1
|
Weizman O, Gandjbakhch E, Magnin-Poull I, Proukhnitzky J, Bordet C, Palmyre A, Bloch A, Fressart V, Charron P. Molecular genetic screening after non-ischaemic sudden cardiac arrest and no overt cardiomyopathy in real life: A major tool for the aetiological diagnostic work-up. Arch Cardiovasc Dis 2024; 117:382-391. [PMID: 38670870 DOI: 10.1016/j.acvd.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND With the development of advanced sequencing techniques, genetic testing has emerged as a valuable tool for the work-up of non-ischaemic sudden cardiac arrest (SCA). AIMS To evaluate the effectiveness of genetic testing in patients with unexplained SCA, according to clinical phenotype. METHODS All patients who underwent molecular genetic testing for non-ischaemic SCA with no left ventricular cardiomyopathy between 2012 and 2021 in two French university hospitals were included. RESULTS Of 66 patients (mean age 36.7±11.9years, 54.5% men), 21 (31.8%; 95% confidence interval 22.4-45.3%) carried a genetic variant: eight (12.1%) had a pathogenic or likely pathogenic (P/LP) variant and 13 (19.7%) had a variant of uncertain significance (VUS). Among 37 patients (56.1%) with no phenotypic clues, genetic testing identified a P/LP variant in five (13.5%), mainly in RYR2 (n=3) and SCN5A (n=2), and a VUS in nine (24.3%). None of the nine patients with phenotypic evidence of channelopathies had P/LP variants, but two had VUS in RYR2 and NKX2.5. Among the 20 patients with suspected arrhythmogenic cardiomyopathy, three P/LP variants (15.0%) and two VUS (10.0%) were found in DSC2, PKP2, SCN5A and DSG2, TRPM4, respectively. Genetic testing was performed sooner after cardiac arrest (P<0.001) and results were obtained more rapidly (P=0.02) after versus before 2016. CONCLUSION This study highlights the utility of molecular genetic testing with a genetic variant of interest identified in one-third of patients with unexplained SCA. Genetic testing was beneficial even in patients without phenotypic clues, with one-fourth of patients carrying a P/LP variant that could have direct implications.
Collapse
Affiliation(s)
- Orianne Weizman
- Cardiology department, Nancy university hospital, Nancy, France; AP-HP, unité de génétique médicale, CHU Ambroise-Paré, 92100 Boulogne-Billancourt, France.
| | - Estelle Gandjbakhch
- AP-HP, cardiology department, Institute of cardiology, Institute for cardiometabolism and nutrition (ICAN), Pitié-Salpêtrière hospital, Paris, France; Sorbonne université, Inserm 1166, Paris, France; AP-HP, département de génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Pitié-Salpêtrière hospital, Paris, France
| | | | - Julie Proukhnitzky
- AP-HP, cardiology department, Institute of cardiology, Institute for cardiometabolism and nutrition (ICAN), Pitié-Salpêtrière hospital, Paris, France; Sorbonne université, Inserm 1166, Paris, France; AP-HP, département de génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Pitié-Salpêtrière hospital, Paris, France
| | - Céline Bordet
- AP-HP, département de génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Pitié-Salpêtrière hospital, Paris, France
| | - Aurélien Palmyre
- AP-HP, unité de génétique médicale, CHU Ambroise-Paré, 92100 Boulogne-Billancourt, France
| | - Adrien Bloch
- AP-HP, Biochemistry department, molecular cardiogenetics unit, Pitié-Salpêtrière hospital, Paris, France
| | - Véronique Fressart
- AP-HP, Biochemistry department, molecular cardiogenetics unit, Pitié-Salpêtrière hospital, Paris, France
| | - Philippe Charron
- AP-HP, unité de génétique médicale, CHU Ambroise-Paré, 92100 Boulogne-Billancourt, France; AP-HP, cardiology department, Institute of cardiology, Institute for cardiometabolism and nutrition (ICAN), Pitié-Salpêtrière hospital, Paris, France; Sorbonne université, Inserm 1166, Paris, France; AP-HP, département de génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Pitié-Salpêtrière hospital, Paris, France.
| |
Collapse
|
2
|
Yang JH, Tsitsipatis D, Gorospe M. Stoichiometry of long noncoding RNA interactions with other RNAs: Insights from OIP5-AS1. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1841. [PMID: 38576135 DOI: 10.1002/wrna.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Long noncoding (lnc)RNAs modulate gene expression programs in a range of developmental processes in different organs. In skeletal muscle, lncRNAs have been implicated in myogenesis, the process whereby muscle precursor cells form muscle fibers during embryonic development and regenerate muscle fibers in the adult. Here, we discuss OIP5-AS1, a lncRNA that is highly expressed in skeletal muscle and is capable of coordinating protein expression programs during myogenesis. Given that several myogenic functions of OIP5-AS1 involve interactions with MEF2C mRNA and with the microRNA miR-7, it was critical to carefully evaluate the precise levels of OIP5-AS1 during myogenesis. We discuss the approaches used to examine lncRNA copy number using OIP5-AS1 as an example, focusing on quantification by quantitative PCR analysis with reference to nucleic acids of known abundance, by droplet digital (dd)PCR measurement, and by microscopic visualization of individual lncRNAs in cells. We discuss considerations of RNA stoichiometry in light of developmental processes in which lncRNAs are implicated. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Institute of Biomedical Sciences, National Sun Yat-set University, Kaohsiung, Taiwan
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Singh S, Gaur A, Sharma RK, Kumari R, Prakash S, Kumari S, Chaudhary AD, Prasun P, Pant P, Hunkler H, Thum T, Jagavelu K, Bharati P, Hanif K, Chitkara P, Kumar S, Mitra K, Gupta SK. Musashi-2 causes cardiac hypertrophy and heart failure by inducing mitochondrial dysfunction through destabilizing Cluh and Smyd1 mRNA. Basic Res Cardiol 2023; 118:46. [PMID: 37923788 DOI: 10.1007/s00395-023-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Regulation of RNA stability and translation by RNA-binding proteins (RBPs) is a crucial process altering gene expression. Musashi family of RBPs comprising Msi1 and Msi2 is known to control RNA stability and translation. However, despite the presence of MSI2 in the heart, its function remains largely unknown. Here, we aim to explore the cardiac functions of MSI2. We confirmed the presence of MSI2 in the adult mouse, rat heart, and neonatal rat cardiomyocytes. Furthermore, Msi2 was significantly enriched in the heart cardiomyocyte fraction. Next, using RNA-seq data and isoform-specific PCR primers, we identified Msi2 isoforms 1, 4, and 5, and two novel putative isoforms labeled as Msi2 6 and 7 to be expressed in the heart. Overexpression of Msi2 isoforms led to cardiac hypertrophy in cultured cardiomyocytes. Additionally, Msi2 exhibited a significant increase in a pressure-overload model of cardiac hypertrophy. We selected isoforms 4 and 7 to validate the hypertrophic effects due to their unique alternative splicing patterns. AAV9-mediated overexpression of Msi2 isoforms 4 and 7 in murine hearts led to cardiac hypertrophy, dilation, heart failure, and eventually early death, confirming a pathological function for Msi2. Using global proteomics, gene ontology, transmission electron microscopy, seahorse, and transmembrane potential measurement assays, increased MSI2 was found to cause mitochondrial dysfunction in the heart. Mechanistically, we identified Cluh and Smyd1 as direct downstream targets of Msi2. Overexpression of Cluh and Smyd1 inhibited Msi2-induced cardiac malfunction and mitochondrial dysfunction. Collectively, we show that Msi2 induces hypertrophy, mitochondrial dysfunction, and heart failure.
Collapse
Affiliation(s)
- Sandhya Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
| | - Aakash Gaur
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, India
| | - Renu Kumari
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shakti Prakash
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sunaina Kumari
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
| | - Ayushi Devendrasingh Chaudhary
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pankaj Prasun
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
| | - Priyanka Pant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Hannah Hunkler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pragya Bharati
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kashif Hanif
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pragya Chitkara
- National Institute of Plant Genome Research, New Delhi, India
| | - Shailesh Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Kalyan Mitra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, India, 226031.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
5
|
Sun Y, Zhan S, Zhao S, Zhong T, Wang L, Guo J, Dai D, Li D, Cao J, Li L, Zhang H. HuR Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating Myomaker mRNA Stability. Int J Mol Sci 2023; 24:ijms24086893. [PMID: 37108057 PMCID: PMC10138435 DOI: 10.3390/ijms24086893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Human antigen R (HuR) is an RNA-binding protein that contributes to a wide variety of biological processes and diseases. HuR has been demonstrated to regulate muscle growth and development, but its regulatory mechanisms are not well understood, especially in goats. In this study, we found that HuR was highly expressed in the skeletal muscle of goats, and its expression levels changed during longissimus dorsi muscle development in goats. The effects of HuR on goat skeletal muscle development were explored using skeletal muscle satellite cells (MuSCs) as a model. The overexpression of HuR accelerated the expression of myogenic differentiation 1 (MyoD), Myogenin (MyoG), myosin heavy chain (MyHC), and the formation of myotubes, while the knockdown of HuR showed opposite effects in MuSCs. In addition, the inhibition of HuR expression significantly reduced the mRNA stability of MyoD and MyoG. To determine the downstream genes affected by HuR at the differentiation stage, we conducted RNA-Seq using MuSCs treated with small interfering RNA, targeting HuR. The RNA-Seq screened 31 upregulated and 113 downregulated differentially expressed genes (DEGs) in which 11 DEGs related to muscle differentiation were screened for quantitative real-time PCR (qRT-PCR) detection. Compared to the control group, the expression of three DEGs (Myomaker, CHRNA1, and CAPN6) was significantly reduced in the siRNA-HuR group (p < 0.01). In this mechanism, HuR bound to Myomaker and increased the mRNA stability of Myomaker. It then positively regulated the expression of Myomaker. Moreover, the rescue experiments indicated that the overexpression of HuR may reverse the inhibitory impact of Myomaker on myoblast differentiation. Together, our findings reveal a novel role for HuR in promoting muscle differentiation in goats by increasing the stability of Myomaker mRNA.
Collapse
Affiliation(s)
- Yanjin Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Sen Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
7
|
Liu M, Kang GJ, Dudley SC. Preventing unfolded protein response-induced ion channel dysregulation to treat arrhythmias. Trends Mol Med 2022; 28:443-451. [DOI: 10.1016/j.molmed.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/15/2023]
|
8
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
9
|
Chellappan R, Guha A, Si Y, Kwan T, Nabors LB, Filippova N, Yang X, Myneni AS, Meesala S, Harms AS, King PH. SRI-42127, a novel small molecule inhibitor of the RNA regulator HuR, potently attenuates glial activation in a model of lipopolysaccharide-induced neuroinflammation. Glia 2022; 70:155-172. [PMID: 34533864 PMCID: PMC8595840 DOI: 10.1002/glia.24094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Glial activation with the production of pro-inflammatory mediators is a major driver of disease progression in neurological processes ranging from acute traumatic injury to chronic neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. Posttranscriptional regulation is a major gateway for glial activation as many mRNAs encoding pro-inflammatory mediators contain adenine- and uridine-rich elements (ARE) in the 3' untranslated region which govern their expression. We have previously shown that HuR, an RNA regulator that binds to AREs, plays a major positive role in regulating inflammatory cytokine production in glia. HuR is predominantly nuclear in localization but translocates to the cytoplasm to exert a positive regulatory effect on RNA stability and translational efficiency. Homodimerization of HuR is necessary for translocation and we have developed a small molecule inhibitor, SRI-42127, that blocks this process. Here we show that SRI-42127 suppressed HuR translocation in LPS-activated glia in vitro and in vivo and significantly attenuated the production of pro-inflammatory mediators including IL1β, IL-6, TNF-α, iNOS, CXCL1, and CCL2. Cytokines typically associated with anti-inflammatory effects including TGF-β1, IL-10, YM1, and Arg1 were either unaffected or minimally affected. SRI-42127 suppressed microglial activation in vivo and attenuated the recruitment/chemotaxis of neutrophils and monocytes. RNA kinetic studies and luciferase studies indicated that SRI-42127 has inhibitory effects both on mRNA stability and gene promoter activation. In summary, our findings underscore HuR's critical role in promoting glial activation and the potential for SRI-42127 and other HuR inhibitors for treating neurological diseases driven by this activation.
Collapse
Affiliation(s)
- Rajeshwari Chellappan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Thaddaeus Kwan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - L. Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Natalia Filippova
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiuhua Yang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anish S. Myneni
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Shriya Meesala
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294,Correspondence to: Dr. P.H. King; UAB Dept. of Neurology, Civitan 545C, 1530 3 Avenue South, Birmingham, AL 35294-0017, USA. Tel. (205) 975-8116; Fax (205) 996-7255;
| |
Collapse
|
10
|
Liu M, Liu H, Parthiban P, Kang GJ, Shi G, Feng F, Zhou A, Gu L, Karnopp C, Tolkacheva EG, Dudley SC. Inhibition of the unfolded protein response reduces arrhythmic risk after myocardial infarction. J Clin Invest 2021; 131:e147836. [PMID: 34324437 DOI: 10.1172/jci147836] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels. When activated, the protein kinase-like ER kinase (PERK) branch of the UPR reduces protein translation and abundance. We hypothesized that PERK inhibition could prevent ion channel downregulation and reduce arrhythmic risk after myocardial infarct (MI). MI induced by coronary artery ligation resulted in mice exhibited reduced ion channel levels, ventricular tachycardia (VT), and prolonged corrected intervals between the Q and T waves of the ECGs (QTc). Protein levels of major cardiac ion channels were decreased. MI cardiomyocytes showed significantly prolonged action potential duration and decreased maximum upstroke velocity. Cardiac-specific PERK knockout (PERKKO) reduced electrical remodeling in response to MI with shortened QTc intervals, less VT episodes, and higher survival rates (P<0.05 vs. MI). Pharmacological PERK inhibition had similar effects. In conclusion, activated PERK during MI contributed to arrhythmic risk by downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmic risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmic mechanism and maintaining ion channel levels is antiarrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Hong Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Preethy Parthiban
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Guangbin Shi
- Department of Medicine, Brown University, Providence, United States of America
| | - Feng Feng
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Anyu Zhou
- Department of Medicine, Brown University, Providence, United States of America
| | - Lianzhi Gu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Courtney Karnopp
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Samuel C Dudley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
11
|
Palomo-Irigoyen M, Pérez-Andrés E, Iruarrizaga-Lejarreta M, Barreira-Manrique A, Tamayo-Caro M, Vila-Vecilla L, Moreno-Cugnon L, Beitia N, Medrano D, Fernández-Ramos D, Lozano JJ, Okawa S, Lavín JL, Martín-Martín N, Sutherland JD, de Juan VG, Gonzalez-Lopez M, Macías-Cámara N, Mosén-Ansorena D, Laraba L, Hanemann CO, Ercolano E, Parkinson DB, Schultz CW, Araúzo-Bravo MJ, Ascensión AM, Gerovska D, Iribar H, Izeta A, Pytel P, Krastel P, Provenzani A, Seneci P, Carrasco RD, Del Sol A, Martinez-Chantar ML, Barrio R, Serra E, Lazaro C, Flanagan AM, Gorospe M, Ratner N, Aransay AM, Carracedo A, Varela-Rey M, Woodhoo A. HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. J Clin Invest 2021; 130:3848-3864. [PMID: 32315290 PMCID: PMC7324187 DOI: 10.1172/jci130379] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/14/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/β-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.
Collapse
Affiliation(s)
- Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Encarni Pérez-Andrés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Marta Iruarrizaga-Lejarreta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Adrián Barreira-Manrique
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Miguel Tamayo-Caro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Laura Vila-Vecilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Leire Moreno-Cugnon
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Nagore Beitia
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Daniela Medrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - David Fernández-Ramos
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José Lozano
- Bioinformatic Platform, CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - José L Lavín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Virginia Guitiérez de Juan
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Nuria Macías-Cámara
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - David Mosén-Ansorena
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Liyam Laraba
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - Emanuela Ercolano
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - David B Parkinson
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | | | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alex M Ascensión
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Haizea Iribar
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián, Spain
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián, Spain
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Philipp Krastel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Del Sol
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - María Luz Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Eduard Serra
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Cancer Group, Institute for Health Science Research Germans Trias I Pujol (IGTP) and Program of Predictive and Personalized Medicine of Cancer (PMPPC), Barcelona, Spain
| | - Conxi Lazaro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, and.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Marta Varela-Rey
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Yang JH, Chang MW, Pandey PR, Tsitsipatis D, Yang X, Martindale JL, Munk R, De S, Abdelmohsen K, Gorospe M. Interaction of OIP5-AS1 with MEF2C mRNA promotes myogenic gene expression. Nucleic Acids Res 2021; 48:12943-12956. [PMID: 33270893 DOI: 10.1093/nar/gkaa1151] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Long noncoding (lnc)RNAs potently regulate gene expression programs in physiology and disease. Here, we describe a key function for lncRNA OIP5-AS1 in myogenesis, the process whereby myoblasts differentiate into myotubes during muscle development and muscle regeneration after injury. In human myoblasts, OIP5-AS1 levels increased robustly early in myogenesis, and its loss attenuated myogenic differentiation and potently reduced the levels of the myogenic transcription factor MEF2C. This effect relied upon the partial complementarity of OIP5-AS1 with MEF2C mRNA and the presence of HuR, an RNA-binding protein (RBP) with affinity for both transcripts. Remarkably, HuR binding to MEF2C mRNA, which stabilized MEF2C mRNA and increased MEF2C abundance, was lost after OIP5-AS1 silencing, suggesting that OIP5-AS1 might serve as a scaffold to enhance HuR binding to MEF2C mRNA, in turn increasing MEF2C production. These results highlight a mechanism whereby a lncRNA promotes myogenesis by enhancing the interaction of an RBP and a myogenic mRNA.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Dong C, Wang Y, Ma A, Wang T. Life Cycle of the Cardiac Voltage-Gated Sodium Channel Na V1.5. Front Physiol 2020; 11:609733. [PMID: 33391024 PMCID: PMC7773603 DOI: 10.3389/fphys.2020.609733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiac voltage-gated sodium channel NaV1.5, encoded by SCN5A, is crucial for the upstroke of action potential and excitation of cardiomyocytes. NaV1.5 undergoes complex processes before it reaches the target membrane microdomains and performs normal functions. A variety of protein partners are needed to achieve the balance between SCN5A transcription and mRNA decay, endoplasmic reticulum retention and export, Golgi apparatus retention and export, selective anchoring and degradation, activation, and inactivation of sodium currents. Subtle alterations can impair NaV1.5 in terms of expression or function, eventually leading to NaV1.5-associated diseases such as lethal arrhythmias and cardiomyopathy.
Collapse
Affiliation(s)
- Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
14
|
Kang GJ, Xie A, Liu H, Dudley SC. MIR448 antagomir reduces arrhythmic risk after myocardial infarction by upregulating the cardiac sodium channel. JCI Insight 2020; 5:140759. [PMID: 33108349 PMCID: PMC7714400 DOI: 10.1172/jci.insight.140759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac ischemia is associated with arrhythmias; however, effective therapies are currently limited. The cardiac voltage-gated sodium channel α subunit (SCN5A), encoding the Nav1.5 current, plays a key role in the cardiac electrical conduction and arrhythmic risk. Here, we show that hypoxia reduces Nav1.5 through effects on a miR, miR-448. miR-448 expression is increased in ischemic cardiomyopathy. miR-448 has a conserved binding site in 3′-UTR of SCN5A. miR-448 binding to this site suppressed SCN5A expression and sodium currents. Hypoxia-induced HIF-1α and NF-κB were major transcriptional regulators for MIR448. Moreover, hypoxia relieved MIR448 transcriptional suppression by RE1 silencing transcription factor. Therefore, miR-448 inhibition reduced arrhythmic risk after myocardial infarction. Here, we show that ischemia drove miR-448 expression, reduced Nav1.5 current, and increased arrhythmic risk. Arrhythmic risk was improved by preventing Nav1.5 downregulation, suggesting a new approach to antiarrhythmic therapy. Ischemic induction of miR-448 negatively regulates the cardiac sodium channel Nav1.5, and inhibiting miR-448 raises Nav1.5 and reduces arrhythmic risk after myocardial infarction in mice.
Collapse
|
15
|
Horváth B, Hézső T, Kiss D, Kistamás K, Magyar J, Nánási PP, Bányász T. Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Front Pharmacol 2020; 11:413. [PMID: 32372952 PMCID: PMC7184885 DOI: 10.3389/fphar.2020.00413] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Based on recent findings, an increased late sodium current (INa,late) plays an important pathophysiological role in cardiac diseases, including rhythm disorders. The article first describes what is INa,late and how it functions under physiological circumstances. Next, it shows the wide range of cellular mechanisms that can contribute to an increased INa,late in heart diseases, and also discusses how the upregulated INa,late can play a role in the generation of cardiac arrhythmias. The last part of the article is about INa,late inhibiting drugs as potential antiarrhythmic agents, based on experimental and preclinical data as well as in the light of clinical trials.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Sport Physiology, University of Debrecen, Debrecen, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Gao C, Wang Y. mRNA Metabolism in Cardiac Development and Disease: Life After Transcription. Physiol Rev 2020; 100:673-694. [PMID: 31751167 PMCID: PMC7327233 DOI: 10.1152/physrev.00007.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.
Collapse
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Yibin Wang
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Liu Z, Tao H. Small nucleolar RNA host gene 3 facilitates cell proliferation and migration in oral squamous cell carcinoma via targeting nuclear transcription factor Y subunit gamma. J Cell Biochem 2019; 121:2150-2158. [PMID: 31762107 DOI: 10.1002/jcb.29421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) has been reported to be the most common oral carcinoma. Emerging evidence has revealed the key role that long noncoding RNAs (lncRNAs) play in numerous malignancies, including OSCC. LncRNA small nucleolar RNA host gene 3 (SNHG3) has been reported as an oncogenic factor in some cancers. Nonetheless, the role of SNHG3 in OSCC has never been clarified. In this study, we analyzed the expression patterns of SNHG3 in OSCC through quantitative real-time polymerase chain reaction. It was revealed that the expression level of SNHG3 was remarkably elevated in OSCC cell lines compared with the nontumor cell line. It was demonstrated by functional experiments that SNHG3 knockdown notably inhibited cell proliferation and migration in OSCC. RNA immunoprecipitation, RNA pull down, and messenger RNA (mRNA) stability test verified that SNHG3 decoyed ELAV like RNA-binding protein 1 (ELAVL1) and therefore stabilized nuclear transcription factor Y subunit gamma (NFYC) mRNA to upregulate the expression levels of NFYC in OSCC cells. At last, it was confirmed by rescue experiments that the inhibiting impacts of SNHG3 knockdown on OSCC cell proliferation and migration could be partly revived by NFYC overexpression. Besides, we validated that Wnt/β-catenin pathway was also involved in SNHG3-regulated OSCC progression. In conclusion, SNHG3 might serve as a novel biomarker for OSCC.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Oral, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, China
| | - Hong Tao
- Department of Oral, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, China
| |
Collapse
|