1
|
Shooshtarian AK, O'Gallagher K, Shah AM, Zhang M. SERCA2a dysfunction in the pathophysiology of heart failure with preserved ejection fraction: a direct role is yet to be established. Heart Fail Rev 2025; 30:545-564. [PMID: 39843817 PMCID: PMC11991975 DOI: 10.1007/s10741-025-10487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
With rising incidence, mortality and limited therapeutic options, heart failure with preserved ejection fraction (HFpEF) remains one of the most important topics in cardiovascular medicine today. Characterised by left ventricular diastolic dysfunction partially due to impaired Ca2+ homeostasis, one ion channel in particular, SarcoEndoplasmic Reticulum Ca2+-ATPase (SERCA2a), may play a significant role in its pathophysiology. A better understanding of the complex mechanisms interplaying to contribute to SERCA2a dysfunction will help develop treatments targeting it and thus address the growing clinical challenge HFpEF poses. This review examines the conflicting evidence present for changes in SERCA2a expression and activity in HFpEF, explores potential underlying mechanisms, and finally evaluates the drug and gene therapy trials targeting SERCA2a in heart failure. Recent positive results from trials involving widely used anti-diabetic agents such as sodium-glucose co-transporter protein 2 inhibitors (SGLT2i) and glucagon-like peptide-1 (GLP-1) agonists offer advancement in HFpEF management. The potential interplay between these agents and SERCA2a regulation presents a novel angle that could open new avenues for modulating diastolic function; however, the mechanistic research in this emerging field is limited. Overall, the direct role of SERCA2a dysfunction in HFpEF remains undetermined, highlighting the need for well-designed pre-clinical studies and robust clinical trials.
Collapse
Affiliation(s)
- Adam Kia Shooshtarian
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Kevin O'Gallagher
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Min Zhang
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
2
|
Bahrami P, Aromolaran KA, Aromolaran AS. Mechanistic Relevance of Ventricular Arrhythmias in Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:13423. [PMID: 39769189 PMCID: PMC11677834 DOI: 10.3390/ijms252413423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing at an alarming rate worldwide, with limited effective therapeutic interventions in patients. Sudden cardiac death (SCD) and ventricular arrhythmias present substantial risks for the prognosis of these patients. Obesity is a risk factor for HFpEF and life-threatening arrhythmias. Obesity and its associated metabolic dysregulation, leading to metabolic syndrome, are an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese, leading to an enhanced risk of incidence and mortality due to cardiovascular disease (CVD). Obesity predisposes patients to atrial fibrillation and ventricular and supraventricular arrhythmias-conditions that are caused by dysfunction in the electrical activity of the heart. To date, current therapeutic options for the cardiomyopathy of obesity are limited, suggesting that there is considerable room for the development of therapeutic interventions with novel mechanisms of action that will help normalize sinus rhythms in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca-handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels and Ca-handling proteins remain incompletely understood. Obesity is marked by the accumulation of adipose tissue, which is associated with a variety of adverse adaptations, including dyslipidemia (or abnormal systemic levels of free fatty acids), increased secretion of proinflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, which cause electrical remodeling and, thus, predispose patients to arrhythmias. Furthermore, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which is marked by distinct signaling mechanisms. Thus, there may also be functional differences in the effects of the regional distribution of fat deposits on ion channel/Ca-handling protein expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge of the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact. Nevertheless, substantial knowledge gaps remain regarding HFpEF treatment, requiring further investigations to identify potential therapeutic targets. The objective of this study is to review cardiac ion channel/Ca-handling protein remodeling in the predisposition to metabolic HFpEF and arrhythmias. This review further highlights interleukin-6 (IL-6) as a potential target, cardiac bridging integrator 1 (cBIN1) as a promising gene therapy agent, and leukotriene B4 (LTB4) as an underappreciated pathway in future HFpEF management.
Collapse
Affiliation(s)
- Pegah Bahrami
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Janssens JV, Raaijmakers AJA, Koutsifeli P, Weeks KL, Bell JR, Van Eyk JE, Curl CL, Mellor KM, Delbridge LMD. Mechanical loading reveals an intrinsic cardiomyocyte stiffness contribution to diastolic dysfunction in murine cardiometabolic disease. J Physiol 2024; 602:6705-6727. [PMID: 39629708 DOI: 10.1113/jp286437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Cardiometabolic syndromes including diabetes and obesity are associated with occurrence of heart failure with diastolic dysfunction. There are no specific treatments for diastolic dysfunction, and therapies to manage symptoms have limited efficacy. Understanding of the cardiomyocyte origins of diastolic dysfunction is an important priority to identify new therapeutics. The investigative goal was to experimentally define in vitro stiffness properties of isolated cardiomyocytes derived from rodent hearts exhibiting diastolic dysfunction in vivo in response to dietary induction of cardiometabolic disease. Male mice fed a high fat/sugar diet (HFSD vs. control) exhibited diastolic dysfunction (echo E/e' Doppler ratio). Intact paced cardiomyocytes were functionally investigated in three conditions: non-loaded, loaded and stretched. Mean stiffness of HFSD cardiomyocytes was 70% higher than control. E/e' for the HFSD hearts was elevated by 35%. A significant relationship was identified between in vitro cardiomyocyte stiffness and in vivo dysfunction severity. With conversion from the non-loaded to loaded condition, the decrement in maximal sarcomere lengthening rate was more accentuated in HFSD cardiomyocytes (vs. control). With stretch, the Ca2+ transient decay time course was prolonged. With increased pacing, cardiomyocyte stiffness was elevated, yet diastolic Ca2+ elevation was attenuated. Our findings show unequivocally that cardiomyocyte mechanical dysfunction cannot be detected by analysis of non-loaded shortening. Collectively, these findings demonstrate that a component of cardiac diastolic dysfunction in cardiometabolic disease is derived from cardiomyocyte stiffness. Differential responses to load, stretch and pacing suggest that a previously undescribed alteration in myofilament-Ca2+ interaction contributes to intrinsic cardiomyocyte stiffness in cardiometabolic disease. KEY POINTS: Understanding cardiomyocyte stiffness components is an important priority for identifying new therapeutics for diastolic dysfunction, a key feature of cardiometabolic disease. In this study cardiac function was measured in vivo (echocardiography) for mice fed a high-fat/sugar diet (HFSD, ≥25 weeks). Performance of intact isolated cardiomyocytes derived from the same hearts was measured during pacing under non-loaded, loaded and stretched conditions in vitro. Calibrated cardiomyocyte stretches demonstrated that stiffness (stress/strain) was elevated in HFSD cardiomyocytes in vitro and correlated with diastolic dysfunction (E/e') in vivo. HFSD cardiomyocyte Ca2+ transient decay was prolonged in response to stretch. Stiffness was accentuated with pacing increase while the elevation in diastolic Ca2+ was attenuated. Data show unequivocally that cardiomyocyte mechanical dysfunction cannot be detected by analysis of non-loaded shortening. These findings suggest that stretch-dependent augmentation of the myofilament-Ca2+ response during diastole partially underlies elevated cardiomyocyte stiffness and diastolic dysfunction of hearts of animals with cardiometabolic disease.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Parisa Koutsifeli
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Kate L Weeks
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiometabolic Health (Baker), University of Melbourne, Melbourne, Australia
| | - James R Bell
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Melbourne, Australia
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Claire L Curl
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Physiology, University of Auckland, New Zealand
| | - Lea M D Delbridge
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Janssens JV, Raaijmakers AJA, Koutsifeli P, Weeks KL, Bell JR, Van Eyk JE, Curl CL, Mellor KM, Delbridge LMD. Mechanical loading reveals an intrinsic cardiomyocyte stiffness contribution to diastolic dysfunction in murine cardiometabolic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581448. [PMID: 38659933 PMCID: PMC11042179 DOI: 10.1101/2024.02.21.581448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cardiometabolic syndromes including diabetes and obesity are associated with occurrence of heart failure with diastolic dysfunction. There are no specific treatments for diastolic dysfunction, and therapies to manage symptoms have limited efficacy. Understanding of the cardiomyocyte origins of diastolic dysfunction is an important priority to identify new therapeutics. The investigative goal was to experimentally define in vitro stiffness properties of isolated cardiomyocytes derived from rodent hearts exhibiting diastolic dysfunction in vivo in response to dietary induction of cardiometabolic disease. Male mice fed a high fat/sugar diet (HFSD vs control) exhibited diastolic dysfunction (echo E/e' doppler ratio). Intact paced cardiomyocytes were functionally investigated in three conditions: non-loaded, loaded and stretched. Mean stiffness of HFSD cardiomyocytes was 70% higher than control. E/e' for the origin hearts was elevated by 35%. A significant relationship was identified between in vitro cardiomyocyte stiffness and in vivo dysfunction severity. With conversion from non-loaded to loaded condition, the decrement in maximal sarcomere lengthening rate was more accentuated in HFSD cardiomyocytes (vs control). With stretch, the Ca2+ transient decay time course was prolonged. With increased pacing, cardiomyocyte stiffness was elevated, yet diastolic Ca2+ elevation was attenuated. Our findings show unequivocally that cardiomyocyte mechanical dysfunction cannot be detected by analysis of non-loaded shortening. Collectively, these findings demonstrate that a component of cardiac diastolic dysfunction in cardiometabolic disease is derived from cardiomyocyte stiffness. Differential responses to load, stretch and pacing suggest that a previously undescribed alteration in myofilament-Ca2+ interaction contributes to intrinsic cardiomyocyte stiffness in cardiometabolic disease.
Collapse
|
5
|
Ruud M, Frisk M, Melleby AO, Norseng PA, Mohamed BA, Li J, Aronsen JM, Setterberg IE, Jakubiczka J, van Hout I, Coffey S, Shen X, Nygård S, Lunde IG, Tønnessen T, Jones PP, Sjaastad I, Gullestad L, Toischer K, Dahl CP, Christensen G, Louch WE. Regulation of cardiomyocyte t-tubule structure by preload and afterload: Roles in cardiac compensation and decompensation. J Physiol 2024; 602:4487-4510. [PMID: 38686538 DOI: 10.1113/jp284566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca2+ homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca2+ transients, linked to upregulation of L-type Ca2+ channels, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca2+ cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca2+ transients, with upregulation of the L-type Ca2+ channel, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.
Collapse
Affiliation(s)
- Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Arne Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Per Andreas Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Joanna Jakubiczka
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Isabelle van Hout
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine and HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ståle Nygård
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Theis Tønnessen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Peter P Jones
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Karl Toischer
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Cristen P Dahl
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Semmler L, Jeising T, Huettemeister J, Bathe-Peters M, Georgoula K, Roshanbin R, Sander P, Fu S, Bode D, Hohendanner F, Pieske B, Annibale P, Schiattarella GG, Oeing CU, Heinzel FR. Impairment of the adrenergic reserve associated with exercise intolerance in a murine model of heart failure with preserved ejection fraction. Acta Physiol (Oxf) 2024; 240:e14124. [PMID: 38436094 DOI: 10.1111/apha.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
AIM Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. METHODS 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. RESULTS HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. CONCLUSION In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.
Collapse
Affiliation(s)
- Lukas Semmler
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Tobias Jeising
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Judith Huettemeister
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Marc Bathe-Peters
- Receptor Signalling Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Konstantina Georgoula
- Receptor Signalling Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Rashin Roshanbin
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
| | - Paulina Sander
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Shu Fu
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Burkert Pieske
- Division of Cardiology, Department of Internal Medicine, University Medicine Rostock, Rostock, Germany
| | - Paolo Annibale
- Receptor Signalling Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Gabriele G Schiattarella
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christian U Oeing
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- 2. Medizinische Klinik - Kardiologie, Angiologie, Intensivmedizin, Städtisches Klinikum Dresden, Dresden, Germany
| |
Collapse
|
7
|
Stoicescu L, Crişan D, Morgovan C, Avram L, Ghibu S. Heart Failure with Preserved Ejection Fraction: The Pathophysiological Mechanisms behind the Clinical Phenotypes and the Therapeutic Approach. Int J Mol Sci 2024; 25:794. [PMID: 38255869 PMCID: PMC10815792 DOI: 10.3390/ijms25020794] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is an increasingly frequent form and is estimated to be the dominant form of HF. On the other hand, HFpEF is a syndrome with systemic involvement, and it is characterized by multiple cardiac and extracardiac pathophysiological alterations. The increasing prevalence is currently reaching epidemic levels, thereby making HFpEF one of the greatest challenges facing cardiovascular medicine today. Compared to HF with reduced ejection fraction (HFrEF), the medical attitude in the case of HFpEF was a relaxed one towards the disease, despite the fact that it is much more complex, with many problems related to the identification of physiopathogenetic mechanisms and optimal methods of treatment. The current medical challenge is to develop effective therapeutic strategies, because patients suffering from HFpEF have symptoms and quality of life comparable to those with reduced ejection fraction, but the specific medication for HFrEF is ineffective in this situation; for this, we must first understand the pathological mechanisms in detail and correlate them with the clinical presentation. Another important aspect of HFpEF is the diversity of patients that can be identified under the umbrella of this syndrome. Thus, before being able to test and develop effective therapies, we must succeed in grouping patients into several categories, called phenotypes, depending on the pathological pathways and clinical features. This narrative review critiques issues related to the definition, etiology, clinical features, and pathophysiology of HFpEF. We tried to describe in as much detail as possible the clinical and biological phenotypes recognized in the literature in order to better understand the current therapeutic approach and the reason for the limited effectiveness. We have also highlighted possible pathological pathways that can be targeted by the latest research in this field.
Collapse
Affiliation(s)
- Laurențiu Stoicescu
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Cardiology Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Dana Crişan
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Internal Medicine Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| | - Lucreţia Avram
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Internal Medicine Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
8
|
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, Yin YJ, Little PJ, Wu XQ, Xu SW, Jiang XD. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23-35. [PMID: 37644131 PMCID: PMC10770177 DOI: 10.1038/s41401-023-01152-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xue-Ping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Ting-Ting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Li Chen
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yi-Ping Feng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yu-Kun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Jun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Xiao-Qian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Suo-Wen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xu-Dong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
9
|
Wells SP, Raaijmakers AJ, Curl CL, O’Shea C, Hayes S, Mellor KM, Kalman JM, Kirchhof P, Pavlovic D, Delbridge LM, Bell JR. Localized cardiomyocyte lipid accumulation is associated with slowed epicardial conduction in rats. J Gen Physiol 2023; 155:e202213296. [PMID: 37787979 PMCID: PMC10547601 DOI: 10.1085/jgp.202213296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/20/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
Transmural action potential duration differences and transmural conduction gradients aid the synchronization of left ventricular repolarization, reducing vulnerability to transmural reentry and arrhythmias. A high-fat diet and the associated accumulation of pericardial adipose tissue are linked with conduction slowing and greater arrhythmia vulnerability. It is predicted that cardiac adiposity may more readily influence epicardial conduction (versus endocardial) and disrupt normal transmural activation/repolarization gradients. The aim of this investigation was to determine whether transmural conduction gradients are modified in a rat model of pericardial adiposity. Adult Sprague-Dawley rats were fed control/high-fat diets for 15 wk. Left ventricular 300 µm tangential slices were generated from the endocardium to the epicardium, and conduction was mapped using microelectrode arrays. Slices were then histologically processed to assess fibrosis and cardiomyocyte lipid status. Conduction velocity was significantly greater in epicardial versus endocardial slices in control rats, supporting the concept of a transmural conduction gradient. High-fat diet feeding increased pericardial adiposity and abolished the transmural conduction gradient. Slowed epicardial conduction in epicardial slices strongly correlated with an increase in cardiomyocyte lipid content, but not fibrosis. The positive transmural conduction gradient reported here represents a physiological property of the ventricular activation sequence that likely protects against reentry. The absence of this gradient, secondary to conduction slowing and cardiomyocyte lipid accumulation, specifically in the epicardium, indicates a novel mechanism by which pericardial adiposity may exacerbate ventricular arrhythmias.
Collapse
Affiliation(s)
- Simon P. Wells
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Claire L. Curl
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Sarah Hayes
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
| | - Kimberley M. Mellor
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jonathan M. Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Sciences (DZHK), Partner Site Hamburg-Kiel-Lübeck, Hamburg, Germany
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Lea M.D. Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - James R. Bell
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
| |
Collapse
|
10
|
Ahmed F, Kahlon T, Mohamed TMA, Ghafghazi S, Settles D. Literature Review: Pathophysiology of Heart Failure with Preserved Ejection Fraction. Curr Probl Cardiol 2023; 48:101745. [PMID: 37087081 DOI: 10.1016/j.cpcardiol.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Heart failure with preserved ejection fraction is a growing public health concern, a disease with poor health outcomes, and is showing increased prevalence globally. This review paper explores the literature with a focus on the pathophysiology and microbiology of preserved ejection fraction heart failure while drawing connections between preserved and reduced ejection fraction states. The discussion teases out the cellular level changes that affect the overall dysfunction of the cardiac tissue, including the clinical manifestations, microbiological changes (endothelial cells, fibroblasts, cardiomyocytes, and excitation-contraction coupling), and the burden of structural diastolic dysfunction. The goal of this review is to summarize the pathophysiological disease state of heart failure with preserved ejection fraction to enhance understanding, knowledge, current treatment models of this pathology.
Collapse
Affiliation(s)
- Faizan Ahmed
- Department of Anesthesiology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| | - Tani Kahlon
- Department of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tamer M A Mohamed
- Department of Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shahab Ghafghazi
- Department of Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Dana Settles
- Department of Cardiothoracic Anesthesia, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
11
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
12
|
Delbridge LMD, Bell JR, Weeks KL, Raaijmakers AJA, Mellor KM. HFpEF etiology - Can focus on sex-specific mechanisms deliver insights for all? J Mol Cell Cardiol 2022; 173:71-72. [PMID: 36183570 DOI: 10.1016/j.yjmcc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 01/06/2023]
Affiliation(s)
- L M D Delbridge
- Department of Anatomy & Physiology, University of Melbourne, Australia; Department of Physiology, University of Auckland, New Zealand.
| | - J R Bell
- Department of Anatomy & Physiology, University of Melbourne, Australia; Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Australia
| | - K L Weeks
- Department of Anatomy & Physiology, University of Melbourne, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Australia; Department of Diabetes, Monash University, Australia
| | - A J A Raaijmakers
- Department of Anatomy & Physiology, University of Melbourne, Australia; Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Australia
| | - K M Mellor
- Department of Anatomy & Physiology, University of Melbourne, Australia; Department of Physiology, University of Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
13
|
Tune JD, Goodwill AG, Baker HE, Dick GM, Warne CM, Tucker SM, Essajee SI, Bailey CA, Klasing JA, Russell JJ, McCallinhart PE, Trask AJ, Bender SB. Chronic high-rate pacing induces heart failure with preserved ejection fraction-like phenotype in Ossabaw swine. Basic Res Cardiol 2022; 117:50. [PMID: 36222894 PMCID: PMC12010922 DOI: 10.1007/s00395-022-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 01/31/2023]
Abstract
The lack of pre-clinical large animal models of heart failure with preserved ejection fraction (HFpEF) remains a growing, yet unmet obstacle to improving understanding of this complex condition. We examined whether chronic cardiometabolic stress in Ossabaw swine, which possess a genetic propensity for obesity and cardiovascular complications, produces an HFpEF-like phenotype. Swine were fed standard chow (lean; n = 13) or an excess calorie, high-fat, high-fructose diet (obese; n = 16) for ~ 18 weeks with lean (n = 5) and obese (n = 8) swine subjected to right ventricular pacing (180 beats/min for ~ 4 weeks) to induce heart failure (HF). Baseline blood pressure, heart rate, LV end-diastolic volume, and ejection fraction were similar between groups. High-rate pacing increased LV end-diastolic pressure from ~ 11 ± 1 mmHg in lean and obese swine to ~ 26 ± 2 mmHg in lean HF and obese HF swine. Regression analyses revealed an upward shift in LV diastolic pressure vs. diastolic volume in paced swine that was associated with an ~ twofold increase in myocardial fibrosis and an ~ 50% reduction in myocardial capillary density. Hemodynamic responses to graded hemorrhage revealed an ~ 40% decrease in the chronotropic response to reductions in blood pressure in lean HF and obese HF swine without appreciable changes in myocardial oxygen delivery or transmural perfusion. These findings support that high-rate ventricular pacing of lean and obese Ossabaw swine initiates underlying cardiac remodeling accompanied by elevated LV filling pressures with normal ejection fraction. This distinct pre-clinical tool provides a unique platform for further mechanistic and therapeutic studies of this highly complex syndrome.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Adam G Goodwill
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Hana E Baker
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Chastidy A Bailey
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jessica A Klasing
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jacob J Russell
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
14
|
Streiff ME, Sachse FB. Effects of Sarcolemmal Background Ca2+ Entry and Sarcoplasmic Ca2+ Leak Currents on Electrophysiology and Ca2+ Transients in Human Ventricular Cardiomyocytes: A Computational Comparison. Front Physiol 2022; 13:916278. [PMID: 35784869 PMCID: PMC9243544 DOI: 10.3389/fphys.2022.916278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
The intricate regulation of the compartmental Ca2+ concentrations in cardiomyocytes is critical for electrophysiology, excitation-contraction coupling, and other signaling pathways. Research into the complex signaling pathways is motivated by cardiac pathologies including arrhythmia and maladaptive myocyte remodeling, which result from Ca2+ dysregulation. Of interest to this investigation are two types of Ca2+ currents in cardiomyocytes: 1) background Ca2+ entry, i.e., Ca2+ transport across the sarcolemma from the extracellular space into the cytosol, and 2) Ca2+ leak from the sarcoplasmic reticulum (SR) across the SR membrane into the cytosol. Candidates for the ion channels underlying background Ca2+ entry and SR Ca2+ leak channels include members of the mechano-modulated transient receptor potential (TRP) family. We used a mathematical model of a human ventricular myocyte to analyze the individual contributions of background Ca2+ entry and SR Ca2+ leak to the modulation of Ca2+ transients and SR Ca2+ load at rest and during action potentials. Background Ca2+ entry exhibited a positive relationship with both [Ca2+]i and [Ca2+]SR. Modulating SR Ca2+ leak had opposite effects of background Ca2+ entry. Effects of SR Ca2+ leak on Ca2+ were particularly pronounced at lower pacing frequency. In contrast to the pronounced effects of background and leak Ca2+ currents on Ca2+ concentrations, the effects on cellular electrophysiology were marginal. Our studies provide quantitative insights into the differential modulation of compartmental Ca2+ concentrations by the background and leak Ca2+ currents. Furthermore, our studies support the hypothesis that TRP channels play a role in strain-modulation of cardiac contractility. In summary, our investigations shed light on the physiological effects of the background and leak Ca2+ currents and their contribution to the development of disease caused by Ca2+ dysregulation.
Collapse
Affiliation(s)
- Molly E. Streiff
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Frank B. Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Frank B. Sachse,
| |
Collapse
|
15
|
Grabowski K, Herlan L, Witten A, Qadri F, Eisenreich A, Lindner D, Schädlich M, Schulz A, Subrova J, Mhatre KN, Primessnig U, Plehm R, van Linthout S, Escher F, Bader M, Stoll M, Westermann D, Heinzel FR, Kreutz R. Cpxm2 as a novel candidate for cardiac hypertrophy and failure in hypertension. Hypertens Res 2022; 45:292-307. [PMID: 34916661 PMCID: PMC8766285 DOI: 10.1038/s41440-021-00826-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.
Collapse
Affiliation(s)
- Katja Grabowski
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Laura Herlan
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Anika Witten
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Fatimunnisa Qadri
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany
| | - Andreas Eisenreich
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Diana Lindner
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Clinic for Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schädlich
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Angela Schulz
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Jana Subrova
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178 Berlin, Germany
| | - Ketaki Nitin Mhatre
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany
| | - Uwe Primessnig
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ralph Plehm
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany
| | - Sophie van Linthout
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Charité—Universitätsmedizin Berlin, BCRT—Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Felicitas Escher
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.486773.9Institute of Cardiac Diagnostics and Therapy, IKDT GmbH, Berlin, Germany
| | - Michael Bader
- grid.419491.00000 0001 1014 0849Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany ,grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10178 Berlin, Germany ,grid.4562.50000 0001 0057 2672University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Monika Stoll
- grid.16149.3b0000 0004 0551 4246Department of Genetic Epidemiology, Institute of Human Genetics, University Hospital Münster, Münster, Germany ,grid.5012.60000 0001 0481 6099Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dirk Westermann
- grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Clinic for Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Frank R. Heinzel
- grid.7468.d0000 0001 2248 7639Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Cardiology, Campus Virchow Klinikum, 10178 Berlin, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institut für Klinische Pharmakologie und Toxikologie, 10178, Berlin, Germany.
| |
Collapse
|
16
|
Benitah JP, Perrier R, Mercadier JJ, Pereira L, Gómez AM. RyR2 and Calcium Release in Heart Failure. Front Physiol 2021; 12:734210. [PMID: 34690808 PMCID: PMC8533677 DOI: 10.3389/fphys.2021.734210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Heart Failure (HF) is defined as the inability of the heart to efficiently pump out enough blood to maintain the body's needs, first at exercise and then also at rest. Alterations in Ca2+ handling contributes to the diminished contraction and relaxation of the failing heart. While most Ca2+ handling protein expression and/or function has been shown to be altered in many models of experimental HF, in this review, we focus in the sarcoplasmic reticulum (SR) Ca2+ release channel, the type 2 ryanodine receptor (RyR2). Various modifications of this channel inducing alterations in its function have been reported. The first was the fact that RyR2 is less responsive to activation by Ca2+ entry through the L-Type calcium channel, which is the functional result of an ultrastructural remodeling of the ventricular cardiomyocyte, with fewer and disorganized transverse (T) tubules. HF is associated with an elevated sympathetic tone and in an oxidant environment. In this line, enhanced RyR2 phosphorylation and oxidation have been shown in human and experimental HF. After several controversies, it is now generally accepted that phosphorylation of RyR2 at the Calmodulin Kinase II site (S2814) is involved in both the depressed contractile function and the enhanced arrhythmic susceptibility of the failing heart. Diminished expression of the FK506 binding protein, FKBP12.6, may also contribute. While these alterations have been mostly studied in the left ventricle of HF with reduced ejection fraction, recent studies are looking at HF with preserved ejection fraction. Moreover, alterations in the RyR2 in HF may also contribute to supraventricular defects associated with HF such as sinus node dysfunction and atrial fibrillation.
Collapse
Affiliation(s)
| | | | | | | | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology—UMR-S 1180, INSERM, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
17
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Dimai S, Semmler L, Prabhu A, Stachelscheid H, Huettemeister J, Klaucke SC, Lacour P, Blaschke F, Kruse J, Parwani A, Boldt LH, Bullinger L, Pieske BM, Heinzel FR, Hohendanner F. COVID19-associated cardiomyocyte dysfunction, arrhythmias and the effect of Canakinumab. PLoS One 2021; 16:e0255976. [PMID: 34411149 PMCID: PMC8376065 DOI: 10.1371/journal.pone.0255976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cardiac injury associated with cytokine release frequently occurs in SARS-CoV-2 mediated coronavirus disease (COVID19) and mortality is particularly high in these patients. The mechanistic role of the COVID19 associated cytokine-storm for the concomitant cardiac dysfunction and associated arrhythmias is unclear. Moreover, the role of anti-inflammatory therapy to mitigate cardiac dysfunction remains elusive. Aims and methods We investigated the effects of COVID19-associated inflammatory response on cardiac cellular function as well as its cardiac arrhythmogenic potential in rat and induced pluripotent stem cell derived cardiomyocytes (iPS-CM). In addition, we evaluated the therapeutic potential of the IL-1β antagonist Canakinumab using state of the art in-vitro confocal and ratiometric high-throughput microscopy. Results Isolated rat ventricular cardiomyocytes were exposed to control or COVID19 serum from intensive care unit (ICU) patients with severe ARDS and impaired cardiac function (LVEF 41±5%; 1/3 of patients on veno-venous extracorporeal membrane oxygenation; CK 154±43 U/l). Rat cardiomyocytes showed an early increase of myofilament sensitivity, a decrease of Ca2+ transient amplitudes and altered baseline [Ca2+] upon exposure to patient serum. In addition, we used iPS-CM to explore the long-term effect of patient serum on cardiac electrical and mechanical function. In iPS-CM, spontaneous Ca2+ release events were more likely to occur upon incubation with COVID19 serum and nuclear as well as cytosolic Ca2+ release were altered. Co-incubation with Canakinumab had no effect on pro-arrhythmogenic Ca2+ release or Ca2+ signaling during excitation-contraction coupling, nor significantly influenced cellular automaticity. Conclusion Serum derived from COVID19 patients exerts acute cardio-depressant and chronic pro-arrhythmogenic effects in rat and iPS-derived cardiomyocytes. Canakinumab had no beneficial effect on cellular Ca2+ signaling during excitation-contraction coupling. The presented method utilizing iPS-CM and in-vitro Ca2+ imaging might serve as a novel tool for precision medicine. It allows to investigate cytokine related cardiac dysfunction and pharmacological approaches useful therein.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- COVID-19/complications
- COVID-19/metabolism
- COVID-19/pathology
- Calcium/metabolism
- Calcium Signaling/drug effects
- Drug Evaluation, Preclinical
- Female
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Male
- Middle Aged
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats
- Rats, Sprague-Dawley
- SARS-CoV-2/metabolism
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Sanzio Dimai
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- Institut für Physiologie und Pathophysiologie, Paracelsus Medizinische Privatuniversität, Nürnberg, Germany
| | - Lukas Semmler
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ashok Prabhu
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Harald Stachelscheid
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, Stem Cell Core, Berlin, Germany
| | - Judith Huettemeister
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
| | - Sandra C. Klaucke
- Imperial College London, Hammersmith Hospital, London, England, United Kingdom
| | - Philipp Lacour
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Jan Kruse
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Abdul Parwani
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine, Berlin, Germany
| | - Burkert M. Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, Stem Cell Core, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, Stem Cell Core, Berlin, Germany
- * E-mail:
| |
Collapse
|
19
|
Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J 2021; 42:4420-4430. [PMID: 34414416 PMCID: PMC8599003 DOI: 10.1093/eurheartj/ehab389] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.,National University Heart Centre, Singapore and Duke-National University of Singapore
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
20
|
Frisk M, Le C, Shen X, Røe ÅT, Hou Y, Manfra O, Silva GJJ, van Hout I, Norden ES, Aronsen JM, Laasmaa M, Espe EKS, Zouein FA, Lambert RR, Dahl CP, Sjaastad I, Lunde IG, Coffey S, Cataliotti A, Gullestad L, Tønnessen T, Jones PP, Altara R, Louch WE. Etiology-Dependent Impairment of Diastolic Cardiomyocyte Calcium Homeostasis in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol 2021; 77:405-419. [PMID: 33509397 PMCID: PMC7840890 DOI: 10.1016/j.jacc.2020.11.044] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Whereas heart failure with reduced ejection fraction (HFrEF) is associated with ventricular dilation and markedly reduced systolic function, heart failure with preserved ejection fraction (HFpEF) patients exhibit concentric hypertrophy and diastolic dysfunction. Impaired cardiomyocyte Ca2+ homeostasis in HFrEF has been linked to disruption of membrane invaginations called t-tubules, but it is unknown if such changes occur in HFpEF. OBJECTIVES This study examined whether distinct cardiomyocyte phenotypes underlie the heart failure entities of HFrEF and HFpEF. METHODS T-tubule structure was investigated in left ventricular biopsies obtained from HFrEF and HFpEF patients, whereas cardiomyocyte Ca2+ homeostasis was studied in rat models of these conditions. RESULTS HFpEF patients exhibited increased t-tubule density in comparison with control subjects. Super-resolution imaging revealed that higher t-tubule density resulted from both tubule dilation and proliferation. In contrast, t-tubule density was reduced in patients with HFrEF. Augmented collagen deposition within t-tubules was observed in HFrEF but not HFpEF hearts. A causative link between mechanical stress and t-tubule disruption was supported by markedly elevated ventricular wall stress in HFrEF patients. In HFrEF rats, t-tubule loss was linked to impaired systolic Ca2+ homeostasis, although diastolic Ca2+ removal was also reduced. In contrast, Ca2+ transient magnitude and release kinetics were largely maintained in HFpEF rats. However, diastolic Ca2+ impairments, including reduced sarco/endoplasmic reticulum Ca2+-ATPase activity, were specifically observed in diabetic HFpEF but not in ischemic or hypertensive models. CONCLUSIONS Although t-tubule disruption and impaired cardiomyocyte Ca2+ release are hallmarks of HFrEF, such changes are not prominent in HFpEF. Impaired diastolic Ca2+ homeostasis occurs in both conditions, but in HFpEF, this mechanism for diastolic dysfunction is etiology-dependent.
Collapse
Affiliation(s)
- Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway. https://twitter.com/IEMRLouch
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Åsmund T Røe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Gustavo J J Silva
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Isabelle van Hout
- Department of Physiology, HeartOtago, University of Otago, Otago, New Zealand
| | - Einar S Norden
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway; Bjørknes College, Oslo, Norway
| | - J Magnus Aronsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Emil K S Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Medical Center, Faculty of Medicine, Riad El-Solh, Beirut, Lebanon
| | - Regis R Lambert
- Department of Physiology, HeartOtago, University of Otago, Otago, New Zealand
| | - Christen P Dahl
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Sean Coffey
- Department of Medicine and HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Theis Tønnessen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway; Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Oslo, Norway
| | - Peter P Jones
- Department of Physiology, HeartOtago, University of Otago, Otago, New Zealand
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway. https://twitter.com/IEMRLouch
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Bode D, Rolim NPL, Guthof T, Hegemann N, Wakula P, Primessnig U, Berre AMO, Adams V, Wisløff U, Pieske BM, Heinzel FR, Hohendanner F. Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8:1806-1818. [PMID: 33768692 PMCID: PMC8120378 DOI: 10.1002/ehf2.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/13/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). METHODS AND RESULTS Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+ ] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+ ] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+ -wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. CONCLUSIONS In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity.
Collapse
Affiliation(s)
- David Bode
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Natale P L Rolim
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tim Guthof
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne Marie Ormbostad Berre
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,School of Human Movement and Nutrition Science, University of Queensland, Brisbane, Australia
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
22
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Han HC, Parsons SA, Curl CL, Teh AW, Raaijmakers AJA, Koshy AN, Leong T, Burrell LM, O'Donnell D, Vohra JK, Kalman JM, Sanders P, Hare DL, Farouque O, Delbridge LMD, Lim HS. Systematic quantification of histologic ventricular fibrosis in isolated mitral valve prolapse and sudden cardiac death. Heart Rhythm 2020; 18:570-576. [PMID: 33359875 DOI: 10.1016/j.hrthm.2020.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cardiac fibrosis in mitral valve prolapse (MVP) is implicated in the development of sudden cardiac death (SCD); however, the pattern remains poorly characterized. OBJECTIVE The purpose of this study was to systematically quantify left and right ventricular fibrosis in individuals with isolated MVP and SCD (iMVP-SCD), whereby other potential causes of death are excluded, compared to a control cohort. METHODS Individuals with iMVP-SCD were identified from the Victorian Institute of Forensic Medicine, Australia, and matched for age, sex, and body mass index to control cases with noncardiac death. Cardiac tissue sections were analyzed to determine collagen deposition in the left ventricular free wall (anterior, lateral, and posterior portions), interventricular septum, and right ventricle. Within the iMVP-SCD cases, the endocardial-to-epicardial distribution of fibrosis within the left ventricle was specifically characterized. RESULTS Seventeen cases with iMVP-SCD were matched 1:1 with 17 controls, yielding 149 samples and 1788 histologic regions. The iMVP-SCD group had increased left ventricular (anterior, lateral, and posterior; all P <.001) and interventricular septum fibrosis (P <.001), but similar amounts of right ventricular fibrosis (P = .62) compared to controls. In iMVP-SCD, left ventricular fibrosis was significantly higher in the lateral and posterior walls compared to the anterior wall and interventricular septum (all P <.001). Within the lateral and posterior walls, iMVP-SCD cases had a significant endocardial-to-epicardial gradient of cardiac fibrosis (P <.01) similar to other known conditions that cause cardiac remodeling. CONCLUSION Our study indicates that nonuniform left ventricular remodeling with both localized and generalized left ventricular fibrosis is important in the pathogenesis of SCD in individuals with MVP.
Collapse
Affiliation(s)
- Hui-Chen Han
- Department of Cardiology, Austin Health and University of Melbourne, Victoria, Australia
| | - Sarah A Parsons
- Victorian Institute of Forensic Medicine and Monash University Department of Forensic Medicine, Victoria, Australia
| | - Claire L Curl
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Andrew W Teh
- Department of Cardiology, Austin Health and University of Melbourne, Victoria, Australia; Department of Cardiology, Eastern Health and Monash University, Victoria, Australia
| | | | - Anoop N Koshy
- Department of Cardiology, Austin Health and University of Melbourne, Victoria, Australia
| | - Trishe Leong
- Department of Anatomical Pathology, Austin Health and University of Melbourne, Victoria, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health and University of Melbourne, Victoria, Australia
| | - David O'Donnell
- Department of Cardiology, Austin Health and University of Melbourne, Victoria, Australia
| | - Jitendra K Vohra
- Department of Cardiology, Royal Melbourne Hospital and University of Melbourne, Victoria, Australia
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital and University of Melbourne, Victoria, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, South Australia, Australia
| | - David L Hare
- Department of Cardiology, Austin Health and University of Melbourne, Victoria, Australia
| | - Omar Farouque
- Department of Cardiology, Austin Health and University of Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Han S Lim
- Department of Cardiology, Austin Health and University of Melbourne, Victoria, Australia; Department of Cardiology, Northern Health and University of Melbourne, Victoria, Australia.
| |
Collapse
|
24
|
Heinzel FR, Hegemann N, Hohendanner F, Primessnig U, Grune J, Blaschke F, de Boer RA, Pieske B, Schiattarella GG, Kuebler WM. Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 2020; 10:1541-1560. [PMID: 33224773 PMCID: PMC7666919 DOI: 10.21037/cdt-20-477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype.
Collapse
Affiliation(s)
- Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, Groningen, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | | | - Wolfgang M. Kuebler
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Castillo EC, Vázquez-Garza E, Yee-Trejo D, García-Rivas G, Torre-Amione G. What Is the Role of the Inflammation in the Pathogenesis of Heart Failure? Curr Cardiol Rep 2020; 22:139. [PMID: 32910299 PMCID: PMC7481763 DOI: 10.1007/s11886-020-01382-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In heart failure, whether it is associated with reduced or preserved ejection fraction, the immune system is activated and contributes to heart remodeling and impaired function. RECENT FINDINGS Studies indicate that cells of the immune system not only play a role in the pathology but are also critical regulators of heart function. Knowledge about the role of the immune system driving heart failure will lead to the development of new targets to this system, particularly in those patients that, despite the apparent wellness, relapse and worsen. In this review, we will address the diverse mechanisms that trigger inflammation and their impact on heart failure progression.
Collapse
Affiliation(s)
- Elena C. Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - Eduardo Vázquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - David Yee-Trejo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garza García, NL Mexico
- Tecnologico de Monterrey, Centro de Medicina Funcional, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garzar García, NL Mexico
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garza García, NL Mexico
- De Bakey CRC, The Methodist Hospital, Cornell University, Houston, TX USA
| |
Collapse
|
26
|
Kilfoil PJ, Lotteau S, Zhang R, Yue X, Aynaszyan S, Solymani RE, Cingolani E, Marbán E, Goldhaber JI. Distinct features of calcium handling and β-adrenergic sensitivity in heart failure with preserved versus reduced ejection fraction. J Physiol 2020; 598:5091-5108. [PMID: 32829489 PMCID: PMC7693093 DOI: 10.1113/jp280425] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Key points Heart failure (HF), the leading cause of death in developed countries, occurs in the setting of reduced (HFrEF) or preserved (HFpEF) ejection fraction. Unlike HFrEF, there are no effective treatments for HFpEF, which accounts for ∼50% of heart failure. Abnormal intracellular calcium dynamics in cardiomyocytes have major implications for contractility and rhythm, but compared to HFrEF, very little is known about calcium cycling in HFpEF. We used rat models of HFpEF and HFrEF to reveal distinct differences in intracellular calcium regulation and excitation‐contraction (EC) coupling. While HFrEF is characterized by defective EC coupling at baseline, HFpEF exhibits enhanced coupling fidelity, further aggravated by a reduction in β‐adrenergic sensitivity. These differences in EC coupling and β‐adrenergic sensitivity may help explain why therapies that work in HFrEF are ineffective in HFpEF.
Abstract Heart failure with reduced or preserved ejection fraction (respectively, HFrEF and HFpEF) is the leading cause of death in developed countries. Although numerous therapies improve outcomes in HFrEF, there are no effective treatments for HFpEF. We studied phenotypically verified rat models of HFrEF and HFpEF to compare excitation‐contraction (EC) coupling and protein expression in these two forms of heart failure. Dahl salt‐sensitive rats were fed a high‐salt diet (8% NaCl) from 7 weeks of age to induce HFpEF. Impaired diastolic relaxation and preserved ejection fraction were confirmed in each animal echocardiographically, and clinical signs of heart failure were documented. To generate HFrEF, Sprague‐Dawley (SD) rats underwent permanent left anterior descending coronary artery ligation which, 8–10 weeks later, led to systolic dysfunction (verified echocardiographically) and clinical signs of heart failure. Calcium (Ca2+) transients were measured in isolated cardiomyocytes under field stimulation or patch clamp. Ultra‐high‐speed laser scanning confocal imaging captured Ca2+ sparks evoked by voltage steps. Western blotting and PCR were used to assay changes in EC coupling protein and RNA expression. Cardiomyocytes from rats with HFrEF exhibited impaired EC coupling, including decreased Ca2+ transient (CaT) amplitude and defective couplon recruitment, associated with transverse (t)‐tubule disruption. In stark contrast, HFpEF cardiomyocytes showed saturated EC coupling (increased ICa, high probability of couplon recruitment with greater Ca2+ release synchrony, increased CaT) and preserved t‐tubule integrity. β‐Adrenergic stimulation of HFpEF myocytes with isoprenaline (isoproterenol) failed to elicit robust increases in ICa or CaT and relaxation kinetics. Fundamental differences in EC coupling distinguish HFrEF from HFpEF. Heart failure (HF), the leading cause of death in developed countries, occurs in the setting of reduced (HFrEF) or preserved (HFpEF) ejection fraction. Unlike HFrEF, there are no effective treatments for HFpEF, which accounts for ∼50% of heart failure. Abnormal intracellular calcium dynamics in cardiomyocytes have major implications for contractility and rhythm, but compared to HFrEF, very little is known about calcium cycling in HFpEF. We used rat models of HFpEF and HFrEF to reveal distinct differences in intracellular calcium regulation and excitation‐contraction (EC) coupling. While HFrEF is characterized by defective EC coupling at baseline, HFpEF exhibits enhanced coupling fidelity, further aggravated by a reduction in β‐adrenergic sensitivity. These differences in EC coupling and β‐adrenergic sensitivity may help explain why therapies that work in HFrEF are ineffective in HFpEF.
Collapse
Affiliation(s)
- Peter J Kilfoil
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Sabine Lotteau
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rui Zhang
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Xin Yue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Stephan Aynaszyan
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Ryan E Solymani
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eugenio Cingolani
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Joshua I Goldhaber
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| |
Collapse
|
27
|
Adamczak DM, Oduah MT, Kiebalo T, Nartowicz S, Bęben M, Pochylski M, Ciepłucha A, Gwizdała A, Lesiak M, Straburzyńska-Migaj E. Heart Failure with Preserved Ejection Fraction-a Concise Review. Curr Cardiol Rep 2020; 22:82. [PMID: 32648130 PMCID: PMC7347676 DOI: 10.1007/s11886-020-01349-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Heart failure with preserved ejection fraction (HFpEF) is a relatively new disease entity used in medical terminology; however, both the number of patients and its clinical significance are growing. HFpEF used to be seen as a mild condition; however, the symptoms and quality of life of the patients are comparable to those with reduced ejection fraction. The disease is much more complex than previously thought. In this article, information surrounding the etiology, diagnosis, prognosis, and possible therapeutic options of HFpEF are reviewed and summarized. Recent Findings It has recently been proposed that heart failure (HF) is rather a heterogeneous syndrome with a spectrum of overlapping and distinct characteristics. HFpEF itself can be distilled into different phenotypes based on the underlying biology. The etiological factors of HFpEF are unclear; however, systemic low-grade inflammation and microvascular damage as a consequence of comorbidities associated with endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis are considered to play a crucial role in the pathogenesis of a disease. The H2FPEF score and the HFpEF nomogram are recently validated highly sensitive tools employed for risk assessment of subclinical heart failure. Summary Despite numerous studies, there is still no evidence-based pharmacotherapy for HFpEF and the mortality and morbidity associated with HFpEF remain high. A better understanding of the etiological factors, the impact of comorbidities, the phenotypes of the disease, and implementation of machine learning algorithms may play a key role in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Daria M Adamczak
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland.
| | - Mary-Tiffany Oduah
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Kiebalo
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Sonia Nartowicz
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Bęben
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Mateusz Pochylski
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Ciepłucha
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Adrian Gwizdała
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Maciej Lesiak
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Ewa Straburzyńska-Migaj
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| |
Collapse
|
28
|
Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. The Control of Diastolic Calcium in the Heart: Basic Mechanisms and Functional Implications. Circ Res 2020; 126:395-412. [PMID: 31999537 PMCID: PMC7004450 DOI: 10.1161/circresaha.119.315891] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Normal cardiac function requires that intracellular Ca2+ concentration be reduced to low levels in diastole so that the ventricle can relax and refill with blood. Heart failure is often associated with impaired cardiac relaxation. Little, however, is known about how diastolic intracellular Ca2+ concentration is regulated. This article first discusses the reasons for this ignorance before reviewing the basic mechanisms that control diastolic intracellular Ca2+ concentration. It then considers how the control of systolic and diastolic intracellular Ca2+ concentration is intimately connected. Finally, it discusses the changes that occur in heart failure and how these may result in heart failure with preserved versus reduced ejection fraction.
Collapse
Affiliation(s)
- David A Eisner
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Jessica L Caldwell
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - David C Hutchings
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| |
Collapse
|
29
|
Olver TD, Edwards JC, Jurrissen TJ, Veteto AB, Jones JL, Gao C, Rau C, Warren CM, Klutho PJ, Alex L, Ferreira-Nichols SC, Ivey JR, Thorne PK, McDonald KS, Krenz M, Baines CP, Solaro RJ, Wang Y, Ford DA, Domeier TL, Padilla J, Rector RS, Emter CA. Western Diet-Fed, Aortic-Banded Ossabaw Swine: A Preclinical Model of Cardio-Metabolic Heart Failure. JACC Basic Transl Sci 2019; 4:404-421. [PMID: 31312763 PMCID: PMC6610000 DOI: 10.1016/j.jacbts.2019.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
The development of new treatments for heart failure lack animal models that encompass the increasingly heterogeneous disease profile of this patient population. This report provides evidence supporting the hypothesis that Western Diet-fed, aortic-banded Ossabaw swine display an integrated physiological, morphological, and genetic phenotype evocative of cardio-metabolic heart failure. This new preclinical animal model displays a distinctive constellation of findings that are conceivably useful to extending the understanding of how pre-existing cardio-metabolic syndrome can contribute to developing HF.
Collapse
Key Words
- AB, aortic-banded
- CON, control
- EDPVR, end-diastolic pressure−volume relationship
- EF, ejection fraction
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IL1RL1, interleukin 1 receptor-like 1
- LV, left ventricle
- NF, nuclear factor
- PTX3, pentraxin-3
- WD, Western Diet
- cardio-metabolic disease
- heart failure
- integrative pathophysiology
- preclinical model of cardiovascular disease
Collapse
Affiliation(s)
- T. Dylan Olver
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Jenna C. Edwards
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Thomas J. Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Adam B. Veteto
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - John L. Jones
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Chen Gao
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christoph Rau
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Chad M. Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Paula J. Klutho
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Linda Alex
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | | | - Jan R. Ivey
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Pamela K. Thorne
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Christopher P. Baines
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Yibin Wang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David A. Ford
- Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University- School of Medicine, St. Louis, Missouri
| | - Timothy L. Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
- Department of Child Health, University of Missouri-Columbia, Columbia, Missouri
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri
- Department of Medicine – University of Missouri-Columbia, Columbia, Missouri
- Research Service, Harry S Truman Memorial VA Hospital, University of Missouri-Columbia, Columbia, Missouri
| | - Craig A. Emter
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|