activated myofibroblasts, TGF-β expression, as well as for M1 and M2 macrophages. Patients with high-grade DCMi (DCMi-high, CD3+ lymphocytes > 30 cells/mm2) had significantly increased PAI-1 levels compared to DCM and low-grade DCMi patients (DCMi-low, CD3+ lymphocytes = 14-30 cells/mm2) (15.5 ± 0.4% vs. 1.0 ± 0.1% and 4.0 ± 0.1%, p ≤ 0.001). Elevated PAI-1 expression in DCMi-high subjects was associated with a diminished degree of cardiac fibrosis, decreased levels of TGF-β and reduced number of myofibroblasts. In addition, DCMi-high patients revealed an increased proportion of non-classical M2 macrophages towards classical M1 macrophages, indicating M2 macrophage-favoring properties of PAI-1 in inflammatory cardiomyopathies. Our findings give evidence that elevated expression of cardiac PAI-1 in subjects with high-grade DCMi suppresses fibrosis by inhibiting TGF-β and myofibroblast activation. Moreover, our data indicate that PAI-1 is involved in the polarization of M2 macrophages in the heart. Thus, PAI-1 could serve as a potential prognostic biomarker and as a possible therapeutic target in inflammatory cardiomyopathies.
Collapse
|
11
|
Evaluation of Myocardial Gene Expression Profiling for Superior Diagnosis of Idiopathic Giant-Cell Myocarditis and Clinical Feasibility in a Large Cohort of Patients with Acute Cardiac Decompensation. J Clin Med 2020; 9:jcm9092689. [PMID: 32825201 PMCID: PMC7563288 DOI: 10.3390/jcm9092689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Aims: The diagnostic approach to idiopathic giant-cell myocarditis (IGCM) is based on identifying various patterns of inflammatory cell infiltration and multinucleated giant cells (GCs) in histologic sections taken from endomyocardial biopsies (EMBs). The sampling error for detecting focally located GCs by histopathology is high, however. The aim of this study was to demonstrate the feasibility of gene profiling as a new diagnostic method in clinical practice, namely in a large cohort of patients suffering from acute cardiac decompensation. Methods and Results: In this retrospective multicenter study, EMBs taken from n = 427 patients with clinically acute cardiac decompensation and suspected acute myocarditis were screened (mean age: 47.03 ± 15.69 years). In each patient, the EMBs were analyzed on the basis of histology, immunohistology, molecular virology, and gene-expression profiling. Out of the total of n = 427 patient samples examined, GCs could be detected in 26 cases (6.1%) by histology. An established myocardial gene profile consisting of 27 genes was revealed; this was narrowed down to a specified profile of five genes (CPT1, CCL20, CCR5, CCR6, TLR8) which serve to identify histologically proven IGCM with high specificity in 25 of the 26 patients (96.2%). Once this newly established profiling approach was applied to the remaining patient samples, an additional n = 31 patients (7.3%) could be identified as having IGCM without any histologic proof of myocardial GCs. In a subgroup analysis, patients diagnosed with IGCM using this gene profiling respond in a similar fashion to immunosuppressive therapy as patients diagnosed with IGCM by conventional histology alone. Conclusions: Myocardial gene-expression profiling is a promising new method in clinical practice, one which can predict IGCM even in the absence of any direct histologic proof of GCs in EMB sections. Gene profiling is of great clinical relevance in terms of (a) overcoming the sampling error associated with purely histologic examinations and (b) monitoring the effectiveness of therapy.
Collapse
|
12
|
Poller W, Haas J, Klingel K, Kühnisch J, Gast M, Kaya Z, Escher F, Kayvanpour E, Degener F, Opgen-Rhein B, Berger F, Mochmann HC, Skurk C, Heidecker B, Schultheiss HP, Monserrat L, Meder B, Landmesser U, Klaassen S. Familial Recurrent Myocarditis Triggered by Exercise in Patients With a Truncating Variant of the Desmoplakin Gene. J Am Heart Assoc 2020; 9:e015289. [PMID: 32410525 PMCID: PMC7660888 DOI: 10.1161/jaha.119.015289] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Variants of the desmosomal protein desmoplakin are associated with arrhythmogenic cardiomyopathy, an important cause of ventricular arrhythmias in children and young adults. Disease penetrance of desmoplakin variants is incomplete and variant carriers may display noncardiac, dermatologic phenotypes. We describe a novel cardiac phenotype associated with a truncating desmoplakin variant, likely causing mechanical instability of myocardial desmosomes. Methods and Results In 2 young brothers with recurrent myocarditis triggered by physical exercise, screening of 218 cardiomyopathy‐related genes identified the heterozygous truncating variant p.Arg1458Ter in desmoplakin. Screening for infections yielded no evidence of viral or nonviral infections. Myosin and troponin I autoantibodies were detected at high titers. Immunohistology failed to detect any residual DSP protein in endomyocardial biopsies, and none of the histologic criteria of arrhythmogenic cardiomyopathy were fulfilled. Cardiac magnetic resonance imaging revealed no features associated with right ventricular arrhythmogenic cardiomyopathy, but multifocal subepicardial late gadolinium enhancement was present in the left ventricles of both brothers. Screening of adult cardiomyopathy cohorts for truncating variants identified the rare genetic variants p.Gln307Ter, p.Tyr1391Ter, and p.Tyr1512Ter, suggesting that over subsequent decades critical genetic/exogenous modifiers drive pathogenesis from desmoplakin truncations toward different end points. Conclusions The described novel phenotype of familial recurrent myocarditis associated with a desmoplakin truncation in adolescents likely represents a serendipitously revealed subtype of arrhythmogenic cardiomyopathy. It may be caused by a distinctive adverse effect of the variant desmoplakin upon the mechanical stability of myocardial desmosomes. Variant screening is advisable to allow early detection of patients with similar phenotypes.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany
| | - Jan Haas
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology Department of Pathology University Hospital Tübingen Germany
| | - Jirko Kühnisch
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany
| | - Martina Gast
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Felicitas Escher
- Department of Cardiology Campus Virchow Klinikum Universitätsmedizin Berlin Germany.,Institute for Clinical Diagnostics and Therapy (IKDT) Berlin Germany
| | - Elham Kayvanpour
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Franziska Degener
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany
| | - Bernd Opgen-Rhein
- Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | - Felix Berger
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | | | - Carsten Skurk
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Bettina Heidecker
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | | | | | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany.,Department of Genetics Stanford University School of Medicine Palo Alto CA
| | - Ulf Landmesser
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Berlin Institute of Health Berlin Germany
| | - Sabine Klaassen
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| |
Collapse
|
13
|
Poller W, Skurk C, Escher F, Manes C, Elgeti T, Schultheiss HP, Taupitz M, Landmesser U. Multimodality Imaging Reveals Divergent Responses of Left and Right Heart to Treatment in Cardiac Amyloidosis. JACC Case Rep 2019; 1:360-366. [PMID: 34316826 PMCID: PMC8289130 DOI: 10.1016/j.jaccas.2019.07.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
Cardiac amyloidosis is associated with very high morbidity and mortality. Only if treated early, cardiac amyloidosis responds well to therapy, and early recognition with a full differential diagnostic workup including multimodality imaging is therefore critical at first presentation. Closely meshed clinical monitoring and imaging are indispensable to ensure optimal individualized treatment. (Level of Difficulty: Beginner.).
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, Charite-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research, Site Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Campus Benjamin Franklin, Charite-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research, Site Berlin, Berlin, Germany
| | - Felicitas Escher
- German Center for Cardiovascular Research, Site Berlin, Berlin, Germany.,Department of Cardiology, Campus Virchow-Klinikum, Charite-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cardiac Diagnostics and Therapy, Berlin, Germany
| | - Costantina Manes
- Department of Cardiology, Campus Benjamin Franklin, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Elgeti
- Institute for Radiology, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Matthias Taupitz
- Institute for Radiology, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charite-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research, Site Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
14
|
Poller W, Haghikia A, Kasner M, Kaya Z, Bavendiek U, Wedemeier H, Epple HJ, Skurk C, Landmesser U. Cardiovascular Involvement in Chronic Hepatitis C Virus Infections - Insight from Novel Antiviral Therapies. J Clin Transl Hepatol 2018; 6:161-167. [PMID: 29951361 PMCID: PMC6018314 DOI: 10.14218/jcth.2017.00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 12/11/2022] Open
Abstract
Whereas statistical association of hepatitis C virus (HCV) infection with cardiomyopathy is long known, establishment of a causal relationship has not been achieved so far. Patients with advanced heart failure (HF) are mostly unable to tolerate interferon (IFN)-based treatment, resulting in limited experience regarding the possible pathogenic role of HCV in this patient group. HCV infection often triggers disease in a broad spectrum of extrahepatic organs, with innate immune and autoimmune pathogenic processes involved. The fact that worldwide more than 70 million patients are chronically infected with HCV illustrates the possible clinical impact arising if cardiomyopathies were induced or aggravated by HCV, resulting in progressive HF or severe arrhythmias. A novel path has been opened to finally resolve the long-standing question of cause-effect relationship between HCV infection and cardiac dysfunction, by the recent development of IFN-free, highly efficient, and well tolerable anti-HCV regimens. The new direct-acting antiviral (DAA) agents are highly virus-specific and lack unspecific side-effects upon cardiac function which have always confounded the interpretation of IFN treatment data. The actual frequency of unexplained HF in chronic HCV infection will be determined from a planned large-scale study. Whereas such patients probably constitute a rather small fraction of all those harboring HCV, they have major clinical relevance. It is not yet known which fraction of these patients will significantly benefit from HCV eradication, but this issue will be addressed now in a prospective study.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
- *Correspondence to: Wolfgang Poller, Department of Cardiology, Campus Benjamin Franklin, Charite Centrum 11, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin 12200, Germany. Tel: +49-30-450-513765, Fax: +49-30-450-513984, E-mail:
| | - Arash Haghikia
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| | - Mario Kasner
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, University Hospital, Heidelberg, Germany
| | | | | | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, CC 13, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| |
Collapse
|