1
|
Butler HM, Keller E, McCrorey M, Keceli G, Combs CK, Kayed R, Namakkal-S R, Paolocci N, Jacobs Wolf B, Wold LE, Del Monte F. Particulate matter and co-occurring genetic risk induce oxidative stress and cardiac and brain Alzheimer's pathology. Commun Biol 2025; 8:603. [PMID: 40221628 PMCID: PMC11993720 DOI: 10.1038/s42003-025-07701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/07/2025] [Indexed: 04/14/2025] Open
Abstract
Amyloid-beta (Aβ) aggregates, an Alzheimer's disease (AD) pathological hallmark, extend beyond the brain to the heart of heart failure (HF) and AD patients. Being diseases of the elderly, increased prevalence is expected as the population ages. However, changes in the incidence and prevalence of dementia over the past decades, and the independent association of exposure to air particulate matter (PM) with poor cognitive function, adverse cardiovascular effects, and oxidative stress hint to the contribution of other factors beyond senescence. Therefore we evaluate whether, and by which mechanism(s), PM exposure affects heart and brain proteinopathy with/without genetic predisposition.AD-prone and control mice are exposed for three months to filtered air (FA) or concentrated ambient PM < 2.5μm in diameter (PM2.5), and evaluated for Aβ pathology, cognitive and cardiac function, and markers of oxidative stress. Aβ pathology become noticeable in AD hearts and worsens with PM2.5 in AD brains. Functionally, PM2.5 lead to anxiety and memory deficits and worsens diastolic function. Redox homeostasis is negatively impacted by genotype and PM2.5. This study identifies environmental pollution as a potential key contributor to early progression of heart and brain proteinopathy, delineating a crucial timepoint for early interventions to limit multiorgan damage in vulnerable patients.
Collapse
Affiliation(s)
- Helen M Butler
- College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Everette Keller
- College of Medicine, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marice McCrorey
- College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Gizem Keceli
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Colin K Combs
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rajasekaran Namakkal-S
- Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nazareno Paolocci
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bethany Jacobs Wolf
- College of Medicine, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Loren E Wold
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Medicine and Surgery, University of Bologna Alma Mater, Bologna, Italy.
| |
Collapse
|
2
|
Gorini F, Tonacci A. Ambient Air Pollution and Congenital Heart Disease: Updated Evidence and Future Challenges. Antioxidants (Basel) 2025; 14:48. [PMID: 39857382 PMCID: PMC11761577 DOI: 10.3390/antiox14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Congenital heart disease (CHD) represents the major cause of infant mortality related to congenital anomalies globally. The etiology of CHD is mostly multifactorial, with environmental determinants, including maternal exposure to ambient air pollutants, assumed to contribute to CHD development. While particulate matter (PM) is responsible for millions of premature deaths every year, overall ambient air pollutants (PM, nitrogen and sulfur dioxide, ozone, and carbon monoxide) are known to increase the risk of adverse pregnancy outcomes. In this literature review, we provide an overview regarding the updated evidence related to the association between maternal exposure to outdoor air pollutants and CHD occurrence, also exploring the underlying biological mechanisms from human and experimental studies. With the exception of PM, for which there is currently moderate evidence of its positive association with overall CHD risk following exposure during the periconception and throughout pregnancy, and for ozone which shows a signal of association with increased risk of pooled CHD and certain CHD subtypes in the periconceptional period, for the other pollutants, the data are inconsistent, and no conclusion can be drawn about their role in CHD onset. Future epidemiological cohort studies in countries with different degree of air pollution and experimental research on animal models are warranted to gain a comprehensive picture of the possible involvement of ambient air pollutants in CHD etiopathogenesis. While on the one hand this information could also be useful for timely intervention to reduce the risk of CHD, on the other hand, it is mandatory to scale up the use of technologies for pollutant monitoring, as well as the use of Artificial Intelligence for data analysis to identify the non-linear relationships that will eventually exist between environmental and clinical variables.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
3
|
Cary CM, Fournier SB, Adams S, Wang X, Yurkow EJ, Stapleton PA. Single pulmonary nanopolystyrene exposure in late-stage pregnancy dysregulates maternal and fetal cardiovascular function. Toxicol Sci 2024; 199:149-159. [PMID: 38366927 PMCID: PMC11057520 DOI: 10.1093/toxsci/kfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.
Collapse
Affiliation(s)
- C M Cary
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S Adams
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - X Wang
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - E J Yurkow
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
4
|
Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, Ning X, Sang N. Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. TOXICS 2024; 12:274. [PMID: 38668497 PMCID: PMC11054511 DOI: 10.3390/toxics12040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Particulate matter of size ≤ 2.5 μm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (D.M.); (Y.L.); (R.W.); (L.F.); (Q.Y.); (C.C.); (W.W.); (Z.R.); (X.N.); (N.S.)
| | | | | |
Collapse
|
5
|
Cheng Y, Feng J, Wang J, Zhou Y, Bai S, Tang Q, Li J, Pan F, Xu Q, Lu C, Wu W, Xia Y. Alterations in sperm DNA methylation may as a mediator of paternal air pollution exposure and offspring birth outcomes: Insight from a birth cohort study. ENVIRONMENTAL RESEARCH 2024; 244:117941. [PMID: 38103775 DOI: 10.1016/j.envres.2023.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Paternal exposure to environmental risk factors influences the offspring health. This study aimed to evaluate the association between paternal air pollution exposure mediated by sperm DNA methylation and adverse birth outcomes in offspring. We recruited 1607 fertile men and their partners from 2014 to 2016 and collected semen samples to detect sperm DNA methylation. Multivariate linear regression and weighted quantile sum regression models were used to assess the associations between paternal air pollution exposure and offspring birth outcomes. A critical exposure window was identified. Reduced representation bisulfite sequencing was used to detect sperm DNA methylation. The results demonstrated that high paternal exposure to PM2.5 (β = -211.31, 95% CI: (-386.37, -36.24)), PM10 (β = -178.20, 95% CI: (-277.13, -79.27)), and NO2 (β = -84.22, 95% CI: (-165.86, -2.57)) was negatively associated with offspring's birthweight, especially in boys. Additionally, an early exposure window of 15-69 days before fertilization was recognized to be the key exposure window, which increased the risk of low birth weight and small for gestational age. Furthermore, paternal co-exposure to six air pollutants contributed to lower birthweight (β = -51.91, 95% CI: (-92.72, -11.10)) and shorter gestational age (β = -1.72, 95% CI: (-3.26, -0.17)) and PM2.5 was the most weighted pollutant. Paternal air pollution exposure resulted in 10,328 differentially methylated regions and the IGF2R gene was the key gene involved in the epigenetic process. These differentially methylated genes were predominantly associated with protein binding, transcriptional regulation, and DNA templating. These findings indicate that spermatogenesis is a susceptible window during which paternal exposure to air pollution affects sperm DNA methylation and the birth outcomes of offspring.
Collapse
Affiliation(s)
- Yuting Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialin Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yijie Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Department of Urology, Stanford Medical Center, Stanford, CA, USA
| | - Feng Pan
- Department of Urology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
7
|
Tsai TY, Lo LW, Lin WL, Chou YH, Cheng WH, Liu SH, Yang CCH, Kuo TBJ, Chen SA. Neural mechanism facilitating PM2.5-related cardiac arrhythmias through cardiovascular autonomic and calcium dysregulation in a rat model. Sci Rep 2023; 13:16016. [PMID: 37749136 PMCID: PMC10520066 DOI: 10.1038/s41598-023-41148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Particulate matter < 2.5 μm (PM2.5) exposure is associated with increased arrhythmia events and cardiovascular mortality, but the detailed mechanism remained elusive. In the current study, we aimed to investigate the autonomic alterations in a rodent model after acute exposure to PM2.5. Twelve male WKY rats were randomized to control and PM2.5 groups. All were treated with 2 exposures of oropharyngeal aerosol inhalations (1 μg PM2.5 per gram of body weight in 100 μL normal saline for the PM2.5 group) separately by 7 days. Polysomnography and electrocardiography were surgically installed 7 days before oropharyngeal inhalation and monitored for 7 days after each inhalation. Physiologic monitors were used to define active waking (AW), quiet sleep (QS), and paradoxical sleep (PS). Autonomic regulations were measured by heart rate variability (HRV). The protein expression of ventricular tissue of the 2 groups was compared at the end of the experiment. In sleep pattern analysis, QS interruption of the PM2.5 group was significantly higher than the control group (0.52 ± 0.13 events/min, 0.35 ± 0.10 events/min, p = 0.002). In HRV analysis, the LF/HF was significantly higher for the PM2.5 group than the control group (1.15 ± 0.16, 0.64± 0.30, p = 0.003), largely driven by LF/HF increase during the QS phase. Ionic channel protein expression from Western blots showed that the PM2.5 group had significantly lower L-type calcium channel and higher SERCA2 and rectifier potassium channel expressions than the control group, respectively. Our results showed that acute PM2.5 exposure leads to interruption of QS, sympathetic activation, and recruitment of compensatory calcium handling proteins. The autonomic and calcium dysregulations developed after PM 2.5 exposure may explain the risk of sleep disturbance and sleep-related arrhythmia.
Collapse
Affiliation(s)
- Tsung-Ying Tsai
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
- National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan.
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Lun Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Science, Mackay Medical College, New Taipei city, Taiwan
| | - Yu-Hui Chou
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| | - Shin-Hui Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Tsoutun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Shih-Ann Chen
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
- National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Blanc N, Liao J, Gilliland F, Zhang JJ, Berhane K, Huang G, Yan W, Chen Z. A systematic review of evidence for maternal preconception exposure to outdoor air pollution on Children's health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120850. [PMID: 36528197 PMCID: PMC9879265 DOI: 10.1016/j.envpol.2022.120850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/22/2023]
Abstract
The preconception period is a critical window for gametogenesis, therefore preconception exposure to air pollutants may have long-term effects on children. We systematically reviewed epidemiological evidence concerning the effects of preconception ambient air pollution exposure on children's health outcomes and identified research gaps for future investigations. We searched PubMed and Web of Science from journal inception up to October 2022 based on an established protocol (PROSPERO: CRD42022277608). We then identified 162 articles based on searching strategy, 22 of which met the inclusion criteria. Studies covered a wide range of health outcomes including birth defects, preterm birth, birthweight, respiratory outcomes, and developmental outcomes. Findings suggested that exposure to outdoor air pollutants during maternal preconception period were associated with various health outcomes, of which birth defects has the most consistent findings. A meta-analysis revealed that during 3-month preconception period, a 10 μg/m3 increase in PM10 and PM2.5 was associated with relative risk (RR) of birth defects of 1.06 (95% confidence interval (CI): 1.00, 1.02) and 1.14 (95% CI: 0.82, 1.59), respectively. Preterm birth, low birthweight, and autism have also been associated with maternal preconception exposure to PM2.5, PM10, O3 and SO2. However, the significance of associations and effect sizes varied substantially across studies, partly due to the heterogeneity in exposure and outcome assessments. Future studies should use more accurate exposure assessment methods to obtain individual-level exposures with high temporal resolution. This will allow the exploration of which specific time window (weeks or months) during the preconception period has the strongest effect. In future epidemiologic studies, integrating pathophysiologic biomarkers relevant to clinical outcomes may help improve the causal inference of associations between preconception exposure and health outcomes suggested by the current limited literature. Additionally, potential effects of paternal preconception exposure need to be studied.
Collapse
Affiliation(s)
- Natalie Blanc
- University of Southern California, Los Angeles, CA, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Frank Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junfeng Jim Zhang
- Division of Environmental Science and Policy, Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Durham, NC, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Weili Yan
- Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Predisposed obesity and long-term metabolic diseases from maternal exposure to fine particulate matter (PM2.5) — A review of its effect and potential mechanisms. Life Sci 2022; 310:121054. [DOI: 10.1016/j.lfs.2022.121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
10
|
Bae HR, Chandy M, Aguilera J, Smith EM, Nadeau KC, Wu JC, Paik DT. Adverse effects of air pollution-derived fine particulate matter on cardiovascular homeostasis and disease. Trends Cardiovasc Med 2022; 32:487-498. [PMID: 34619335 PMCID: PMC9063923 DOI: 10.1016/j.tcm.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Air pollution is a rapidly growing major health concern around the world. Atmospheric particulate matter that has a diameter of less than 2.5 µm (PM2.5) refers to an air pollutant composed of particles and chemical compounds that originate from various sources. While epidemiological studies have established the association between PM2.5 exposure and cardiovascular diseases, the precise cellular and molecular mechanisms by which PM2.5 promotes cardiovascular complications are yet to be fully elucidated. In this review, we summarize the various sources of PM2.5, its components, and the concentrations of ambient PM2.5 in various settings. We discuss the experimental findings to date that evaluate the potential adverse effects of PM2.5 on cardiovascular homeostasis and function, and the possible therapeutic options that may alleviate PM2.5-driven cardiovascular damage.
Collapse
Affiliation(s)
- Hye Ryeong Bae
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Eric M Smith
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Walker CJ, Christian WJ, Kucharska-Newton A, Browning SR. A cross-sectional examination of the early-onset hypertensive disorders of pregnancy and industrial emissions of toxic metals using Kentucky birth records, 2008-2017. PLoS One 2022; 17:e0274250. [PMID: 36125992 PMCID: PMC9488793 DOI: 10.1371/journal.pone.0274250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
This cross-sectional study assessed geospatial patterns of early-onset hypertensive disorders of pregnancy (eHDP) in primiparous mothers and exposure to industrial emissions using geocoded residential information from Kentucky live (N = 210,804) and still (N = 1,247) birth records (2008-2017) and census block group estimates of aerosol concentrations of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), selenium (Se), and zinc (Zi) from the Risk Screening Environmental Indicators (RSEI) model. A latent class analysis allowed for the identification of four district exposure classes-As, Cd, and Pb (12.6%); Se and Zi (21.4%); Pb and Cr (8%); and low or no exposures (57.9%). Women classified as having a high probability of exposure to both Pb and Cr had a statistically significantly greater prevalence of eHDP after adjusting for demographic factors (aPR = 1.22, 95% CI: 1.04, 1.44) relative to those with low or no exposure. Our findings contribute to the emerging literature on the association of metal exposures with pregnancy outcomes.
Collapse
Affiliation(s)
- Courtney J. Walker
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| | - W. Jay Christian
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anna Kucharska-Newton
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| | - Steven R. Browning
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
12
|
Zhu T, Chen X, Qiu H, Liu Y, Mwangi J, Zhao L, Ding W, Lai R, Jin L. Aspirin Alleviates Particulate Matter Induced Asymptomatic Orchitis of Mice via Suppression of cGAS-STING Signaling. Front Immunol 2021; 12:734546. [PMID: 34925318 PMCID: PMC8673441 DOI: 10.3389/fimmu.2021.734546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
As an important source of air pollutant, airborne particulate matter (PM) has become a major threat to public health. Orchitis is characterized by acute or chronic testicular inflammation and is a primary cause of male infertility. Although accumulating evidence indicates that PM exposure is associated with increased male infertility rates, the mechanism by which PM is involved is not well understood. Here, we found that short-term PM exposure activated NF-κB signaling in mouse Leydig cells and testes and leading to asymptomatic orchitis. Analyzing the mitochondrial abundance and cGAMP levels in PM exposed mouse Leydig cells, we found that PM exposure induced mitochondrial injury and mtDNA release, leading to inflammation via the cGAS-STING axis. We also found that aspirin-induced acetylation of cGAS inhibited the inflammation in mice after PM exposure, especially in the testes. Moreover, aspirin pretreatment rescued offspring growth in PM-exposed mice. In summary, our study not only provides evidence that PM-induced asymptomatic orchitis in mice may be amenable to aspirin pre-treatment by acetylating cGAS, but also provides a potential explanation for male infertility caused by air pollutants.
Collapse
Affiliation(s)
- Tengyu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xue Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Huan Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ling Zhao
- Experimental Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjun Ding
- Laboratory of Environment and Health, University of Chinese Academy of Sciences, Beijing, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Kunming institute of zoology-the Chinese university of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
13
|
Hu C, Tao Y, Deng Y, Cai Q, Ren H, Yu C, Zheng S, Yang J, Zeng C. Paternal long-term PM2.5 exposure causes hypertension via increased renal AT1R expression and function in male offspring. Clin Sci (Lond) 2021; 135:2575-2588. [PMID: 34779863 PMCID: PMC8628185 DOI: 10.1042/cs20210802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023]
Abstract
Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.
Collapse
Affiliation(s)
- Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yi Deng
- Department of General Practice Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qi Cai
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
14
|
Pan K, Jiang S, Du X, Zeng X, Zhang J, Song L, Lei L, Zhou J, Kan H, Sun Q, Xie Y, Dong C, Zhao J. Parental PM 2 .5 exposure changes Th17/Treg cells in offspring, is associated with the elevation of blood pressure. ENVIRONMENTAL TOXICOLOGY 2021; 36:1152-1161. [PMID: 33605513 DOI: 10.1002/tox.23114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological evidences have indicated that fine particulate matter (PM2.5 ) exposure is associated with the occurrence and development of hypertension. The present study aims to explore the effects of parental PM2.5 exposure on blood pressure in offspring and elucidate the potential mechanism. The parental male and female C57BL/6 mice were exposed to concentrated PM2.5 or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System (Shanghai-METAS) for 16 weeks. At week 12, the mice were assigned to breed offspring. The male offspring mice were further exposed to PM2.5 or FA as above method. During the parental exposure, the average PM2.5 concentration was 133.7 ± 53.32 μg/m3 in PM chamber, whereas the average concentration in FA chamber was 9.4 ± 0.23 μg/m3 . Similarly, during the offspring exposure, the average concentration in PM and FA chamber were 100.76 ± 26.97 μg/m3 and 9.15 ± 0.15 μg/m3 , respectively. The PM2.5 -exposed offspring mice displayed the elevation of blood pressure, the increase of angiotensin II (Ang II), the decrease of angiotensin converting enzyme 2 (ACE2) and Ang (1-7) in serum when compared with the FA-exposed offspring mice. The similar results displayed in the proteins expression of ACE2, AT1R, and Ang (1-7) in vessel and kidney. More importantly, parental PM exposure further induced the increase in serous Ang II and the protein expression of AT1R in vessel, but decrease in ACE2 and Ang (1-7). The serous Ang II was positively associated with splenic T helper type 17 (Th17) cell population and serous IL (interleukin)-17A, but negatively associated with T regular (Treg) cell population and serous IL-10. The results suggested that parental air pollution exposure might induce the elevation of offspring blood pressure via mediate Th17- and Treg-related immune microenvironment.
Collapse
Affiliation(s)
- Kun Pan
- Department of Infectious Disease Control, Center for Disease Control and Prevention of Shangcheng in Hangzhou, Hangzhou, Zhejiang, China
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Jia Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Liying Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Lei Lei
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Ji Zhou
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Yuquan Xie
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Dong
- Administrative office, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| |
Collapse
|
15
|
Chen M, Xu Y, Wang W, Wang X, Qiu L, Chen S, Kan H, Ying Z. Paternal Exposure to PM 2.5 Programs Offspring's Energy Homeostasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6097-6106. [PMID: 33825453 DOI: 10.1021/acs.est.0c08161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Considerable studies show that maternal exposure to ambient fine particulate matter (PM2.5) programs offspring's susceptibility to obesity. However, few studies have investigated the effect of paternal PM2.5 exposure on offspring's energy homeostasis. This study thus tested whether paternal PM2.5 exposure programs offspring's energy homeostasis. Male C57Bl/6J mice were exposed to filtered air or concentrated ambient PM2.5 (CAP) for 12 weeks and then mated with normal female C57Bl/6J mice. The offspring were assessed for growth trajectories, food intakes, and body compositions, and the sperm miRNAs of those sires were profiled by microarray. Zygotic injection was used to test whether the miRNA identified by the microarray mediates the impact of paternal PM2.5 exposure on offspring's energy homeostasis. Paternal CAP exposure resulted in significant hypophagia and weight loss in male, but not female, offspring. The weight loss of male offspring was accompanied by decreases in the liver and kidney masses and paradoxically an increase in the adipose mass. Without further exposure to CAP, this programming was three-generationally transmitted along the paternal line. The sperm miRNA profiling revealed that mmu-mir6909-5p was the sole differentially expressed sperm miRNA due to PM2.5 exposure, and zygotic injection of mmu-mir6909-5p mimicked all the effects of paternal PM2.5 exposure on offspring's energy homeostasis. Paternal PM2.5 exposure programs offspring's energy homeostasis through increasing paternal sperm mmu-mir6909-5p.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wanjun Wang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiaoke Wang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lianglin Qiu
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Sufang Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Endocrinology, The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
16
|
Ain NU, Qamar SUR. Particulate Matter-Induced Cardiovascular Dysfunction: A Mechanistic Insight. Cardiovasc Toxicol 2021; 21:505-516. [PMID: 33886046 DOI: 10.1007/s12012-021-09652-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Air pollution and particulate matter (PM) are significant factors for adverse health effects most prominently cardiovascular disease (CVD). PM is produced from various sources, which include both natural and anthropogenic. It is composed of biological components, organic compounds, minerals, and metals, which are responsible for inducing inflammation and adverse health effects. However, the adverse effects are related to PM size distribution. Finer particles are a significant cause of cardiovascular events. This review discusses the direct and indirect mechanisms of PM-induced CVD like myocardial infarction, the elevation of blood pressure, cardiac arrhythmias, atherosclerosis, and thrombosis. The two potential mechanisms are oxidative stress and systemic inflammation. Prenatal exposure has also been linked with cardiovascular outcomes later in life. Moreover, we also mentioned the epidemiological studies that strongly associate PM with CVD.
Collapse
Affiliation(s)
- Noor Ul Ain
- Departmetnt of Environmental Sciences, Fatima Jinnah Women University, The Mall Road, Kachari Chowk, Rawalpindi, 46000, Pakistan
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Safi Ur Rehman Qamar
- Integrated Genomics, Cellular, Developmental, and Biotechnology Laboratory (IGCDBL), University of Agriculture, Faisalabad, Punjab, 38000, Pakistan.
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand.
| |
Collapse
|
17
|
Cohort profile: Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO). Eur J Epidemiol 2020; 36:129-142. [PMID: 33222050 DOI: 10.1007/s10654-020-00697-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
The Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO) is a preconception, longitudinal cohort study that aims to study the effects of nutrition, lifestyle, and maternal mood prior to and during pregnancy on the epigenome of the offspring and clinically important outcomes including duration of gestation, fetal growth, metabolic and neural phenotypes in the offspring. Between February 2015 and October 2017, the S-PRESTO study recruited 1039 Chinese, Malay or Indian (or any combinations thereof) women aged 18-45 years and who intended to get pregnant and deliver in Singapore, resulting in 1032 unique participants and 373 children born in the cohort. The participants were followed up for 3 visits during the preconception phase and censored at 12 months of follow up if pregnancy was not achieved (N = 557 censored). Women who successfully conceived (N = 475) were characterised at gestational weeks 6-8, 11-13, 18-21, 24-26, 27-28 and 34-36. Follow up of their index offspring (N = 373 singletons) is on-going at birth, 1, 3 and 6 weeks, 3, 6, 12, 18, 24 and 36 months and beyond. Women are also being followed up post-delivery. Data is collected via interviewer-administered questionnaires, metabolic imaging (magnetic resonance imaging), standardized anthropometric measurements and collection of diverse specimens, i.e. blood, urine, buccal smear, stool, skin tapes, epithelial swabs at numerous timepoints. S-PRESTO has extensive repeated data collected which include genetic and epigenetic sampling from preconception which is unique in mother-offspring epidemiological cohorts. This enables prospective assessment of a wide array of potential determinants of future health outcomes in women from preconception to post-delivery and in their offspring across the earliest development from embryonic stages into early childhood. In addition, the S-PRESTO study draws from the three major Asian ethnic groups that represent 50% of the global population, increasing the relevance of its findings to global efforts to address non-communicable diseases.
Collapse
|
18
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
19
|
Tanwar V, Adelstein JM, Grimmer JA, Youtz DJ, Katapadi A, Sugar BP, Falvo MJ, Baer LA, Stanford KI, Wold LE. Preconception Exposure to Fine Particulate Matter Leads to Cardiac Dysfunction in Adult Male Offspring. J Am Heart Assoc 2019; 7:e010797. [PMID: 30561255 PMCID: PMC6405597 DOI: 10.1161/jaha.118.010797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Particulate matter (particles < 2.5 μm [ PM 2.5]) exposure during the in utero and postnatal developmental periods causes cardiac dysfunction during adulthood. Here, we investigated the potential priming effects of preconception exposure of PM 2.5 on cardiac function in adult offspring. Methods and Results Male and female friend leukemia virus b (FVB) mice were exposed to either filtered air ( FA ) or PM 2.5 at an average concentration of 38.58 μg/m3 for 6 hours/day, 5 days/week for 3 months. Mice were then crossbred into 2 groups: (1) FA male× FA female (both parents were exposed to FA preconception) and, (2) PM 2.5male× PM 2.5female (both parents were exposed to PM 2.5 preconception). Male offspring were divided: (1) preconception FA (offspring born to FA exposed parents) and, (2) preconception PM 2.5 (offspring born to PM 2.5 exposed parents) and analyzed at 3 months of age. Echocardiography identified increased left ventricular end systolic volume and reduced posterior wall thickness, reduced %fractional shortening and %ejection fraction in preconception PM 2.5 offspring. Cardiomyocytes isolated from preconception PM 2.5 offspring showed reduced %peak shortening, -dL/dT, TPS 90 and slower calcium reuptake (tau). Gene and protein expression revealed modifications in markers of inflammation ( IL -6, IL -15, TNF α, NF қB, CRP , CD 26E, CD 26P, intercellular adhesion molecule 1, and monocyte chemoattractant protein-1) profibrosis (collagen type III alpha 1 chain), oxidative stress ( NOS 2), antioxidants (Nrf2, SOD , catalase), Ca2+ regulatory proteins ( SERCA 2a, p- PLN , NCX ), and epigenetic regulators (Dnmt1, Dnmt3a, Dnmt3b, Sirt1, and Sirt2) in preconception PM 2.5 offspring. Conclusions Preconception exposure to PM 2.5 results in global cardiac dysfunction in adult offspring, suggesting that abnormalities during development are not limited to the prenatal or postnatal periods but can also be determined before conception.
Collapse
Affiliation(s)
- Vineeta Tanwar
- 1 Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Columbus OH.,2 College of Nursing The Ohio State University Columbus OH
| | - Jeremy M Adelstein
- 1 Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Columbus OH.,2 College of Nursing The Ohio State University Columbus OH
| | - Jacob A Grimmer
- 1 Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Columbus OH.,2 College of Nursing The Ohio State University Columbus OH
| | - Dane J Youtz
- 1 Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Columbus OH.,2 College of Nursing The Ohio State University Columbus OH
| | - Aashish Katapadi
- 3 Medical Student Research Program The Ohio State University College of Medicine Columbus OH
| | - Benjamin P Sugar
- 3 Medical Student Research Program The Ohio State University College of Medicine Columbus OH
| | - Michael J Falvo
- 5 Department of Veterans Affairs War Related Illness and Injury Study Center New Jersey Health Care System East Orange NJ
| | - Lisa A Baer
- 4 Department of Physiology and Cell Biology The Ohio State University College of Medicine Columbus OH
| | - Kristin I Stanford
- 1 Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Columbus OH.,4 Department of Physiology and Cell Biology The Ohio State University College of Medicine Columbus OH
| | - Loren E Wold
- 1 Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Columbus OH.,2 College of Nursing The Ohio State University Columbus OH.,4 Department of Physiology and Cell Biology The Ohio State University College of Medicine Columbus OH
| |
Collapse
|
20
|
Grimmer JA, Tanwar V, Youtz DJ, Adelstein JM, Baine SH, Carnes CA, Baer LA, Stanford KI, Wold LE. Exercise does not ameliorate cardiac dysfunction in obese mice exposed to fine particulate matter. Life Sci 2019; 239:116885. [PMID: 31655193 DOI: 10.1016/j.lfs.2019.116885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Studies have demonstrated that exposure to fine particulate matter (PM2.5) is linked to cardiovascular disease (CVD), which is exacerbated in patients with pre-existing conditions such as obesity. In the present study, we examined cardiac function of obese mice exposed to PM2.5 and determined if mild exercise affected cardiac function. METHODS Obese mice (ob/ob) (leptin deficient, C57BL/6J background) were exposed to either filtered air (FA) or PM2.5 at an average concentration of 32 μg/m3 for 6 h/day, 5 days/week for 9 months. Following exposure, mice were divided into four groups: (1) FA sedentary, (2) FA treadmill exercise, (3) PM2.5 sedentary, and (4) PM2.5 treadmill exercise and all mice were analyzed after 8 weeks of exercise training. RESULTS Echocardiography showed increased left ventricular end systolic (LVESd) and diastolic (LVEDd) diameters in PM2.5 sedentary mice compared to FA sedentary mice. There was increased expression of ICAM1, VCAM and CRP markers in sedentary PM2.5 mice compared to FA mice. Both FA and PM2.5 exercised mice showed decreased posterior wall thickness in systole compared to FA sedentary mice, coupled with altered expression of inflammatory markers following exercise. CONCLUSION Obese mice exposed to PM2.5 for 9 months showed cardiac dysfunction, which was not improved following mild exercise training.
Collapse
Affiliation(s)
- Jacob A Grimmer
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Vineeta Tanwar
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Dane J Youtz
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Jeremy M Adelstein
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Stephen H Baine
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Stapleton P. Should Perturbation of the Preconceptive Environment be Considered a Risk Factor for the Development of Cardiovascular Disease Later in Life? J Am Heart Assoc 2018; 7:e011249. [PMID: 30561259 PMCID: PMC6405617 DOI: 10.1161/jaha.118.011249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
See Article by Tanwar et al
Collapse
Affiliation(s)
- Phoebe Stapleton
- 1 Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy Rutgers University Piscataway NJ.,2 Environmental and Occupational Health Sciences Institute Piscataway NJ
| |
Collapse
|