1
|
Li S, Yu H, Teng H, Zhang L, Li R, Tong H. Sulforaphane Promotes the Skeletal Muscle Postinjury Regeneration by Up-Regulating the Transcription of Prl2c2 through JAK2/STAT3 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40391687 DOI: 10.1021/acs.jafc.5c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Sulforaphane (SFN), a lipophilic small-molecule compound, can be rapidly and completely absorbed upon entering the body. It has garnered extensive research attention for its potential as an antiaging, anticancer, antidiabetic, and antibacterial agent. However, its role and mechanisms of SFN on skeletal muscle postinjury regeneration have not been reported. This research demonstrated that SFN enhanced the regeneration after skeletal muscle injury and up-regulated the proliferation of mouse C2C12 myoblasts. RNA-transcriptome sequencing data revealed that SFN increased Prl2C2 transcription and JAK/STAT signaling pathway activity. CHIP and dual-luciferase reporter gene assays verified that STAT3 binds to the Prl2C2 promoter and regulates its transcription. Consequently, SFN influenced the JAK2/STAT3 signaling activity. Finally, the transcription of Prl2C2 and the proliferation of mouse C2C12 myoblasts were detected by adding JAK2 inhibitor and SFN. The results showed that the JAK2 inhibitor blocked the up-regulation of SFN on the transcription of Prl2C2 and the proliferation of mouse C2C12 myoblasts. The discovery of this phenomenon and its mechanism offer guidance for treating skeletal muscle injuries and supporting animal nutrition research. SFN shows great potential in muscle repair, and future clinical trials could confirm its safety and efficacy, paving the way for new SFN-based treatments and providing new options for patients.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Hong Yu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Huaixin Teng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Lu Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Rui Li
- Laboratory of Plant Secondary Metabolism, Northeast Agricultural University, Harbin 150030, China
| | - Huili Tong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Wang H, Zhang M, Xin M, Yue X, Piao J, Zhao L, Bi H, Wang S, Jin C, Nan Y, Jin X, Cheng XW. Dexmedetomidine Reduces Chronic Stress-Related Thrombosis in a Mouse FeCl 3 Model. FASEB J 2025; 39:e70546. [PMID: 40304859 PMCID: PMC12042889 DOI: 10.1096/fj.202500724r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Chronic psychological stress (CPS) is a significant risk factor for thrombotic cardio-cerebrovascular diseases (TCVDs). Clinical data suggest that the α2-adrenergic receptor (AdR-α2) agonist dexmedetomidine (Dex) can influence coagulation in stress-exposed intensive care unit patients. Given the important role of protease-activated receptor-2 (PAR-2) in vascular pathobiology, we aimed to investigate the potential effects of Dex on stress-related thrombus formation, focusing on the PAR-2 signaling pathway. Eight-week-old male mice underwent non-stress and immobilization stress with Dex treatment for 2 weeks and were then subjected to carotid artery thrombosis induction using ferric chloride (FeCl3). On Day 14 post-stress, the mice exhibited increased thrombus weight and length, along with harmful alterations in the plasma levels of von Willebrand factor and metalloproteinase with thrombospondin Type 13 motifs. Additionally, arterial protein and/or mRNA levels of PAR-2, p-Akt, Bcl-2, cleaved caspase-3, cytochrome c, gp91phox, TNF-α, MCP-1, ICAM-1, VCAM-1, and TLR-4 were altered, accompanied by arterial endothelial loss. Dex treatment reversed these changes. Conversely, AdR-α2 blockage with yohimbine diminished the benefits of Dex. In vitro, Dex reduced stress serum-induced reactive oxygen species production and endothelial apoptosis, along with beneficial alterations in PAR-2, Bcl-2, and cytochrome c protein levels. Yohimbine diminished these effects. Thus, α2-adrenergic receptor activation appeared to mitigate stress-related thrombus formation in mice undergoing FeCl3-induced surgery, possibly by negatively regulating PAR-2 signaling. These findings suggest a potential therapeutic strategy for CPS-related thrombotic events in patients with TCVDs.
Collapse
Affiliation(s)
- Huazhen Wang
- Department of AnesthesiologyYanbian University HospitalYanjiJilinP.R. China
| | - Meiping Zhang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinP.R. China
| | - Minglong Xin
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinP.R. China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinP.R. China
| | - Jinshun Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinP.R. China
| | - Longguo Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinP.R. China
| | - Hehui Bi
- Department of AnesthesiologyYanbian University HospitalYanjiJilinP.R. China
| | - Shiyan Wang
- Department of AnesthesiologyYanbian University HospitalYanjiJilinP.R. China
| | - Chunzi Jin
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinP.R. China
| | - Yongshan Nan
- Department of AnesthesiologyYanbian University HospitalYanjiJilinP.R. China
| | - Xianglan Jin
- Department of AnesthesiologyYanbian University HospitalYanjiJilinP.R. China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinP.R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of EducationYanbian UniversityYanjiJilinP.R. China
- Department of Community Healthcare and GeriatricsNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
3
|
Zhuang F, Liu ZT, Zhou G, Liang F, Wang YH, Chen L, Zhang WF, Shen LH, Lu YQ, Huo HH, Shi X, Fang L, He B. Integrin β3-mediated platelet extracellular vesicle adhesion facilitates vascular smooth muscle cell dysfunction in postinjury intimal hyperplasia. Int J Biol Sci 2025; 21:2380-2395. [PMID: 40303298 PMCID: PMC12035895 DOI: 10.7150/ijbs.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025] Open
Abstract
Vascular smooth muscle cell (VSMC) dysfunction is a critical pathological process in postinjury intima hyperplasia. This process is driven by the adherence and accumulation of platelet-derived extracellular vesicles (PEVs) released from activated platelets to VSMCs at the site of injured intima. However, the precise mechanism remains unclear. Thus, the present study aimed to investigate how PEVs adhere to VSMCs and facilitate VSMC dysfunction in postinjury intimal hyperplasia. Morphological results confirmed that PEVs led to VSMC dysfunction and intimal hyperplasia. Integrated single-cell and proteomic analysis revealed that increased secreted phosphoprotein 1 (SPP1) expression in VSMCs played a central role in this process, possibly by mediating PEV adhesion to VSMCs and activating the focal adhesion kinase (FAK)/phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt) axis. In addition, integrin beta 3 (ITGβ3, CD61) on PEVs, with increased expression under pathological conditions, was predicted to interact with SPP1. Co-immunoprecipitation (Co-IP) analysis further confirmed that ITGβ3 interacted with SPP1, thereby activating the FAK/PI3K/AKT phosphorylation and promoting PEV adhesion. Of note, blocking ITGβ3 expression on PEVs reduced PEV adhesion and intimal hyperplasia. Thus, ITGβ3-SPP1-mediated PEV adhesion to VSMCs may be a novel mechanism in intimal hyperplasia, which proposed to be critical for vascular homeostasis.
Collapse
Affiliation(s)
- Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhi-tong Liu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo Zhou
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying-hua Wang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Long Chen
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei-feng Zhang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ling-hong Shen
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan-qiao Lu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huan-huan Huo
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liang Fang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
4
|
Lin Z, Zhao M, Zhang X, Piao J, Zheng X, Shu S, Zhao L, Zhang M, Shi GP, Lei Y, Cui R, Yue X, Cheng XW. CD8 + T-cell deficiency protects mice from abdominal aortic aneurysm formation in response to calcium chloride 2. J Hypertens 2024; 42:1966-1975. [PMID: 39146540 PMCID: PMC11451972 DOI: 10.1097/hjh.0000000000003823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is an aneurysm-like dilated and highly fatal cardiovascular disease. CD8 + T cells have been shown to be critical for vascular pathological processes, but the contribution of these lymphocytes to vascular diseases remains elusive. METHODS AND RESULTS Eight-week-old male wildtype (CD8 +/+ ) and Cd8a knockout (CD8 -/- ) mice were used in a calcium chloride 2 (CaCl 2 )-induced experimental AAA model. At 6 weeks after surgery, CD8 + T-cell deletion prevented the formation of AAA, accompanied by reductions of the levels of inflammatory (interferon-γ [IFN-γ], interleukin-1β, monocyte chemoattractant protein-1, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, NOD-like receptor protein 3, caspase-1), oxidative stress [NADPH oxidase and gp91 phox ], and proteolysis (cathepsin S, cathepsin K, matrix metalloproteinase-2 [MMP-2] and MMP-9) proteins and/or genes in plasma and/or AAA tissues. Immunoreactivities of MMP-2 and MMP-9 were observed in macrophages. An injection of IFN-γ and adoptive transfer of CD8 + T cells of IFN-γ +/+ mice diminished CD8 -/- -mediated vasculoprotective actions in the AAA mice. In vitro, IFN-γ enhanced MMP-2 and MMP-9 gelatinolytic activities in macrophage and/or vascular smooth muscle cells. CONCLUSION The vasculoprotective effects of CD8 + T-cell deletion in a mouse CaCl 2 -induced AAA model were likely attributable to, at least in part, the attenuation of IFN-γ-dependent inflammation action, oxidative stress production, and proteolysis, suggesting a novel therapeutic target for AAA formation by regulating CD8 + T-cell-derived IFN-γ secretion.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
| | - Mantong Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui
| | - Jinshun Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xintong Zheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Shangzhi Shu
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, Jilin PR, China
| | - Longguo Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Meiping Zhang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yanna Lei
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Rihua Cui
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xueling Yue
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| |
Collapse
|
5
|
Zhang M, Yue X, Xu S, Piao J, Zhao L, Shu S, Kuzuya M, Li P, Hong L, Kim W, Liu B, Cheng XW. Dipeptidyl peptidase-4 disturbs adipocyte differentiation via the negative regulation of the glucagon-like peptide-1/adiponectin-cathepsin K axis in mice under chronic stress conditions. FASEB J 2024; 38:e23684. [PMID: 38795334 DOI: 10.1096/fj.202400158r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4+/+), DPP4-knockout (DPP4-/-) and CTSK-knockout (CTSK-/-) mice, and stressed DPP4+/+, DPP4-/-, CTSK-/-, and DPP4+/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and β-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, P. R. China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Jinshun Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
| | - Longguo Zhao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
| | - Shangzhi Shu
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Masafumi Kuzuya
- Department of Community Health & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ping Li
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, P. R. China
| | - Weon Kim
- Department of Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, P. R. China
| |
Collapse
|
6
|
Jin X, Yue X, Huang Z, Meng X, Xu S, Wu Y, Wan Y, Inoue A, Narisawa M, Hu L, Shi GP, Umegaki H, Murohara T, Lei Y, Kuzuya M, Cheng XW. Cathepsin K deficiency prevented stress-related thrombosis in a mouse FeCl 3 model. Cell Mol Life Sci 2024; 81:205. [PMID: 38703204 PMCID: PMC11069486 DOI: 10.1007/s00018-024-05240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.
Collapse
Affiliation(s)
- Xueying Jin
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
| | - Zhe Huang
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Xiangkun Meng
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yuna Wu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China
| | - Ying Wan
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Aiko Inoue
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Institute of Innovation for Future Society, Nagoya University, Nagoya, Aichi-Ken, 466-8550, Japan
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin, 541199, Guangxi, People's Republic of China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroyuki Umegaki
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Institute of Innovation for Future Society, Nagoya University, Nagoya, Aichi-Ken, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yanna Lei
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
- Department of Intensive Care, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
| | - Masafumi Kuzuya
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Meitetsu Hospital, Nagoya, Aichi, 451-8511, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, Jilin, People's Republic of China.
| |
Collapse
|
7
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
8
|
Adherence to the EAT-Lancet sustainable reference diet and cardiometabolic risk profile: cross-sectional results from the ELSA-Brasil cohort study. Eur J Nutr 2023; 62:807-817. [PMID: 36266476 DOI: 10.1007/s00394-022-03032-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The EAT-Lancet Commission released a reference sustainable diet to improve human health and respect the planetary boundaries. The Planetary Health Diet Index (PHDI) was developed with the purpose of evaluate the adherence to this reference diet. The aim of the present study was to evaluate the association between adherence to the EAT-Lancet diet with cardiometabolic risk profile. METHODS We used the cross-sectional baseline data from 14,155 participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), a multicenter ongoing cohort study. Dietary data were collected using a 114-item validated food frequency questionnaire. The PHDI was used to assess the adherence to the EAT-Lancet diet. It consists of 16 components and the total score can range from 0 to 150 points. Linear, logistic and quasi-Poisson regression models were built to evaluate the associations between PHDI and the outcomes. RESULTS Individuals with higher adherence to EAT-Lancet diet (PHDI, 5th quintile) had lower values for systolic blood pressure (β - 0.84; 95% CI - 1.66: - 0.01), diastolic blood pressure (β - 0.70; 95% CI - 1.24: - 0.15), total cholesterol (β - 3.15; 95% CI - 5.30: - 1.01), LDL-c (β - 4.10; 95% CI - 5.97: - 2.23), and non-HDL-cholesterol (β - 2.57; 95% CI - 4.62: - 0.52). No association was observed for HDL-c, triglycerides and HOMA-IR. CONCLUSIONS Our results indicate that higher adherence to the EAT-Lancet diet is associated with lower levels of blood pressure, total cholesterol, LDL-c, and non-HDL-c.
Collapse
|
9
|
Nifuroxazide mitigates doxorubicin-induced cardiovascular injury: Insight into oxidative/NLRP3/GSDMD-mediated pyroptotic signaling modulation. Life Sci 2023; 314:121311. [PMID: 36549350 DOI: 10.1016/j.lfs.2022.121311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Doxorubicin (DOX) is a widely used powerful anthracycline for treatment of many varieties of malignancies; however its cumulative and dose-dependent cardio-toxicity has been limited its clinical use. In the current study, in vivo and in vitro (neonatal rat's cardiomyocytes) experiments were conducted to identify the impact of nifuroxazide (NIFU) on DOX-induced cardiomyopathy, vascular injury, and hemato-toxcity and plot the underlying regulatory mechanisms. Cardiovascular injury was induced in vivo by I.P. injection of an overall dose of DOX (21 mg/kg) administered (3.5 mg/kg) twice weekly for 21 days. NIFU (10 and 30 mg/kg) was administered orally once daily for 21 days, 1 week after DOX injection initiation. In vivo experiments confirmed NIFU to restore blood cells counts and hemoglobin concentration. Moreover, NIFU normalized the myocardial functional status as confirmed by ECG examination and myocardial injury markers; CK-MB, LDH, and AST. NIFU restored the balance between TAC and both of ROS and MDA and down-regulated the protein expression of TLR4, NF-kB, TXNIP, NLR-family pyrin domain containing 3 (NLRP3), caspase-1, IL-1β, and GSDMD-N terminal, with inhibition of the up-stream of NLRP3 and the down-stream DOX-induced pyroptosis. The in vitro assay confirmed well preserved cardiomyocytes' architecture, amelioration of NLRP3/IL-1 β-mediated cell pyroptosis, enhanced cell viability, and improved spontaneous beating. Moreover, NIFU normalized the disturbed aortic oxidant-antioxidant balance; enhanced eNOS- mediated endothelial relaxation, and down regulated IL-1β expression. Thus, NIFU may be proposed to serve as a cardioprotective agent to attenuate DOX-induced cardio-toxicity and vascular injury.
Collapse
|
10
|
Xu J, Zhong Y, Yin H, Linneman J, Luo Y, Xia S, Xia Q, Yang L, Huang X, Kang K, Wang J, Niu Y, Li L, Gou D. Methylation-mediated silencing of PTPRD induces pulmonary hypertension by promoting pulmonary arterial smooth muscle cell migration via the PDGFRB/PLCγ1 axis. J Hypertens 2022; 40:1795-1807. [PMID: 35848503 PMCID: PMC9451921 DOI: 10.1097/hjh.0000000000003220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Pulmonary hypertension is a lethal disease characterized by pulmonary vascular remodeling and is mediated by abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Platelet-derived growth factor BB (PDGF-BB) is the most potent mitogen for PASMCs and is involved in vascular remodeling in pulmonary hypertension development. Therefore, the objective of our study is to identify novel mechanisms underlying vascular remodeling in pulmonary hypertension. METHODS We explored the effects and mechanisms of PTPRD downregulation in PASMCs and PTPRD knockdown rats in pulmonary hypertension induced by hypoxia. RESULTS We demonstrated that PTPRD is dramatically downregulated in PDGF-BB-treated PASMCs, pulmonary arteries from pulmonary hypertension rats, and blood and pulmonary arteries from lung specimens of patients with hypoxic pulmonary arterial hypertension (HPAH) and idiopathic PAH (iPAH). Subsequently, we found that PTPRD was downregulated by promoter methylation via DNMT1. Moreover, we found that PTPRD knockdown altered cell morphology and migration in PASMCs via modulating focal adhesion and cell cytoskeleton. We have demonstrated that the increase in cell migration is mediated by the PDGFRB/PLCγ1 pathway. Furthermore, under hypoxic condition, we observed significant pulmonary arterial remodeling and exacerbation of pulmonary hypertension in heterozygous PTPRD knock-out rats compared with the wild-type group. We also demonstrated that HET group treated with chronic hypoxia have higher expression and activity of PLCγ1 in the pulmonary arteries compared with wild-type group. CONCLUSION We propose that PTPRD likely plays an important role in the process of pulmonary vascular remodeling and development of pulmonary hypertension in vivo .
Collapse
Affiliation(s)
- Junhua Xu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanfeng Zhong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Haoyang Yin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - John Linneman
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yixuan Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Sijian Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Qinyi Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Lei Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Xingtao Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Kang Kang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center
| |
Collapse
|
11
|
Yue X, Piao L, Wang H, Huang Z, Meng X, Sasaki T, Inoue A, Nakamura K, Wan Y, Xu S, Shi GP, Kim W, Murohara T, Kuzuya M, Cheng XW. Cathepsin K Deficiency Prevented Kidney Damage and Dysfunction in Response to 5/6 Nephrectomy Injury in Mice With or Without Chronic Stress. Hypertension 2022; 79:1713-1723. [PMID: 35726642 PMCID: PMC9278705 DOI: 10.1161/hypertensionaha.122.19137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Chronic psychological stress is a risk factor for kidney disease, including kidney dysfunction and hypertension. Lysosomal CatK (cathepsin K) participates in various human pathobiologies. We investigated the role of CatK in kidney remodeling and hypertension in response to 5/6 nephrectomy injury in mice with or without chronic stress. Methods: Male 7-week-old WT (wild type; CatK+/+) and CatK-deficient (CatK−/−) mice that were or were not subjected to chronic stress underwent 5/6 nephrectomy. At 8 weeks post-stress/surgery, the stress was observed to have accelerated injury-induced glomerulosclerosis, proteinuria, and blood pressure elevation. Results: Compared with the nonstressed mice, the stressed mice showed increased levels of TLR (Toll-like receptor)-2/4, p22phox, gp91phox, CatK, MMP (matrix metalloproteinase)-2/9, collagen type I and III genes, PPAR-γ (peroxisome proliferator-activated receptor-gamma), NLRP-3 (NOD-like receptor thermal protein domain associated protein 3), p21, p16, and cleaved caspase-8 proteins, podocyte foot process effacement, macrophage accumulation, apoptosis, and decreased levels of Bcl-2 (B cell lymphoma 2) and Sirt1, as well as decreased glomerular desmin expression in the kidneys. These harmful changes were retarded by the genetic or pharmacological inhibition of CatK. Consistently, CatK inhibition ameliorated 5/6 nephrectomy–related kidney injury and dysfunction. In mesangial cells, CatK silencing or overexpression, respectively, reduced or increased the PPAR-γ and cleaved caspase-8 protein levels, providing evidence and a mechanistic explanation of CatK’s involvement in PPAR-γ/caspase-8–mediated cell apoptosis in response to superoxide and stressed serum. Conclusions: These results demonstrate that CatK plays an essential role in kidney remodeling and hypertension in response to 5/6 nephrectomy or stress, possibly via a reduction of glomerular inflammation, apoptosis, and fibrosis, suggesting a novel therapeutic strategy for controlling kidney injury in mice under chronic psychological stress conditions.
Collapse
Affiliation(s)
- Xueling Yue
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, People's Republic of China (X.Y., L.P., H.W., Z.H., X.M., Y.W., S.X., X.W.C.).,Department of Community Health Care and Geriatrics (X.Y., Z.H., X.M., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, People's Republic of China (X.Y., L.P., H.W., Z.H., X.M., Y.W., S.X., X.W.C.)
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, People's Republic of China (X.Y., L.P., H.W., Z.H., X.M., Y.W., S.X., X.W.C.)
| | - Zhe Huang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, People's Republic of China (X.Y., L.P., H.W., Z.H., X.M., Y.W., S.X., X.W.C.).,Department of Community Health Care and Geriatrics (X.Y., Z.H., X.M., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Xiangkun Meng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, People's Republic of China (X.Y., L.P., H.W., Z.H., X.M., Y.W., S.X., X.W.C.).,Department of Community Health Care and Geriatrics (X.Y., Z.H., X.M., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Shizuoka, Japan (T.S.)
| | - Aiko Inoue
- Institute of Innovation for Future Society (A.I., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology (K.N.), Nagoya University Graduate School of Medicine, Japan
| | - Ying Wan
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, People's Republic of China (X.Y., L.P., H.W., Z.H., X.M., Y.W., S.X., X.W.C.)
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, People's Republic of China (X.Y., L.P., H.W., Z.H., X.M., Y.W., S.X., X.W.C.)
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (G.-P.S.)
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea (W.K.)
| | - Toyoaki Murohara
- Department of Cardiology (T.M.), Nagoya University Graduate School of Medicine, Japan
| | - Masafumi Kuzuya
- Department of Community Health Care and Geriatrics (X.Y., Z.H., X.M., M.K.), Nagoya University Graduate School of Medicine, Japan.,Institute of Innovation for Future Society (A.I., M.K.), Nagoya University Graduate School of Medicine, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, Jilin, People's Republic of China (X.Y., L.P., H.W., Z.H., X.M., Y.W., S.X., X.W.C.)
| |
Collapse
|
12
|
Li Z, Cong X, Kong W. Matricellular proteins: Potential biomarkers and mechanistic factors in aortic aneurysms. J Mol Cell Cardiol 2022; 169:41-56. [DOI: 10.1016/j.yjmcc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
13
|
Chunchai T, Arinno A, Ongnok B, Pantiya P, Khuanjing T, Prathumsap N, Maneechote C, Chattipakorn N, Chattipakorn SC. Ranolazine alleviated cardiac/brain dysfunction in doxorubicin-treated rats. Exp Mol Pathol 2022; 127:104818. [PMID: 35882281 DOI: 10.1016/j.yexmp.2022.104818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 02/08/2023]
Abstract
Doxorubicin (Dox), a powerful chemotherapeutic agent, has been shown to cause cardiotoxicity and neurotoxicity. Ranolazine, a drug that is commonly used to treat patients with chronic angina, has been shown to reduce toxicity from Dox therapy. Therefore, the present study aims to investigate the mechanisms behind the protective effects of ranolazine on the heart and brain in Dox-treatment. Twenty-four male Wistar rats received 6 doses of either 0.9% normal saline (0.9% NSS, i.p., n = 8) or Dox (3 mg/kg, i.p., n = 16). All Dox-treated rats were assigned into 2 groups to receive vehicle (0.9% NSS, orally; n = 8) or ranolazine (305 mg/kg/day, orally; n = 8) for 30 consecutive days. Following the treatments, left ventricular (LV) function and cognition were determined. Animals were euthanized, then the heart and brain were collected for further analysis. Dox induced systemic oxidative stress/inflammation, and cardiac injury evidenced by mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis, resulting in LV dysfunction. Ranolazine significantly improved LV function via attenuating cardiac injury. Dox also caused brain pathologies as indicated by increased brain inflammation, impaired blood-brain barrier integrity, brain mitochondrial dysfunction, microglial dysmorphology, hippocampal dysplasticity, and increased apoptosis, resulting in cognitive decline. Ranolazine exerted neuroprotective effects by suppressing brain pathologies and restoring cognitive function. These findings suggest that ranolazine has a potential role in cardio- and neuro-protection against chemotherapy.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
14
|
Karnewar S, Pulipaka S, Katta S, Panuganti D, Neeli PK, Thennati R, Jerald MK, Kotamraju S. Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe mice. Atherosclerosis 2022; 356:28-40. [DOI: 10.1016/j.atherosclerosis.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
|
15
|
Rho kinase inhibition ameliorates vascular remodeling and blood pressure elevations in a rat model of apatinib-induced hypertension. J Hypertens 2022; 40:675-684. [PMID: 34862331 PMCID: PMC8901036 DOI: 10.1097/hjh.0000000000003060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Hypertension is one of the major adverse effects of tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factors. However, the mechanism underlying TKIs-induced hypertension remains unclear. Here, we explored the role of the RhoA/Rho kinase (ROCK) signaling pathway in elevation of blood pressure (BP) induced by apatinib, a selective TKI approved in China for treatment of advanced or metastatic gastric cancer. A nonspecific ROCK inhibitor, Y27632, was then combined with apatinib and its efficacy in alleviating apatinib-induced hypertension was evaluated. METHODS Normotensive female Wistar-Kyoto rats were exposed to two different doses of apatinib, or apatinib combined with Y27632, or vehicle for 2 weeks. BP was monitored by a tail-cuff plethysmography system. The mRNA levels and protein expression in the RhoA/ROCK pathway were determined, and vascular remodeling assessed. RESULTS Administration of either a high or low dose of apatinib was associated with a rapid rise in BP, reaching a plateau after 12 days. Apatinib treatment mediated upregulation of RhoA and ROCK II in the mid-aorta, more significant in the high-dose group. However, ROCK I expression showed no statistically significant differences. Furthermore, the mRNA level of GRAF3 decreased dose-dependently. Apatinib administration was also associated with decreased levels of MLCP, and elevated endothelin-1 (ET-1) and collagen I, which were accompanied with increased mid-aortic media. However, treatment with Y27632 attenuated the above changes. CONCLUSION These findings suggest that activation of the RhoA/ROCK signaling pathway could be the underlying mechanism of apatinib-induced hypertension, while ROCK inhibitor have potential therapeutic value.
Collapse
|
16
|
Quiles-Jiménez A, Dahl TB, Bjørås M, Alseth I, Halvorsen B, Gregersen I. Epitranscriptome in Ischemic Cardiovascular Disease: Potential Target for Therapies. Stroke 2022; 53:2114-2122. [PMID: 35240858 DOI: 10.1161/strokeaha.121.037581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global risk of cardiovascular disease, including ischemic disease such as stroke, remains high, and cardiovascular disease is the cause of one-third of all deaths worldwide. The main subjacent cause, atherosclerosis, is not fully understood. To improve early diagnosis and therapeutic strategies, it is crucial to unveil the key molecular mechanisms that lead to atherosclerosis development. The field of epitranscriptomics is blossoming and quickly advancing in fields like cancer research, nevertheless, poorly understood in the context of cardiovascular disease. Epitranscriptomic modifications are shown to regulate the metabolism and function of RNA molecules, which are important for cell functions such as cell proliferation, a key aspect in atherogenesis. As such, epitranscriptomic regulatory mechanisms can serve as novel checkpoints in gene expression during disease development. In this review, we describe examples of the latest research investigating epitranscriptomic modifications, in particular A-to-I editing and the covalent modification N6-methyladenosine and their regulatory proteins, in the context of cardiovascular disease. We additionally discuss the potential of these mechanisms as therapeutic targets and novel treatment options.
Collapse
Affiliation(s)
- Ana Quiles-Jiménez
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Tuva B Dahl
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Division of Critical Care and Emergencies, Oslo University Hospital, Rikshospitalet, Norway. (T.B.D.)
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.).,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (M.B.)
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway. (M.B., I.A.)
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.).,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.Q.-J., B.H.)
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway. (A.Q.-J., T.B.D., B.H., I.G.)
| |
Collapse
|
17
|
Proliferin-1 Ameliorates Cardiotoxin-Related Skeletal Muscle Repair in Mice. Stem Cells Int 2021; 2021:9202990. [PMID: 34950212 PMCID: PMC8692050 DOI: 10.1155/2021/9202990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Background We recently demonstrated that proliferin-1 (PLF-1) functions as an apoptotic cell-derived growth factor and plays an important role in vascular pathobiology. We therefore investigated its role in muscle regeneration in response to cardiotoxin injury. Methods and Results To determine the effects of PLF-1 on muscle regeneration, we used a CTX-induced skeletal muscle injury model in 9-week-old male mice that were administered with the recombinant PLF-1 (rPLF-1) or neutralizing PLF-1 antibody. The injured muscles exhibited increased levels of PLF-1 gene expression in a time-dependent manner. On day 14 after injury, rPLF-1 supplementation ameliorated CTX-induced alterations in muscle fiber size, interstitial fibrosis, muscle regeneration capacity, and muscle performance. On day 3 postinjury, rPLF-1 increased the levels of proteins or genes for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, p-p38MAPK, interleukin-10, Pax7, MyoD, and Cyclin B1, and it increased the numbers of CD34+/integrin-α7+ muscle stem cells and proliferating cells in the muscles and/or bone marrow of CTX mice. An enzyme-linked immunosorbent assay revealed that rPLF-1 suppressed the levels of plasma tumor necrosis factor-α and interleukin-1β in CTX mice. PLF-1 blocking accelerated CTX-related muscle damage and dysfunction. In C2C12 myoblasts, rPLF-1 increased the levels of proteins for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, and p-p38MAPK as well as cellular functions; and these effects were diminished by the depletion of PLF-1 or silencing of its mannose-6-phosphate receptor. Conclusions These findings demonstrated that PLF-1 can improve skeletal muscle repair in response to injury, possibly via the modulation of inflammation and proliferation and regeneration, suggesting a novel therapeutic strategy for the management of skeletal muscle diseases.
Collapse
|
18
|
Li H, Zeng X, Wang Y, Zhang Z, Zhu Y, Li X, Hu A, Zhao Q, Yang W. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur J Nutr 2021; 61:387-398. [PMID: 34379193 DOI: 10.1007/s00394-021-02660-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Although emphasis has recently been placed on the importance of diet high in plant-based foods, the association between plant-based diet and long-term risk of overall and cause-specific mortality has been less studied. We aimed to investigate whether plant-based diet was associated with lower death risk. METHODS This prospective cohort study used data from the US National Health and Nutrition Examination Survey. Diet was assessed using 24 h dietary recalls. We created three plant-based diet indices including an overall plant-based diet index (PDI), a healthful plant-based diet index (hPDI), and an unhealthful plant-based diet index (uPDI). Deaths from baseline until December 31, 2015, were identified. Multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox regression. RESULTS We documented 4904 deaths among 40,074 participants after a median follow-up of 7.8 years. Greater adherence to PDI was associated with lower risk of overall (HR comparing extreme quintiles 0.80, 95% CI 0.73, 0.89, ptrend < 0.001) and cancer-specific (HR = 0.68, 95% CI 0.55, 0.85, ptrend < 0.001) mortality. These inverse associations remained for hPDI and overall mortality with a HR of 0.86 (95% CI 0.77, 0.95, ptrend = 0.001), but not for cancer or CVD mortality. Conversely, uPDI was associated with higher risk of total (HR = 1.33, 95% CI 1.19, 1.48, ptrend < 0.001) and CVD-specific (HR = 1.42, 95% CI 1.12, 1.79, ptrend = 0.015) mortality. CONCLUSIONS Increased intake of a plant-based diet rich in healthier plant foods is associated with lower mortality risk, whereas a plant-based diet that emphasizes less-healthy plant foods is associated with high mortality risk among US adults.
Collapse
Affiliation(s)
- Hairong Li
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Xufen Zeng
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yingying Wang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhuang Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yu Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiude Li
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Anla Hu
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qihong Zhao
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China. .,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China. .,Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
19
|
Todorov SS, Deribas VJ, Kazmin AS, Todorov SS. [Morphological and Molecular-Biological Changes in the Coronary Arteries after Stenting]. ACTA ACUST UNITED AC 2021; 61:79-84. [PMID: 34397345 DOI: 10.18087/cardio.2021.7.n1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 11/18/2022]
Abstract
This review addresses morphological changes in coronary arteries following stenting, which result from damage to the vascular wall. These changes include 1) formation of a thrombus in the site of intimal injury; 2) inflammation; 3) proliferation and migration of smooth muscle cells; 4) formation of extracellular matrix. Each of these pathological processes has specific morpho-biological features. The review shows the role of von Willebrand factor in development of early thrombosis after intimal injury, which provokes activation of the inflammatory response followed by proliferation of smooth muscle cell that synthetize the extracellular matrix. These cellular and intercellular changes are based on overexpression of TGF-β1 protein, which facilitates modulation of various types of smooth muscle cells, including contractile and secretory ones. Issues of fine regulation of cellular and intercellular interactions by apoptosis, activation of mTOR signaling molecules, and microRNA are still understudied. Dynamic changes in drug-coated stents during development of neoatherosclerosis and late thrombosis remain not elucidated. Current reports show that initial mechanisms triggering pathological regenerative and hyperplastic processes that result in coronary restenosis in the area of implanted stents may form early (first hours or days) after stenting. Most studies were performed on experimental rather than on autopsy material, which does not allow fully unbiased interpretation of obtained data. Studying dynamics of morphological and molecular changes in coronary arteries after stenting, including on autopsy material, will allow one to express an opinion on the risk of postoperative thrombosis and restenosis.
Collapse
Affiliation(s)
- S S Todorov
- Rostov State Medical University of the Ministry of Health of Russia, Rostov-on-Don
| | - V J Deribas
- Rostov State Medical University of the Ministry of Health of Russia, Rostov-on-Don
| | - A S Kazmin
- Rostov State Medical University of the Ministry of Health of Russia, Rostov-on-Don
| | - S S Todorov
- Rostov State Medical University of the Ministry of Health of Russia, Rostov-on-Don
| |
Collapse
|
20
|
Zhang S, Li P, Xin M, Jin X, Zhao L, Nan Y, Cheng XW. Dipeptidyl peptidase-4 inhibition prevents lung injury in mice under chronic stress via the modulation of oxidative stress and inflammation. Exp Anim 2021; 70:541-552. [PMID: 34219073 PMCID: PMC8614009 DOI: 10.1538/expanim.21-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to chronic psychosocial stress is a risk factor for various pulmonary diseases. In view of the essential role of dipeptidyl peptidase 4 (DPP4) in animal and human lung pathobiology, we investigated the role of DPP4 in stress-related lung injury in mice. Eight-week-old male mice were randomly divided into a non-stress group and a 2-week immobilization stress group. Non-stress control mice were left undisturbed. The mice subjected to immobilized stress were randomly assigned to the vehicle or the DPP4 inhibitor anagliptin for 2 weeks. Chronic stress reduced subcutaneous and inguinal adipose volumes and increased blood DPP4 levels. The stressed mice showed increased levels in the lungs of genes and/or proteins related to oxidative stress (p67phox, p47phox, p22phox and gp91phox), inflammation (monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), apoptosis (caspase-3, -8, -9), senescence (p16INK4A, p21, and p53) and proteolysis (matrix metalloproteinase-2 to -9, cathepsin S/K, and tissue inhibitor of matrix metalloproteinase-1 and -2), and reduced levels of eNOS, Sirt1, and Bcl-2 proteins; and these effects were reversed by genetic and pharmacological inhibitions of DPP4. We then exposed human umbilical vein endothelial cells in vitro to hydrogen peroxide; anagliptin treatment was also observed to mitigate oxidative and inflammatory molecules in this setting. Anagliptin can improve lung injury in stressed mice, possibly by mitigating vascular inflammation, oxidative stress production, and proteolysis. DPP4 may become a new therapeutic target for chronic psychological stress-related lung disease in humans and animals.
Collapse
Affiliation(s)
- Shengming Zhang
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Ping Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union, Medical College
| | - Minglong Xin
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Xianglan Jin
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Longguo Zhao
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Yongshan Nan
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| | - Xian Wu Cheng
- Department of Anesthesiology and Cardiology, Yanbian University Hospital
| |
Collapse
|
21
|
Sitagliptin, a dipeptidyl peptidase-4 inhibitor, attenuates apoptosis of vascular smooth muscle cells and reduces atherosclerosis in diabetic apolipoprotein E-deficient mice. Vascul Pharmacol 2021; 140:106854. [PMID: 33781961 DOI: 10.1016/j.vph.2021.106854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Sitagliptin, a dipeptidyl peptidase-4(DPP-4) Inhibitor, has been found to have an anti-atherosclerotic effect. Since apoptosis of vascular smooth muscle cells (VSMCs) contributes to the occurrence of diabetic atherosclerosis. This study aimed to examine whether sitagliptin suppresses the atherosclerosis progression to hyperglycemia in a low-dose streptozotocin (STZ)-induced diabetic mouse model, and then investigated the effect of sitagliptin on VSMCs apoptosis and its underlying mechanism. In vivo studies, eight-week-old low-dose STZ-induced diabetic apolipoprotein E (apoE)-deficient (apoE-/-) mice fed a high-fat diet were administered a DPP-4 inhibitor, sitagliptin, 200 mg/kg/day, or Lantus insulin by daily subcutaneous injection of 1 unit/mouse over a period of 12 weeks. Aortic atherosclerosis and apoptosis in the plaque were determined using dUTP-biotin nick end labeling (TUNEL) staining and immunohistochemistry. In vitro studies utilized the VSMCs for determination of glucagon-like peptide 1 receptor (GLP-1R) and DPP-4 expression and flow cytometry and Western blotting were used to determine apoptosis and protein expression, respectively. Sitagliptin significantly reduced atherosclerotic lesion area (7.00 ± 0.13 vs. 12.80 ± 2.7%, p = 0.003) and suppressed vascular smooth muscle cell apoptosis (2.30 ± 1.34 vs. 4.8 ± 1.93%, p = 0.003) compared with vehicle treatment. In addition, sitagliptin significantly increased the expression of β-catenin in the aortic tissue(0.56 ± 0.13 vs.0.17 ± 0.02, p = 0.008)compared with vehicle treatment. In cultured mouse VSMCs, sitagliptin enhanced GLP-1 activity significantly retarded oxidative stress (H2O2)-induced apoptosis compared with GLP-1 or sitagliptin alone. Sitagliptin increased GLP-1-induced cytosolic levels of β-catenin compared with GLP-1 alone, resulted in increasing the expression of survivin, and suppressed proinflammatory cytokines, i.e., interleukin-6(IL-6) and tumor necrosis factor-alpha(TNF-α), production in response to H2O2. In conclusion, these results indicated that the anti-atherosclerotic effect of sitagliptin is mediated, at least in part, by its inhibition of VSMCs apoptosis.
Collapse
|
22
|
Kamalakar A, McKinney JM, Salinas Duron D, Amanso AM, Ballestas SA, Drissi H, Willett NJ, Bhattaram P, García AJ, Wood LB, Goudy SL. JAGGED1 stimulates cranial neural crest cell osteoblast commitment pathways and bone regeneration independent of canonical NOTCH signaling. Bone 2021; 143:115657. [PMID: 32980561 PMCID: PMC9035226 DOI: 10.1016/j.bone.2020.115657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
Craniofacial bone loss is a complex clinical problem with limited regenerative solutions. Currently, BMP2 is used as a bone-regenerative therapy in adults, but in pediatric cases of bone loss, it is not FDA-approved due to concerns of life-threatening inflammation and cancer. Development of a bone-regenerative therapy for children will transform our ability to reduce the morbidity associated with current autologous bone grafting techniques. We discovered that JAGGED1 (JAG1) induces cranial neural crest (CNC) cell osteoblast commitment during craniofacial intramembranous ossification, suggesting that exogenous JAG1 delivery is a potential craniofacial bone-regenerative approach. In this study, we found that JAG1 delivery using synthetic hydrogels containing O9-1 cells, a CNC cell line, into critical-sized calvarial defects in C57BL/6 mice provided robust bone-regeneration. Since JAG1 signals through canonical (Hes1/Hey1) and non-canonical (JAK2) NOTCH pathways in CNC cells, we used RNAseq to analyze transcriptional pathways activated in CNC cells treated with JAG1 ± DAPT, a NOTCH-canonical pathway inhibitor. JAG1 upregulated expression of multiple NOTCH canonical pathway genes (Hes1), which were downregulated in the presence of DAPT. JAG1 also induced bone chemokines (Cxcl1), regulators of cytoskeletal organization and cell migration (Rhou), signaling targets (STAT5), promoters of early osteoblast cell proliferation (Prl2c2, Smurf1 and Esrra), and, inhibitors of osteoclasts (Id1). In the presence of DAPT, expression levels of Hes1 and Cxcl1 were decreased, whereas, Prl2c2, Smurf1, Esrra, Rhou and Id1 remain elevated, suggesting that JAG1 induces osteoblast proliferation through these non-canonical genes. Pathway analysis of JAG1 + DAPT-treated CNC cells revealed significant upregulation of multiple non-canonical pathways, including the cell cycle, tubulin pathway, regulators of Runx2 initiation and phosphorylation of STAT5 pathway. In total, our data show that JAG1 upregulates multiple pathways involved in osteogenesis, independent of the NOTCH canonical pathway. Moreover, our findings suggest that JAG1 delivery using a synthetic hydrogel, is a bone-regenerative approach with powerful translational potential.
Collapse
Affiliation(s)
| | - Jay M McKinney
- Wallace H. Coulter Department of Biomedical Engineering, USA; George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | | | | | | | - Hicham Drissi
- Department of Cell Biology, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center Atlanta, GA, USA.
| | - Pallavi Bhattaram
- Department of Cell Biology, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA.
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, USA; George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA.
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA.
| | - Steven L Goudy
- Department of Otolaryngology, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
23
|
Inhibition of miR-122 reduced atherosclerotic lesion formation by regulating NPAS3-mediated endothelial to mesenchymal transition. Life Sci 2020; 265:118816. [PMID: 33278397 DOI: 10.1016/j.lfs.2020.118816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022]
Abstract
AIMS Endothelial to mesenchymal transition (EndMT) is closely related to atherosclerosis. Herein, we aim to determine whether miR-122 is involved in EndMT and the underlying mechanism in atherosclerosis. MAIN METHODS qRT-PCR was performed to detect miR-122 expression in ApoE-/- mice and cellular EndMT model induced by H2O2. MiR-122 expression in vivo was modulated by lenti-virus injection and by genetic manipulation. Hematoxylin and eosin (HE) and Oil-red O staining were used to observe the plaque size and lipid accumulation in the aortic roots. F4/80 staining, elastin staining, and masson staining were used to observe the components of atherosclerotic lesions. MiR-122 expression in endothelial cells was modulated by transfection of miR-122 mimic and inhibitor. Western blotting and co-localization of endothelial markers (VE-cadherin, CD31) and mesenchymal markers (Vimentin, α-SMA) were carried out to determine EndMT. KEY FINDINGS MiR-122 was upregulated in the aortic intima and serum of ApoE-/- mice induced by HFD and in cellular EndMT model. Inhibition of miR-122 repressed the atherosclerotic plaque progression and vulnerable plaque formation in ApoE-/- mice. In vitro, endothelial cells acquired a spindle-shaped morphology accompanying decrease of the endothelial markers (VE-cadherin, CD31) and increase of the mesenchymal markers (Vimentin, α-SMA) in the presence of H2O2, which was inhibited by miR-122 inhibitor. Furthermore, NPAS3 functions as a target of miR-122, and NPAS3 silencing abolished the anti-EndMT effect of miR-122 inhibitor. SIGNIFICANCE Inhibition of miR-122 prevents atherosclerosis and regulates NPAS3-mediated EndMT, suggesting that miR-122 may be a novel target in the treatment of EndMT-associated diseases including atherosclerosis.
Collapse
|
24
|
Cai X, Zhang P, Wang S, Hong L, Yu S, Li B, Zeng H, Yang X, Shao L. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR‑195. Mol Med Rep 2020; 22:4579-4588. [PMID: 33174051 PMCID: PMC7646841 DOI: 10.3892/mmr.2020.11558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
FGD5 antisense RNA 1 (FGD5-AS1) is a long non-coding RNA in acute myocardial infarction (AMI), which is primarily caused by myocardial ischemia-hypoxia. Retinoid acid receptor-related orphan receptor α (RORA) is a key protector in maintaining heart function. However, the roles of FGD5-AS1 and RORA in AMI have not previously been elucidated. The present study investigated the effect and mechanism of FGD5-AS1 and RORA in human cardiomyocyte AC16 cells under hypoxia. Reverse transcription-quantitative PCR and western blotting demonstrated that FGD5-AS1 and RORA were downregulated in the serum of patients with AMI and hypoxia-challenged AC16 cells. Functional experiments were performed via assays, flow cytometry and western blotting. In response to hypoxia, superoxide dismutase (SOD) activity was inhibited, but apoptosis rate and levels of reactive oxygen species and malondialdehyde were promoted in AC16 cells, accompanied by increased Bax and cleaved caspase-3 expression levels, and decreased SOD2 and glutathione peroxidase 1 expression levels. However, hypoxia-induced oxidative stress and apoptosis in AC16 cells were attenuated by ectopic expression of FGD5-AS1 or RORA. Moreover, silencing RORA counteracted the suppressive role of FGD5-AS1 overexpression in hypoxic injury. FGD5-AS1 controlled RORA expression levels via microRNA-195-5p (miR-195), as confirmed by dual-luciferase reporter and RNA pull-down assays. Consistently, miR-195 knockdown suppressed hypoxia-induced oxidative stress and apoptosis in AC16 cells, which was abrogated by downregulating FGD5-AS1 or RORA. In conclusion, FGD5-AS1 modulated hypoxic injury in human cardiomyocytes partially via the miR-195/RORA axis, suggesting FGD5-AS1 as a potential target in interfering with the progression of AMI.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shu Wang
- Department of Gerontology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Li
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hong Zeng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Yang
- Shenzhen Realomics (Biotech), Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
25
|
Yu C, Wan Y, Piao L, Wu Cheng X. Can cysteinyl cathepsin activity control diet-induced NAFLD? IJC HEART & VASCULATURE 2020; 28:100516. [PMID: 32373709 PMCID: PMC7195526 DOI: 10.1016/j.ijcha.2020.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022]
Key Words
- CSTB, cathepsin B
- CTSB+/+, wild-type
- CTSB−/−, cathepsin B deficiency
- CTSs, cathepsins
- FABP4, fatty acid binding protein 4
- FPC, fructose-palmitate-cholesterol
- LDL, low density lipoprotein
- MMP, metalloproteinase
- NAFLD, Non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Scad, short-chain acyl dehydrogenase-1
Collapse
Affiliation(s)
| | | | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China
| |
Collapse
|
26
|
Hu L, Huang Z, Ishii H, Wu H, Suzuki S, Inoue A, Kim W, Jiang H, Li X, Zhu E, Piao L, Zhao G, Lei Y, Okumura K, Shi GP, Murohara T, Kuzuya M, Cheng XW. PLF-1 (Proliferin-1) Modulates Smooth Muscle Cell Proliferation and Development of Experimental Intimal Hyperplasia. J Am Heart Assoc 2019; 8:e005886. [PMID: 31838975 PMCID: PMC6951060 DOI: 10.1161/jaha.117.005886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Although apoptosis and cell proliferation have been extensively investigated in atherosclerosis and restenosis postinjury, the communication between these 2 cellular events has not been evaluated. Here, we report an inextricable communicative link between apoptosis and smooth muscle cell proliferation in the promotion of vascular remodeling postinjury. Methods and Results Cathepsin K-mediated caspase-8 maturation is a key initial step for oxidative stress-induced smooth muscle cell apoptosis. Apoptotic cells generate a potential growth-stimulating signal to facilitate cellular mass changes in response to injury. One downstream mediator that cathepsin K regulates is PLF-1 (proliferin-1), which can potently stimulate growth of surviving neighboring smooth muscle cells through activation of PI3K/Akt/p38MAPK (phosphatidylinositol 3-kinase/protein kinase B/p38 mitogen-activated protein kinase)-dependent and -independent mTOR (mammalian target of rapamycin) signaling cascades. We observed that cathepsin K deficiency substantially mitigated neointimal hyperplasia by reduction of Toll-like receptor-2/caspase-8-mediated PLF-1 expression. Interestingly, PLF-1 blocking, with its neutralizing antibody, suppressed neointima formation and remodeling in response to injury in wild-type mice. Contrarily, administration of recombinant mouse PLF-1 accelerated injury-induced vascular actions. Conclusions This is the first study detailing PLF-1 as a communicator between apoptosis and proliferation during injury-related vascular remodeling and neointimal hyperplasia. These data suggested that apoptosis-driven expression of PLF-1 is thus a novel target for treatment of apoptosis-based hyperproliferative disorders.
Collapse
Affiliation(s)
- Lina Hu
- Department of Public Health Guilin Medical College Guilin Guangxi China.,Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Zhe Huang
- Department of Neurology Occupational and Environmental Health Kitakyushu Hukuoka Japan
| | - Hideki Ishii
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hongxian Wu
- Department of Cardiology Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Susumu Suzuki
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Aiko Inoue
- Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| | - Weon Kim
- Division of Cardiology Department of Internal Medicine Kyung Hee University Seoul South Korea
| | - Haiying Jiang
- Department of Physiology and Pathophysiology Yanbian University School of Medicine Yanji Jinlin China
| | - Xiang Li
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Enbo Zhu
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Limei Piao
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guangxian Zhao
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Yanna Lei
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Kenji Okumura
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guo-Ping Shi
- Department of Cardiovascular Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| | - Toyoaki Murohara
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Masafumi Kuzuya
- Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| | - Xian Wu Cheng
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Division of Cardiology Department of Internal Medicine Kyung Hee University Seoul South Korea.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| |
Collapse
|