1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
Verdonschot JAJ, Fuster JJ, Walsh K, Heymans SRB. The emerging role of clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy. Eur Heart J 2024; 45:ehae682. [PMID: 39417710 PMCID: PMC11638724 DOI: 10.1093/eurheartj/ehae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of haematopoietic stem cells. When the mutation affects a 'driver' gene, the mutant clone gains a competitive advantage and has the potential to expand over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological conditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is characterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myocardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations in the CH driver genes prime the inflammasome pathway.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Kenneth Walsh
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, Hematovascular Biology Center, University of Virginia School of Medicine, 415 Lane Rd, Suite 1010, PO Box 801394, Charlottesville, VA, USA
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Science, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Monte E, Furihata T, Wang G, Perea-Gil I, Wei E, Chaib H, Nair R, Guevara JV, Mares R, Cheng X, Zhuge Y, Black K, Serrano R, Dagan-Rosenfeld O, Maguire P, Mercola M, Karakikes I, Wu JC, Snyder MP. Personalized transcriptome signatures in a cardiomyopathy stem cell biobank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593618. [PMID: 38798547 PMCID: PMC11118309 DOI: 10.1101/2024.05.10.593618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND There is growing evidence that pathogenic mutations do not fully explain hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a patient's genetic background was influencing cardiomyopathy this should be detectable as signatures in gene expression. We built a cardiomyopathy biobank resource for interrogating personalized genotype phenotype relationships in human cell lines. METHODS We recruited 308 diseased and control patients for our cardiomyopathy stem cell biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome sequencing and were differentiated into cardiomyocytes for RNA-seq. In addition to annotating pathogenic variants, mutation burden in a panel of cardiomyopathy genes was assessed for correlation with echocardiogram measurements. Line-specific co-expression networks were inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by activation with omecamtiv mecarbil or inhibition with mavacamten, to alter contractility. RESULTS We generated an iPSC biobank from 300 donors, which included 101 individuals with HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines identified 78 unique pathogenic or likely pathogenic mutations in the diseased lines. Notably, only DCM lines lacking a known pathogenic or likely pathogenic mutation replicated a finding in the literature for greater nonsynonymous SNV mutation burden in 102 cardiomyopathy genes to correlate with lower left ventricular ejection fraction in DCM. We analyzed RNA-sequencing data from iPSC-derived cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two transcriptional subtypes of HCM. The first subtype exhibited concerted activation of the co-expression network, with the degree of activation reflective of the disease severity of the donor. In contrast, the second HCM subtype and the entire DCM cohort exhibited partial activation of the respective disease network, with the strength of specific gene by gene relationships dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the HCM and DCM networks and partially corrected in response to drug treatment. CONCLUSIONS We have a established a stem cell biobank for studying cardiomyopathy. Our analysis supports the hypothesis the genetic background influences pathologic gene expression programs and support a role for ADCY5 in cardiomyopathy.
Collapse
Affiliation(s)
- Emma Monte
- Department of Genetics, Stanford University School of Medicine
| | | | - Guangwen Wang
- Department of Genetics, Stanford University School of Medicine
| | - Isaac Perea-Gil
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Eric Wei
- Department of Genetics, Stanford University School of Medicine
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine
| | - Ramesh Nair
- Department of Genetics, Stanford University School of Medicine
| | - Julio Vicente Guevara
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Rene Mares
- Department of Genetics, Stanford University School of Medicine
| | - Xun Cheng
- Department of Genetics, Stanford University School of Medicine
| | - Yan Zhuge
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Katelyn Black
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | | | - Peter Maguire
- Department of Genetics, Stanford University School of Medicine
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | | |
Collapse
|
4
|
Liu M, Zhai L, Yang Z, Li S, Liu T, Chen A, Wang L, Li Y, Li R, Li C, Tan M, Chen Z, Qian J. Integrative Proteomic Analysis Reveals the Cytoskeleton Regulation and Mitophagy Difference Between Ischemic Cardiomyopathy and Dilated Cardiomyopathy. Mol Cell Proteomics 2023; 22:100667. [PMID: 37852321 PMCID: PMC10684391 DOI: 10.1016/j.mcpro.2023.100667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3β signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.
Collapse
Affiliation(s)
- Muyin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tianxian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lulu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youran Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ruidong Li
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Chenguang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
5
|
Javed S, Halliday BP. Precision therapy in dilated cardiomyopathy: Pipedream or paradigm shift? CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e34. [PMID: 38550947 PMCID: PMC10953759 DOI: 10.1017/pcm.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 02/06/2025]
Abstract
Precision medicine for cardiomyopathies holds great promise to improve patient outcomes costs by shifting the focus to patient-specific treatment decisions, maximising the use of therapies most likely to lead to benefit and minimising unnecessary intervention. Dilated cardiomyopathy (DCM), characterised by left ventricular dilatation and impairment, is a major cause of heart failure globally. Advances in genomic medicine have increased our understanding of the genetic architecture of DCM. Understanding the functional implications of genetic variation to reveal genotype-specific disease mechanisms is the subject of intense investigation, with advanced cardiac imaging and mutliomics approaches playing important roles. This may lead to increasing use of novel, targeted therapy. Individualised treatment and risk stratification is however made more complex by the modifying effects of common genetic variation and acquired environmental factors that help explain the variable expressivity of rare genetic variants and gene elusive disease. The next frontier must be expanding work into early disease to understand the mechanisms that drive disease expression, so that the focus can be placed on disease prevention rather than management of later symptomatic disease. Overcoming these challenges holds the key to enabling a paradigm shift in care from the management of symptomatic heart failure to prevention of disease.
Collapse
Affiliation(s)
- Saad Javed
- National Heart and Lung Institute, Imperial College London, UK
- Cardiovascular Research Centre, Cardiovascular Magnetic Resonance Unit & Inherited Cardiac Conditions Care Group, Royal Brompton and Harefield Hospitals, Part of Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Brian P. Halliday
- National Heart and Lung Institute, Imperial College London, UK
- Cardiovascular Research Centre, Cardiovascular Magnetic Resonance Unit & Inherited Cardiac Conditions Care Group, Royal Brompton and Harefield Hospitals, Part of Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Seferović PM, Polovina M, Rosano G, Bozkurt B, Metra M, Heymans S, Mullens W, Bauersachs J, Sliwa K, de Boer RA, Farmakis D, Thum T, Olivotto I, Rapezzi C, Linhart A, Corrado D, Tschöpe C, Milinković I, Bayes Genis A, Filippatos G, Keren A, Ašanin M, Krljanac G, Maksimović R, Skouri H, Ben Gal T, Moura B, Volterrani M, Abdelhamid M, Lopatin Y, Chioncel O, Coats AJS. State-of-the-art document on optimal contemporary management of cardiomyopathies. Eur J Heart Fail 2023; 25:1899-1922. [PMID: 37470300 DOI: 10.1002/ejhf.2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Cardiomyopathies represent significant contributors to cardiovascular morbidity and mortality. Over the past decades, a progress has occurred in characterization of the genetic background and major pathophysiological mechanisms, which has been incorporated into a more nuanced diagnostic approach and risk stratification. Furthermore, medications targeting core disease processes and/or their downstream adverse effects have been introduced for several cardiomyopathies. Combined with standard care and prevention of sudden cardiac death, these novel and emerging targeted therapies offer a possibility of improving the outcomes in several cardiomyopathies. Therefore, the aim of this document is to summarize practical approaches to the treatment of cardiomyopathies, which includes the evidence-based novel therapeutic concepts and established principles of care, tailored to the individual patient aetiology and clinical presentation of the cardiomyopathy. The scope of the document encompasses contemporary treatment of dilated, hypertrophic, restrictive and arrhythmogenic cardiomyopathy. It was based on an expert consensus reached at the Heart Failure Association online Workshop, held on 18 March 2021.
Collapse
Affiliation(s)
- Petar M Seferović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Polovina
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Biykem Bozkurt
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wilfried Mullens
- Hasselt University, Hasselt, Belgium
- Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karen Sliwa
- Cape Heart Institute, Division of Cardiology, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children's Hospital and Careggi University Hospital, Florence, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Aleš Linhart
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ivan Milinković
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Antoni Bayes Genis
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universidad Autónoma de Barcelona, Badalona, Spain
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Andre Keren
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Milika Ašanin
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gordana Krljanac
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ružica Maksimović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Center for Radiology and Magnetic Resonance, University Clinical Center of Serbia, Belgrade, Serbia
| | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tuvia Ben Gal
- Heart Failure Unit, Cardiology Department, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maurizio Volterrani
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Magdy Abdelhamid
- Department of Cardiovascular Medicine, Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, Egypt
| | - Yuri Lopatin
- Volgograd Medical University, Cardiology Centre, Volgograd, Russian Federation
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C.C. Iliescu' Bucharest; University for Medicine and Pharmacy 'Carol Davila' Bucharest, Bucharest, Romania
| | | |
Collapse
|
7
|
Raafs AG, Adriaans BP, Henkens MTHM, Verdonschot JAJ, Abdul Hamid MA, Díez J, Knackstedt C, van Empel VPM, Brunner-La Rocca HP, González A, Wildberger JE, Heymans SRB, Hazebroek MR. Biomarkers of Collagen Metabolism Are Associated with Left Ventricular Function and Prognosis in Dilated Cardiomyopathy: A Multi-Modal Study. J Clin Med 2023; 12:5695. [PMID: 37685762 PMCID: PMC10488673 DOI: 10.3390/jcm12175695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Collagen cross-linking is a fundamental process in dilated cardiomyopathy (DCM) and occurs when collagen deposition exceeds degradation, leading to impaired prognosis. This study investigated the associations of collagen-metabolism biomarkers with left ventricular function and prognosis in DCM. METHODS DCM patients who underwent endomyocardial biopsy, blood sampling, and cardiac MRI were included. The primary endpoint included death, heart failure hospitalization, or life-threatening arrhythmias, with a follow-up of 6 years (5-8). RESULTS In total, 209 DCM patients were included (aged 54 ± 13 years, 65% male). No associations were observed between collagen volume fraction, circulating carboxy-terminal propeptide of procollagen type-I (PICP), or collagen type I carboxy-terminal telopeptide [CITP] and matrix metalloproteinase [MMP]-1 ratio and cardiac function parameters. However, CITP:MMP-1 was significantly correlated with global longitudinal strain (GLS) in the total study sample (R = -0.40, p < 0.0001; lower CITP:MMP-1 ratio was associated with impaired GLS), with even stronger correlations in patients with LVEF > 40% (R = -0.70, p < 0.0001). Forty-seven (22%) patients reached the primary endpoint. Higher MMP-1 levels were associated with a worse outcome, even after adjustment for clinical and imaging predictors (1.026, 95% CI 1.002-1.051, p = 0.037), but CITP and CITP:MMP-1 were not. Combining MMP-1 and PICP improved the goodness-of-fit (LHR36.67, p = 0.004). CONCLUSION The degree of myocardial cross-linking (CITP:MMP-1) is associated with myocardial longitudinal contraction, and MMP-1 is an independent predictor of outcome in DCM patients.
Collapse
Affiliation(s)
- Anne G. Raafs
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
| | - Bouke P. Adriaans
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Michiel T. H. M. Henkens
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Netherlands Heart Institute (NLHI), 3511 EP Utrecht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Job A. J. Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Clinical Genetics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Myrurgia A. Abdul Hamid
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, 31008 Pamplona, Spain; (J.D.); (A.G.)
- CIBERCV, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Christian Knackstedt
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Vanessa P. M. van Empel
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, 31008 Pamplona, Spain; (J.D.); (A.G.)
- CIBERCV, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Joachim E. Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Stephane R. B. Heymans
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
- Department of Cardiovascular Research, University of Leuven, 3000 Leuven, Belgium
| | - Mark R. Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.P.A.); (M.T.H.M.H.); (J.A.J.V.); (C.K.); (V.P.M.v.E.); (H.-P.B.-L.R.); (S.R.B.H.); (M.R.H.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands;
| |
Collapse
|
8
|
Kornienko J, Rodríguez-Martínez M, Fenzl K, Hinze F, Schraivogel D, Grosch M, Tunaj B, Lindenhofer D, Schraft L, Kueblbeck M, Smith E, Mao C, Brown E, Owens A, Saguner AM, Meder B, Parikh V, Gotthardt M, Steinmetz LM. Mislocalization of pathogenic RBM20 variants in dilated cardiomyopathy is caused by loss-of-interaction with Transportin-3. Nat Commun 2023; 14:4312. [PMID: 37463913 DOI: 10.1038/s41467-023-39965-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Severe forms of dilated cardiomyopathy (DCM) are associated with point mutations in the alternative splicing regulator RBM20 that are frequently located in the arginine/serine-rich domain (RS-domain). Such mutations can cause defective splicing and cytoplasmic mislocalization, which leads to the formation of detrimental cytoplasmic granules. Successful development of personalized therapies requires identifying the direct mechanisms of pathogenic RBM20 variants. Here, we decipher the molecular mechanism of RBM20 mislocalization and its specific role in DCM pathogenesis. We demonstrate that mislocalized RBM20 RS-domain variants retain their splice regulatory activity, which reveals that aberrant cellular localization is the main driver of their pathological phenotype. A genome-wide CRISPR knockout screen combined with image-enabled cell sorting identified Transportin-3 (TNPO3) as the main nuclear importer of RBM20. We show that the direct RBM20-TNPO3 interaction involves the RS-domain, and is disrupted by pathogenic variants. Relocalization of pathogenic RBM20 variants to the nucleus restores alternative splicing and dissolves cytoplasmic granules in cell culture and animal models. These findings provide proof-of-principle for developing therapeutic strategies to restore RBM20's nuclear localization in RBM20-DCM patients.
Collapse
Affiliation(s)
- Julia Kornienko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Kai Fenzl
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Florian Hinze
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Markus Grosch
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brigit Tunaj
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dominik Lindenhofer
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laura Schraft
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Moritz Kueblbeck
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Eric Smith
- University of Michigan, Ann Arbor, MI, USA
| | - Chad Mao
- Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | | | - Anjali Owens
- University of Pennsylvania, Philadelphia, PA, USA
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Meder
- Cardiogenetics Center Heidelberg, Department of Cardiology, Angiology and Pulmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Victoria Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Genome Technology Center, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Tsabedze N, Ramsay M, Krause A, Wells Q, Mpanya D, Manga P. The genetic basis for adult-onset idiopathic dilated cardiomyopathy in people of African descent. Heart Fail Rev 2023; 28:879-892. [PMID: 36917398 PMCID: PMC10011790 DOI: 10.1007/s10741-023-10302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Cardiomyopathies are a heterogeneous group of cardiac muscle disorders that result in dilated, hypertrophic, or restrictive pathophysiological entities. Dilated cardiomyopathy (DCM) is the most common form in sub-Saharan Africa (SSA). However, population-specific research studies reporting the actual burden of DCM in this region are still lacking. Also, little is known about the genetic basis of DCM in this population, and genetic testing is still not readily accessible. This review describes the common pathogenic genes implicated in DCM globally and discusses the evidence-based management of patients with DCM. We also present a summary of studies describing genes implicated or associated with DCM in patients residing in SSA.
Collapse
Affiliation(s)
- Nqoba Tsabedze
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Services and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2001 South Africa
| | - Quinn Wells
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232 TN USA
| | - Dineo Mpanya
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| | - Pravin Manga
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| |
Collapse
|
10
|
Grosch M, Schraft L, Chan A, Küchenhoff L, Rapti K, Ferreira AM, Kornienko J, Li S, Radke MH, Krämer C, Clauder-Münster S, Perlas E, Backs J, Gotthardt M, Dieterich C, van den Hoogenhof MMG, Grimm D, Steinmetz LM. Striated muscle-specific base editing enables correction of mutations causing dilated cardiomyopathy. Nat Commun 2023; 14:3714. [PMID: 37349314 PMCID: PMC10287752 DOI: 10.1038/s41467-023-39352-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
Dilated cardiomyopathy is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of patients harbor heritable mutations which are amenable to CRISPR-based gene therapy. However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart. We employ a combination of the viral vector AAVMYO with superior targeting specificity of heart muscle tissue and CRISPR base editors to repair patient mutations in the cardiac splice factor Rbm20, which cause aggressive dilated cardiomyopathy. Using optimized conditions, we repair >70% of cardiomyocytes in two Rbm20 knock-in mouse models that we have generated to serve as an in vivo platform of our editing strategy. Treatment of juvenile mice restores the localization defect of RBM20 in 75% of cells and splicing of RBM20 targets including TTN. Three months after injection, cardiac dilation and ejection fraction reach wild-type levels. Single-nuclei RNA sequencing uncovers restoration of the transcriptional profile across all major cardiac cell types and whole-genome sequencing reveals no evidence for aberrant off-target editing. Our study highlights the potential of base editors combined with AAVMYO to achieve gene repair for treatment of hereditary cardiac diseases.
Collapse
Affiliation(s)
- Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Laura Schraft
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Adrian Chan
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Leonie Küchenhoff
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Anne-Maud Ferreira
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Kornienko
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shengdi Li
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Michael H Radke
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Chiara Krämer
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, BioQuant, University of Heidelberg, Heidelberg, Germany
| | | | - Emerald Perlas
- Epigenetics and Neurobiology Unit, EMBL Rome, Monterotondo, Italy
| | - Johannes Backs
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Gotthardt
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Dieterich
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, BioQuant, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
- Stanford Genome Technology Center, Palo Alto, CA, USA.
| |
Collapse
|
11
|
Sikking MA, Stroeks SLVM, Henkens MTHM, Venner MFGHM, Li X, Heymans SRB, Hazebroek MR, Verdonschot JAJ. Cardiac Inflammation in Adult-Onset Genetic Dilated Cardiomyopathy. J Clin Med 2023; 12:3937. [PMID: 37373632 DOI: 10.3390/jcm12123937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Dilated cardiomyopathy (DCM) has a genetic cause in up to 40% of cases, with differences in disease penetrance and clinical presentation, due to different exogeneous triggers and implicated genes. Cardiac inflammation can be the consequence of an exogeneous trigger, subsequently unveiling a phenotype. The study aimed to determine cardiac inflammation in a cohort of genetic DCM patients and investigate whether it associated with a younger disease onset. The study included 113 DCM patients with a genetic etiology, of which 17 had cardiac inflammation as diagnosed in an endomyocardial biopsy. They had a significant increased cardiac infiltration of white blood, cytotoxic T, and T-helper cells (p < 0.05). Disease expression was at a younger age in those patients with cardiac inflammation, compared to those without inflammation (p = 0.015; 50 years (interquartile range (IQR) 42-53) versus 53 years (IQR 46-61). However, cardiac inflammation was not associated with a higher incidence of all-cause mortality, heart failure hospitalization, or life-threatening arrhythmias (hazard ratio 0.85 [0.35-2.07], p = 0.74). Cardiac inflammation is associated with an earlier disease onset in patients with genetic DCM. This might indicate that myocarditis is an exogeneous trigger unveiling a phenotype at a younger age in patients with a genetic susceptibility, or that cardiac inflammation resembles a 'hot-phase' of early-onset disease.
Collapse
Affiliation(s)
- Maurits A Sikking
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), 6229 HX Maastricht, The Netherlands
| | - Sophie L V M Stroeks
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), 6229 HX Maastricht, The Netherlands
| | - Michiel T H M Henkens
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Netherlands Heart Institute (NLHI), 3511 EP Utrecht, The Netherlands
| | - Max F G H M Venner
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), 6229 HX Maastricht, The Netherlands
| | - Xiaofei Li
- Department of Pathology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), 6229 HX Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Mark R Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), 6229 HX Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), 6229 HX Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
12
|
Ganipineni VDP, Gutlapalli SD, Danda S, Garlapati SKP, Fabian D, Okorie I, Paramsothy J. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Cardiovascular Disease: A Comprehensive Clinical Review on Dilated Cardiomyopathy. Cureus 2023; 15:e35774. [PMID: 37025725 PMCID: PMC10071452 DOI: 10.7759/cureus.35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most important causes of heart failure in developed and developing countries. Currently, most medical interventions in the treatment of DCM are mainly focused on mitigating the progression of the disease and controlling the symptoms. The vast majority of patients who survive till the late stages of the disease require cardiac transplantation; this is exactly why we need novel therapeutic interventions and hopefully treatments that can reverse the clinical cardiac deterioration in patients with DCM. Clustered regularly interspaced short palindromic repeats (CRISPR) technology is a novel therapeutic intervention with such capacity; it can help us edit the genome of patients with genetic etiology for DCM and potentially cure them permanently. This review provides an overview of studies investigating CRISPR-based gene editing in DCM, including the use of CRISPR in DCM disease models, phenotypic screening, and genotype-specific precision therapies. The review discusses the outcomes of these studies and highlights the potential benefits of CRISPR in developing novel genotype-agnostic therapeutic strategies for the genetic causes of DCM. The databases we used to extract relevant literature include PubMed, Google Scholar, and Cochrane Central. We used the Medical Subject Heading (MeSH) strategy for our literature search in PubMed and relevant search keywords for other databases. We screened all the relevant articles from inception till February 22, 2023. We retained 74 research articles after carefully reviewing each of them. We concluded that CRISPR gene editing has shown promise in developing precise and genotype-specific therapeutic strategies for DCM, but there are challenges and limitations, such as delivering CRISPR-Cas9 to human cardiomyocytes and the potential for unintended gene targeting. This study represents a turning point in our understanding of the mechanisms underlying DCM and paves the way for further investigation into the application of genomic editing for identifying novel therapeutic targets. This study can also act as a potential framework for novel therapeutic interventions in other genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Vijaya Durga Pradeep Ganipineni
- Department of Internal Medicine, SRM Medical College Hospital and Research Centre, Chennai, IND
- Department of General Medicine, Andhra Medical College/King George Hospital, Visakhapatnam, IND
| | - Sai Dheeraj Gutlapalli
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
- Internal Medicine and Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sumanth Danda
- Department of Internal Medicine, Katuri Medical College & Hospital, Guntur, IND
| | | | - Daniel Fabian
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Ikpechukwu Okorie
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
| | - Jananthan Paramsothy
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, USA
| |
Collapse
|
13
|
Dominguez F, Cabrera E. Mavacamten in obstructive hypertrophic cardiomyopathy - Are beta-blockers blocking part of its shine? Eur J Heart Fail 2023; 25:271-273. [PMID: 36597820 DOI: 10.1002/ejhf.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Fernando Dominguez
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eva Cabrera
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Madrid, Madrid, Spain
| |
Collapse
|
14
|
Perea-Gil I, Seeger T, Bruyneel AAN, Termglinchan V, Monte E, Lim EW, Vadgama N, Furihata T, Gavidia AA, Arthur Ataam J, Bharucha N, Martinez-Amador N, Ameen M, Nair P, Serrano R, Kaur B, Feyen DAM, Diecke S, Snyder MP, Metallo CM, Mercola M, Karakikes I. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy. Eur Heart J 2022; 43:3477-3489. [PMID: 35728000 PMCID: PMC9794189 DOI: 10.1093/eurheartj/ehac305] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Timon Seeger
- Department of Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vittavat Termglinchan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Takaaki Furihata
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra A Gavidia
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Jennifer Arthur Ataam
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noel Martinez-Amador
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Mohamed Ameen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pooja Nair
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Balpreet Kaur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Dries A M Feyen
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Personalized Medicine Approach in a DCM Patient with LMNA Mutation Reveals Dysregulation of mTOR Signaling. J Pers Med 2022; 12:jpm12071149. [PMID: 35887646 PMCID: PMC9323361 DOI: 10.3390/jpm12071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Mutations in the Lamin A/C (LMNA) gene are responsible for about 6% of all familial dilated cardiomyopathy (DCM) cases which tend to present at a young age and follow a fulminant course. Methods: We report a 47-year-old DCM patient with severely impaired left ventricular ejection fraction and NYHA functional class IV despite optimal heart failure treatment. Whole-exome sequencing revealed an LMNA E161K missense mutation as the pathogenetic cause for DCM in this patient. We generated a patient-specific LMNA-knock in (LMNA-KI) in vitro model using mES cells. Results: Beta adrenergic stimulation of cardiomyocytes derived from LMNA-KI mES cells resulted in augmented mTOR signaling and increased dysregulation of action potentials, which could be effectively prevented by the mTOR-inhibitor rapamycin. A cardiac biopsy confirmed strong activation of the mTOR-signaling pathway in the patient. An off-label treatment with oral rapamycin was initiated and resulted in an improvement in left ventricular ejection fraction (27.8% to 44.5%), NT-BNP (8120 ng/L to 2210 ng/L) and NYHA functional class. Conclusion: We have successfully generated the first in vitro model to recapitulate a patient-specific LMNA E161K mutation which leads to a severe form of DCM. The model may serve as a template for individualized and specific treatment of heart failure.
Collapse
|
16
|
Amiya E. Social Inequalities in Non-ischemic Cardiomyopathies. Front Cardiovasc Med 2022; 9:831918. [PMID: 35321101 PMCID: PMC8934878 DOI: 10.3389/fcvm.2022.831918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) has various characteristics, such as etiology, clinical course, and clinical characteristics. Several studies reported the clinical findings of the characteristics of non-ischemic cardiomyopathy. There have been issues with genetic, biochemical, or pathophysiological problems. Some studies have been conducted on non-ischemic cardiomyopathy and social factors, for instance, racial disparities in peripartum cardiomyopathy (PPCM) or the social setting of hypertrophic cardiomyopathy. However, there have been insufficient materials to consider the relationship between social factors and clinical course in non-ischemic cardiomyopathies. There were various methodologies in therapeutic interventions, such as pharmacological, surgical, or rehabilitational, and educational issues. However, interventions that could be closely associated with social inequality have not been sufficiently elucidated. We will summarize the effects of social equality, which could have a large impact on the development and progression of HF in non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Eisuke Amiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Therapeutic Strategy for Heart Failure, University of Tokyo, Tokyo, Japan
- *Correspondence: Eisuke Amiya
| |
Collapse
|
17
|
Raafs AG, Boscutti A, Henkens MTHM, van den Broek WWA, Verdonschot JAJ, Weerts J, Stolfo D, Nuzzi V, Manca P, Hazebroek MR, Knackstedt C, Merlo M, Heymans SRB, Sinagra G. Global Longitudinal Strain is Incremental to Left Ventricular Ejection Fraction for the Prediction of Outcome in Optimally Treated Dilated Cardiomyopathy Patients. J Am Heart Assoc 2022; 11:e024505. [PMID: 35253464 PMCID: PMC9075270 DOI: 10.1161/jaha.121.024505] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background
Speckle tracking echocardiographic global longitudinal strain (GLS) predicts outcome in patients with new onset heart failure. Still, its incremental value on top of left ventricular ejection fraction (LVEF) in patients with nonischemic, nonvalvular dilated cardiomyopathy (DCM) after optimal heart failure treatment remains unknown.
Methods and Results
Patients with DCM were included at the outpatient clinics of 2 centers in the Netherlands and Italy. The prognostic value of 2‐dimensional speckle tracking echocardiographic global longitudinal strain was evaluated when being on optimal heart failure medication for at least 6 months. Outcome was defined as the combination of sudden or cardiac death, life‐threatening arrhythmias, and heart failure hospitalization. A total of 323 patients with DCM (66% men, age 55±14 years) were included. The mean LVEF was 42%±11% and mean GLS after optimal heart failure treatment was −15%±4%. Twenty percent (64/323) of all patients reached the primary outcome after optimal heart failure treatment (median follow‐up of 6[4–9] years). New York Heart Association class ≥3, LVEF, and GLS remained associated with the outcome in the multivariable‐adjusted model (New York Heart Association class: hazard ratio [HR], 3.43; 95% CI, 1.49–7.90,
P
=0.004; LVEF: HR, 2.13; 95% CI, 1.11–4.10,
P
=0.024; GLS: HR, 2.24; 95% CI, 1.18–4.29,
P
=0.015), whereas left ventricular end‐diastolic diameter index, left atrial volume index, and delta GLS were not. The addition of GLS to New York Heart Association class and LVEF improved the goodness of fit (log likelihood ratio test
P
<0.001) and discrimination (Harrell’s C 0.703).
Conclusions
Within this bicenter study, GLS emerged as an independent and incremental predictor of adverse outcome, which exceeded LVEF in patients with optimally treated DCM. This presses the need to routinely include GLS in the echocardiographic follow‐up of DCM.
Collapse
Affiliation(s)
- Anne G. Raafs
- Department of Cardiology and Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Medical Center+ Maastricht The Netherlands
| | - Andrea Boscutti
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)University of Trieste Trieste Italy
| | - Michiel T. H. M. Henkens
- Department of Cardiology and Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Medical Center+ Maastricht The Netherlands
- Netherlands Heart Institute (Nl‐HI) Utrecht The Netherlands
| | - Wout W. A. van den Broek
- Department of Cardiology and Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Medical Center+ Maastricht The Netherlands
| | - Job A. J. Verdonschot
- Department of Cardiology and Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Medical Center+ Maastricht The Netherlands
- Department of Clinical Genetics Maastricht University Medical Center Maastricht The Netherlands
| | - Jerremy Weerts
- Department of Cardiology and Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Medical Center+ Maastricht The Netherlands
| | - Davide Stolfo
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)University of Trieste Trieste Italy
| | - Vincenzo Nuzzi
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)University of Trieste Trieste Italy
| | - Paolo Manca
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)University of Trieste Trieste Italy
| | - Mark R. Hazebroek
- Department of Cardiology and Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Medical Center+ Maastricht The Netherlands
| | - Christian Knackstedt
- Department of Cardiology and Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Medical Center+ Maastricht The Netherlands
| | - Marco Merlo
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)University of Trieste Trieste Italy
| | - Stephane R. B. Heymans
- Department of Cardiology and Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Medical Center+ Maastricht The Netherlands
- Netherlands Heart Institute (Nl‐HI) Utrecht The Netherlands
- Department of Cardiovascular Research University of Leuven Leuven Belgium
| | - Gianfranco Sinagra
- Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)University of Trieste Trieste Italy
| |
Collapse
|
18
|
Asher C, Puyol-Antón E, Rizvi M, Ruijsink B, Chiribiri A, Razavi R, Carr-White G. The Role of AI in Characterizing the DCM Phenotype. Front Cardiovasc Med 2021; 8:787614. [PMID: 34993240 PMCID: PMC8724536 DOI: 10.3389/fcvm.2021.787614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Dilated Cardiomyopathy is conventionally defined by left ventricular dilatation and dysfunction in the absence of coronary disease. Emerging evidence suggests many patients remain vulnerable to major adverse outcomes despite clear therapeutic success of modern evidence-based heart failure therapy. In this era of personalized medical care, the conventional assessment of left ventricular ejection fraction falls short in fully predicting evolution and risk of outcomes in this heterogenous group of heart muscle disease, as such, a more refined means of phenotyping this disease appears essential. Cardiac MRI (CMR) is well-placed in this respect, not only for its diagnostic utility, but the wealth of information captured in global and regional function assessment with the addition of unique tissue characterization across different disease states and patient cohorts. Advanced tools are needed to leverage these sensitive metrics and integrate with clinical, genetic and biochemical information for personalized, and more clinically useful characterization of the dilated cardiomyopathy phenotype. Recent advances in artificial intelligence offers the unique opportunity to impact clinical decision making through enhanced precision image-analysis tasks, multi-source extraction of relevant features and seamless integration to enhance understanding, improve diagnosis, and subsequently clinical outcomes. Focusing particularly on deep learning, a subfield of artificial intelligence, that has garnered significant interest in the imaging community, this paper reviews the main developments that could offer more robust disease characterization and risk stratification in the Dilated Cardiomyopathy phenotype. Given its promising utility in the non-invasive assessment of cardiac diseases, we firstly highlight the key applications in CMR, set to enable comprehensive quantitative measures of function beyond the standard of care assessment. Concurrently, we revisit the added value of tissue characterization techniques for risk stratification, showcasing the deep learning platforms that overcome limitations in current clinical workflows and discuss how they could be utilized to better differentiate at-risk subgroups of this phenotype. The final section of this paper is dedicated to the allied clinical applications to imaging, that incorporate artificial intelligence and have harnessed the comprehensive abundance of data from genetics and relevant clinical variables to facilitate better classification and enable enhanced risk prediction for relevant outcomes.
Collapse
Affiliation(s)
- Clint Asher
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Esther Puyol-Antón
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Maleeha Rizvi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Bram Ruijsink
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amedeo Chiribiri
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Reza Razavi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Gerry Carr-White
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Cardiology, Guys and St Thomas' NHS Trust, London, United Kingdom
| |
Collapse
|
19
|
Manca P, Nuzzi V, Cannatà A, Merlo M, Sinagra G. Contemporary etiology and prognosis of dilated non-ischemic cardiomyopathy. Minerva Cardiol Angiol 2021; 70:171-188. [PMID: 34338487 DOI: 10.23736/s2724-5683.21.05736-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Non-ischemic dilated cardiomyopathy (NI-DCM) represents a specific etiology of systolic heart failure that usually affect young individuals with a genetic background in up to 40% of cases. Behind the term NI-DCM there is a spectrum of different diseases, and an accurate etiological classification appears pivotal for the clinical management and prognostic stratification of these patients. EVIDENCE ACQUISITION In the last years the prognosis of NI-DCM patients dramatically improved thanks to the progresses in medical treatment/ device therapy and earlier diagnosis especially in familial context. In this review we summarize the actual state of art in the management of these patients. EVIDENCE SYNTHESIS In the era of precision medicine, a lot of progresses have been made to expand our knowledge on the management of NI-DCM patients. A complex interaction between genotype and external triggers is the main determinant of the clinical phenotype in NI-DCM, and a lot of efforts must be done by clinicians to systematically rule out all the possible causes involved in the pathogenesis. Progresses in cardiac imaging and familial screening led us to detect subtle abnormalities in the initial phase of the disease and also helped us to furtherly stratify the prognosis and arrhythmic risk of these patients. It is plausible that a more precise etiological classification will be needed in the near future. CONCLUSIONS NI-DCM contains a spectrum of different diseases. Proper etiological classification, early diagnosis and strict follow-up are essential to tailor care of these patients.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Vincenzo Nuzzi
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Antonio Cannatà
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy.,Department of Cardiovascular Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Marco Merlo
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy -
| | - Gianfranco Sinagra
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| |
Collapse
|
20
|
Raafs AG, Verdonschot JAJ, Henkens MTHM, Adriaans BP, Wang P, Derks K, Abdul Hamid MA, Knackstedt C, van Empel VPM, Díez J, Brunner-La Rocca HP, Brunner HG, González A, Bekkers SCAM, Heymans SRB, Hazebroek MR. The combination of carboxy-terminal propeptide of procollagen type I blood levels and late gadolinium enhancement at cardiac magnetic resonance provides additional prognostic information in idiopathic dilated cardiomyopathy - A multilevel assessment of myocardial fibrosis in dilated cardiomyopathy. Eur J Heart Fail 2021; 23:933-944. [PMID: 33928704 PMCID: PMC8362085 DOI: 10.1002/ejhf.2201] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Aims To determine the prognostic value of multilevel assessment of fibrosis in dilated cardiomyopathy (DCM) patients. Methods and results We quantified fibrosis in 209 DCM patients at three levels: (i) non‐invasive late gadolinium enhancement (LGE) at cardiac magnetic resonance (CMR); (ii) blood biomarkers [amino‐terminal propeptide of procollagen type III (PIIINP) and carboxy‐terminal propeptide of procollagen type I (PICP)], (iii) invasive endomyocardial biopsy (EMB) (collagen volume fraction, CVF). Both LGE and elevated blood PICP levels, but neither PIIINP nor CVF predicted a worse outcome defined as death, heart transplantation, heart failure hospitalization, or life‐threatening arrhythmias, after adjusting for known clinical predictors [adjusted hazard ratios: LGE 3.54, 95% confidence interval (CI) 1.90–6.60; P < 0.001 and PICP 1.02, 95% CI 1.01–1.03; P = 0.001]. The combination of LGE and PICP provided the highest prognostic benefit in prediction (likelihood ratio test P = 0.007) and reclassification (net reclassification index: 0.28, P = 0.02; and integrated discrimination improvement index: 0.139, P = 0.01) when added to the clinical prediction model. Moreover, patients with a combination of LGE and elevated PICP (LGE+/PICP+) had the worst prognosis (log‐rank P < 0.001). RNA‐sequencing and gene enrichment analysis of EMB showed an increased expression of pro‐fibrotic and pro‐inflammatory pathways in patients with high levels of fibrosis (LGE+/PICP+) compared to patients with low levels of fibrosis (LGE‐/PICP‐). This would suggest the validity of myocardial fibrosis detection by LGE and PICP, as the subsequent generated fibrotic risk profiles are associated with distinct cardiac transcriptomic profiles. Conclusion The combination of myocardial fibrosis at CMR and circulating PICP levels provides additive prognostic value accompanied by a pro‐fibrotic and pro‐inflammatory transcriptomic profile in DCM patients with LGE and elevated PICP.
Collapse
Affiliation(s)
- Anne G Raafs
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel T H M Henkens
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bouke P Adriaans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ping Wang
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Myrurgia A Abdul Hamid
- Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Christian Knackstedt
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain.,Departments of Nephrology and of Cardiology and Cardiac Surgery, University of Navarra Clinic, Pamplona, Spain
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Human Genetics, and Donders Centre for Neuroscience, Radboud UMC, Nijmegen, The Netherlands
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain.,CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Sebastiaan C A M Bekkers
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Cardiovascular Research, University of Leuven, Leuven, Belgium.,Netherlands Heart Institute (Nl-HI), Utrecht, The Netherlands
| | - Mark R Hazebroek
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
21
|
Verdonschot JAJ, Merlo M, Dominguez F, Wang P, Henkens MTHM, Adriaens ME, Hazebroek MR, Masè M, Escobar LE, Cobas-Paz R, Derks KWJ, van den Wijngaard A, Krapels IPC, Brunner HG, Sinagra G, Garcia-Pavia P, Heymans SRB. Phenotypic clustering of dilated cardiomyopathy patients highlights important pathophysiological differences. Eur Heart J 2021; 42:162-174. [PMID: 33156912 PMCID: PMC7813623 DOI: 10.1093/eurheartj/ehaa841] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/05/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
AIMS The dilated cardiomyopathy (DCM) phenotype is the result of combined genetic and acquired triggers. Until now, clinical decision-making in DCM has mainly been based on ejection fraction (EF) and NYHA classification, not considering the DCM heterogenicity. The present study aimed to identify patient subgroups by phenotypic clustering integrating aetiologies, comorbidities, and cardiac function along cardiac transcript levels, to unveil pathophysiological differences between DCM subgroups. METHODS AND RESULTS We included 795 consecutive DCM patients from the Maastricht Cardiomyopathy Registry who underwent in-depth phenotyping, comprising extensive clinical data on aetiology and comorbodities, imaging and endomyocardial biopsies. Four mutually exclusive and clinically distinct phenogroups (PG) were identified based upon unsupervised hierarchical clustering of principal components: [PG1] mild systolic dysfunction, [PG2] auto-immune, [PG3] genetic and arrhythmias, and [PG4] severe systolic dysfunction. RNA-sequencing of cardiac samples (n = 91) revealed a distinct underlying molecular profile per PG: pro-inflammatory (PG2, auto-immune), pro-fibrotic (PG3; arrhythmia), and metabolic (PG4, low EF) gene expression. Furthermore, event-free survival differed among the four phenogroups, also when corrected for well-known clinical predictors. Decision tree modelling identified four clinical parameters (auto-immune disease, EF, atrial fibrillation, and kidney function) by which every DCM patient from two independent DCM cohorts could be placed in one of the four phenogroups with corresponding outcome (n = 789; Spain, n = 352 and Italy, n = 437), showing a feasible applicability of the phenogrouping. CONCLUSION The present study identified four different DCM phenogroups associated with significant differences in clinical presentation, underlying molecular profiles and outcome, paving the way for a more personalized treatment approach.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marco Merlo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Fernando Dominguez
- Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Ping Wang
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michiel T H M Henkens
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Michiel E Adriaens
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Mark R Hazebroek
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Marco Masè
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Luis E Escobar
- Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Rafael Cobas-Paz
- Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Kasper W J Derks
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen.,GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Italy
| | - Pablo Garcia-Pavia
- Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades in Cardiovascular Diseases (CIBERCV), Madrid, Spain.,Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| |
Collapse
|
22
|
Russcher A, Verdonschot J, Molenaar-de Backer MWA, Heymans SRB, Kroes ACM, Zaaijer HL. Parvovirus B19 DNA detectable in hearts of patients with dilated cardiomyopathy, but absent or inactive in blood. ESC Heart Fail 2021; 8:2723-2730. [PMID: 33931945 PMCID: PMC8318422 DOI: 10.1002/ehf2.13341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/14/2023] Open
Abstract
Aims Parvovirus B19 (B19V) is often assumed to be a cause of dilated cardiomyopathy (DCM), based on the quantification of B19V DNA in endomyocardial biopsies (EMB). Whether the presence of B19V DNA correlates with active infection is still debated. Application of the enzyme endonuclease to blood samples results in degradation of B19V DNA remnants but leaves viral particles intact, which enables differentiation between active and past infection. In this study, the susceptibility to degradation by endonuclease of B19V DNA in blood was compared between DCM patients and a control group of recent B19V infections. Methods and results Twenty blood samples from 20 adult patients with DCM, who previously tested positive for B19V DNA in EMB and/or blood, were tested with B19V PCR before and after application of endonuclease to the samples. Six blood samples tested positive for B19V DNA with a mean viral load of 2.3 × 104 IU/mL. In five samples, B19V DNA became undetectable after endonuclease (100% load reduction); in one sample DNA load showed a 23% log load reduction (viral load before endonuclease: 9.1 × 104 IU/mL; after: 6.5 × 103 IU/mL). Presence of cardiac inflammation did not differ between patients with B19V DNAemia (1/4) and patients without B19V DNAemia (6/14) (P value = 1.0). In all 18 control samples of proven recent B19V infections, DNA remained detectable after application of endonuclease, showing only a mean log load reduction of 2.3% (mean viral load before endonuclease: 8.1 × 1011 IU/mL; after: 8.0 × 1011 IU/mL). Load reduction differed significantly between the DCM group and the control group; indicating the presence of intact viral particles in the control group with proven active infection and the presence of DNA remnants in the DCM group (P value = 0.000). Conclusion During recent B19V infection, viral DNA levels in blood were unaffected by endonuclease. In contrast, B19V DNA in blood in patients with DCM became undetectable or strongly reduced after application of endonuclease. Circulating viral DNA in this subset of patients with presumed parvovirus‐associated DCM does not consist of intact viral particles. Viral replicative activity cannot be assumed from demonstrating B19V DNA in cardiac tissue or in blood in DCM patients.
Collapse
Affiliation(s)
- Anne Russcher
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, E4P 9600, Leiden, 2300 RC, The Netherlands
| | - Job Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marijke W A Molenaar-de Backer
- Department of Blood-borne Infections, Donor Medicine Research, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, E4P 9600, Leiden, 2300 RC, The Netherlands
| | - Hans L Zaaijer
- Department of Blood-borne Infections, Donor Medicine Research, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
24
|
Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, Krga I, Glibetić M, Pinton P, Giorgi C, Matter ML. Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Front Cell Dev Biol 2021; 8:624216. [PMID: 33511136 PMCID: PMC7835522 DOI: 10.3389/fcell.2020.624216] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiac tissue requires a persistent production of energy in order to exert its pumping function. Therefore, the maintenance of this function relies on mitochondria that represent the “powerhouse” of all cardiac activities. Mitochondria being one of the key players for the proper functioning of the mammalian heart suggests continual regulation and organization. Mitochondria adapt to cellular energy demands via fusion-fission events and, as a proof-reading ability, undergo mitophagy in cases of abnormalities. Ca2+ fluxes play a pivotal role in regulating all mitochondrial functions, including ATP production, metabolism, oxidative stress balance and apoptosis. Communication between mitochondria and others organelles, especially the sarcoplasmic reticulum is required for optimal function. Consequently, abnormal mitochondrial activity results in decreased energy production leading to pathological conditions. In this review, we will describe how mitochondrial function or dysfunction impacts cardiac activities and the development of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Daniela Ramaccini
- University of Hawaii Cancer Center, Honolulu, HI, United States.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | | - Femke J Aan
- University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Lorenzo Modesti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Irena Krga
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Marija Glibetić
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | |
Collapse
|
25
|
Hazebroek MR, Henkens MTHM, Raafs AG, Verdonschot JAJ, Merken JJ, Dennert RM, Eurlings C, Abdul Hamid MA, Wolffs PFG, Winkens B, Brunner-La Rocca HP, Knackstedt C, van Paassen P, van Empel VPM, Heymans SRB. Intravenous immunoglobulin therapy in adult patients with idiopathic chronic cardiomyopathy and cardiac parvovirus B19 persistence: a prospective, double-blind, randomized, placebo-controlled clinical trial. Eur J Heart Fail 2021; 23:302-309. [PMID: 33347677 PMCID: PMC8048650 DOI: 10.1002/ejhf.2082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
AIMS Previous uncontrolled studies suggested a possible benefit of intravenous immunoglobulin (IVIg) in parvovirus B19 (B19V)-related dilated cardiomyopathy (DCM). This randomized, double-blind, placebo-controlled, single-centre trial investigated the benefits of IVIg beyond conventional therapy in idiopathic chronic DCM patients with B19V persistence. METHODS AND RESULTS Fifty patients (39 men; mean age 54 ± 11 years) with idiopathic chronic (>6 months) DCM on optimal medical therapy, left ventricular ejection fraction (LVEF) <45%, and endomyocardial biopsy (EMB) B19V load of >200 copies/µg DNA were blindly randomized to either IVIg (n = 26, 2 g/kg over 4 days) or placebo (n = 24). The primary outcome was change in LVEF at 6 months after randomization. Secondary outcomes were change in functional capacity assessed by 6-min walk test (6MWT), quality of life [Minnesota Living with Heart Failure Questionnaire (MLHFQ)], left ventricular end-diastolic volume (LVEDV), and EMB B19V load at 6 months after randomization. LVEF significantly improved in both IVIg and placebo groups (absolute mean increase 5 ± 9%, P = 0.011 and 6 ± 10%, P = 0.008, respectively), without a significant difference between groups (P = 0.609). Additionally, change in 6MWT [median (interquartile range) IVIg 36 (13;82) vs. placebo 32 (5;80) m; P = 0.573], MLHFQ [IVIg 0 (-7;5) vs. placebo -2 (-6;6), P = 0.904] and LVEDV (IVIg -16 ± 49 mL/m2 vs. placebo -29 ± 40 mL/m2 ; P = 0.334) did not significantly differ between groups. Moreover, despite increased circulating B19V antibodies upon IVIg administration, reduction in cardiac B19V did not significantly differ between groups. CONCLUSION Intravenous immunoglobulin therapy does not significantly improve cardiac systolic function or functional capacity beyond standard medical therapy in patients with idiopathic chronic DCM and cardiac B19V persistence. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID NCT00892112.
Collapse
Affiliation(s)
- Mark R Hazebroek
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michiel T H M Henkens
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anne G Raafs
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jort J Merken
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert M Dennert
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Casper Eurlings
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Myrurgia A Abdul Hamid
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Petra F G Wolffs
- Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christian Knackstedt
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiovascular Research, University of Leuven, Leuven, Belgium.,Netherlands Heart Institute (Nl-HI), Utrecht, The Netherlands
| |
Collapse
|
26
|
Chen Y, Wu X, Hu D, Wang W. Importance of Mitochondrial-Related Genes in Dilated Cardiomyopathy Based on Bioinformatics Analysis. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2020; 5. [DOI: 10.15212/cvia.2019.0588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We designed this study to identify potential key protein interaction networks, genes, and correlated pathways in dilated cardiomyopathy (DCM) via bioinformatics methods. We selected the GSE3586 microarray dataset, consisting of 15 dilated cardiomyopathic heart biopsy samples and 13 nonfailing heart biopsy samples. Initially, the GSE3586 dataset was downloaded and was analyzed with the limma package to identify differentially expressed genes (DEGs). A total of 172 DEGs consisting of 162 upregulated genes and ten downregulated genes in DCM were selected by the criterion of adjusted Pvalues less than 0.01 and the log2-fold change of 0.6 or greater. Gene Ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to view the biological processes, cellular components, molecular function, and KEGG pathways of the DEGs. Next, protein-protein interactions were constructed, and the hub protein modules were identified. Then we selected the key genes DLD, UQCRC2, DLAT, SUCLA2, ATP5A1, PRDX3, FH, SDHD, and NDUFV1, which are involved in a wide range of biological activities, such as the citrate cycle, oxidation-reduction processes and cellular respiration, and energy derivation by oxidation of organic compounds in mitochondria. Finally, we found that currently there are no related gene-targeting drugs after exploring the predicted interactions between key genes and drugs, and transcription factors. In conclusion, our study provides greater understanding of the pathogenesis and underlying molecular mechanisms in DCM. This contributes to the exploration of potential gene therapy targets.
Collapse
Affiliation(s)
- Yukuan Chen
- Shantou University Medical College, Shantou, 515041 Guangdong, People’s Republic of China
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, People’s Republic of China
| | - Xiaohui Wu
- Shantou University Medical College, Shantou, 515041 Guangdong, People’s Republic of China
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, People’s Republic of China
| | - Danchun Hu
- Shantou University Medical College, Shantou, 515041 Guangdong, People’s Republic of China
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, People’s Republic of China
| | - Wei Wang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, People’s Republic of China
| |
Collapse
|
27
|
Ahmed A, Ahmed S, Arvidsson M, Bouzina H, Lundgren J, Rådegran G. Elevated plasma sRAGE and IGFBP7 in heart failure decrease after heart transplantation in association with haemodynamics. ESC Heart Fail 2020; 7:2340-2353. [PMID: 32548968 PMCID: PMC7524060 DOI: 10.1002/ehf2.12772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
AIMS Metabolic derangement is implicated in the pathophysiology of heart failure (HF) and pulmonary hypertension (PH). We aimed to identify the dynamics of metabolic plasma proteins linked to end-stage HF and associated PH in relation to haemodynamics, before and after heart transplantation (HT). METHODS AND RESULTS Twenty-one metabolic plasma proteins were analysed with proximity extension assay in 20 controls and 26 patients before and 1 year after HT. Right heart catheterizations were performed in the HF patients pre-operatively and 1 year after HT. Plasma levels of soluble receptor for advanced glycation end products (sRAGE) and insulin-like growth factor-binding protein 7 (IGFBP7) were higher in HF patients compared with controls (P < 0.0001) and decreased after HT (P < 0.0001), matching controls' levels. The decrease in sRAGE after HT correlated with improved mean pulmonary arterial pressure (rs = 0.7; P < 0.0001), pulmonary arterial wedge pressure (rs = 0.73; P < 0.0001), pulmonary vascular resistance (rs = 0.65; P = 0.00062), and pulmonary arterial compliance (rs = -0.52; P = 0.0074). The change in plasma IGFBP7 after HT correlated with improved mean right atrial pressure (rs = 0.71; P = 0.00011) and N-terminal pro-brain natriuretic peptide (rs = 0.71; P < 0.0001). CONCLUSIONS Our results indicate that plasma sRAGE may reflect passive pulmonary vascular congestion and the 'mechanical' state of the pulmonary vasculature in HF patients with or without related PH. Furthermore, sRAGE and IGFBP7 may provide additional insight into the pathophysiological mechanisms in HF and associated PH. Their potential clinical and therapeutic relevance in HF and associated PH need further investigation.
Collapse
Affiliation(s)
- Abdulla Ahmed
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Salaheldin Ahmed
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Mattias Arvidsson
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Habib Bouzina
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Jakob Lundgren
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Göran Rådegran
- Department of Clinical Sciences, Lund, The Section for CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| |
Collapse
|
28
|
Verdonschot JAJ, Merken JJ, van Stipdonk AMW, Pliger P, Derks KWJ, Wang P, Henkens MTHM, van Paassen P, Abdul Hamid MA, van Empel VPM, Knackstedt C, Luermans JGLM, Crijns HJGM, Brunner-La Rocca HP, Brunner HG, Poelzl G, Vernooy K, Heymans SRB, Hazebroek MR. Cardiac Inflammation Impedes Response to Cardiac Resynchronization Therapy in Patients With Idiopathic Dilated Cardiomyopathy. Circ Arrhythm Electrophysiol 2020; 13:e008727. [PMID: 32997547 DOI: 10.1161/circep.120.008727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) is an established therapy in patients with dilated cardiomyopathy (DCM) and conduction disorders. Still, one-third of the patients with DCM do not respond to CRT. This study aims to depict the underlying cardiac pathophysiological processes of nonresponse to CRT in patients with DCM using endomyocardial biopsies. METHODS Within the Maastricht and Innsbruck registries of patients with DCM, 99 patients underwent endomyocardial biopsies before CRT implantation, with histological quantification of fibrosis and inflammation, where inflammation was defined as >14 infiltrating cells/mm2. Echocardiographic left ventricular end-systolic volume reduction ≥15% after 6 months was defined as response to CRT. RNA was isolated from cardiac biopsies of a representative subset of responders and nonresponders. RESULTS Sixty-seven patients responded (68%), whereas 32 (32%) did not respond to CRT. Cardiac inflammation before implantation was negatively associated with response to CRT (25% of responders, 47% of nonresponders; odds ratio 0.3 [0.12-0.76]; P=0.01). Endomyocardial biopsies fibrosis did not relate to CRT response. Cardiac inflammation improved the robustness of prediction beyond well-known clinical predictors of CRT response (likelihood ratio test P<0.001). Cardiac transcriptomic profiling of endomyocardial biopsies reveals a strong proinflammatory and profibrotic signature in the hearts of nonresponders compared with responders. In particular, COL1A1, COL1A2, COL3A1, COL5A1, POSTN, CTGF, LOX, TGFβ1, PDGFRA, TNC, BGN, and TSP2 were significantly higher expressed in the hearts of nonresponders. CONCLUSIONS Cardiac inflammation along with a transcriptomic profile of high expression of combined proinflammatory and profibrotic genes are associated with a poor response to CRT in patients with DCM.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands.,Clinical Genetics (J.A.J.V., K.W.J.D., P.W., H.G.B.), Maastricht University Medical Center, the Netherlands
| | - Jort J Merken
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Antonius M W van Stipdonk
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Philipp Pliger
- Clinical Division of Cardiology and Angiology, Innsbruck Medical University, Austria (P.P., G.P.)
| | - Kasper W J Derks
- Clinical Genetics (J.A.J.V., K.W.J.D., P.W., H.G.B.), Maastricht University Medical Center, the Netherlands
| | - Ping Wang
- Clinical Genetics (J.A.J.V., K.W.J.D., P.W., H.G.B.), Maastricht University Medical Center, the Netherlands
| | - Michiel T H M Henkens
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Pieter van Paassen
- Immunology (P.v.P.), Maastricht University Medical Center, the Netherlands
| | | | - Vanessa P M van Empel
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Christian Knackstedt
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Justin G L M Luermans
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Harry J G M Crijns
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Hans-Peter Brunner-La Rocca
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| | - Han G Brunner
- Clinical Genetics (J.A.J.V., K.W.J.D., P.W., H.G.B.), Maastricht University Medical Center, the Netherlands.,GROW Institute for Developmental Biology and Cancer (H.G.B.), Maastricht University Medical Center, the Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour (H.G.B.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerhard Poelzl
- Clinical Division of Cardiology and Angiology, Innsbruck Medical University, Austria (P.P., G.P.)
| | - Kevin Vernooy
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands.,Department of Cardiology (K.V.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephane R B Heymans
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium (S.R.B.H.).,The Netherlands Heart Institute, Nl-HI, Utrecht (S.R.B.H.)
| | - Mark R Hazebroek
- Cardiovascular Research Institute (CARIM), Departments of Cardiology (J.A.J.V., J.J.M., A.M.W.v.S., M.T.H.M.H., V.P.M.v.E., C.K., J.G.L.M.L., H.J.G.M.C., H.-P.B.-L.R., K.V., S.R.B.H., M.R.H.), Maastricht University Medical Center, the Netherlands
| |
Collapse
|
29
|
Lasrado N, Reddy J. An overview of the immune mechanisms of viral myocarditis. Rev Med Virol 2020; 30:1-14. [PMID: 32720461 DOI: 10.1002/rmv.2131] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Viral myocarditis has been identified as a major cause of dilated cardiomyopathy (DCM) that can lead to heart failure. Historically, Coxsackieviruses and adenoviruses have been commonly suspected in myocarditis/DCM patients in North America and Europe. However, this notion is changing as other viruses such as Parvovirus B19 and human herpesvirus-6 are increasingly reported as causes of myocarditis in the United States, with the most recent example being the severe acute respiratory syndrome coronavirus 2, causing the Coronavirus Disease-19. The mouse model of Coxsackievirus B3 (CVB3)-induced myocarditis, which may involve mediation of autoimmunity, is routinely used in the study of immune pathogenesis of viral infections as triggers of DCM. In this review, we discuss the immune mechanisms underlying the development of viral myocarditis with an emphasis on autoimmunity in the development of post-infectious myocarditis induced with CVB3.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
30
|
Merlo M, Cannatà A, Pio Loco C, Stolfo D, Barbati G, Artico J, Gentile P, De Paris V, Ramani F, Zecchin M, Gigli M, Pinamonti B, Korcova R, Di Lenarda A, Giacca M, Mestroni L, Camici PG, Sinagra G. Contemporary survival trends and aetiological characterization in non‐ischaemic dilated cardiomyopathy. Eur J Heart Fail 2020; 22:1111-1121. [DOI: 10.1002/ejhf.1914] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/23/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Marco Merlo
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Antonio Cannatà
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
- Department of Cardiovascular Sciences, Faculty of Life Sciences & Medicine King's College London London UK
| | - Carola Pio Loco
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Davide Stolfo
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | | | - Jessica Artico
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Piero Gentile
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Valerio De Paris
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Federica Ramani
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Massimo Zecchin
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Marta Gigli
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Bruno Pinamonti
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Renata Korcova
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| | - Andrea Di Lenarda
- Cardiovascular Centre Azienda Sanitaria Universitaria Integrata of Trieste (ASUITS), University of Trieste Trieste Italy
| | - Mauro Giacca
- Department of Cardiovascular Sciences, Faculty of Life Sciences & Medicine King's College London London UK
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Paolo G. Camici
- Vita Salute University and San Raffaele Hospital Milan Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), University of Trieste Trieste Italy
| |
Collapse
|
31
|
Li M, Parker BL, Pearson E, Hunter B, Cao J, Koay YC, Guneratne O, James DE, Yang J, Lal S, O'Sullivan JF. Core functional nodes and sex-specific pathways in human ischaemic and dilated cardiomyopathy. Nat Commun 2020; 11:2843. [PMID: 32487995 PMCID: PMC7266817 DOI: 10.1038/s41467-020-16584-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Poor access to human left ventricular myocardium is a significant limitation in the study of heart failure (HF). Here, we utilise a carefully procured large human heart biobank of cryopreserved left ventricular myocardium to obtain direct molecular insights into ischaemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM), the most common causes of HF worldwide. We perform unbiased, deep proteomic and metabolomic analyses of 51 left ventricular (LV) samples from 44 cryopreserved human ICM and DCM hearts, compared to age-, gender-, and BMI-matched, histopathologically normal, donor controls. We report a dramatic reduction in serum amyloid A1 protein in ICM hearts, perturbed thyroid hormone signalling pathways and significant reductions in oxidoreductase co-factor riboflavin-5-monophosphate and glycolytic intermediate fructose-6-phosphate in both; unveil gender-specific changes in HF, including nitric oxide-related arginine metabolism, mitochondrial substrates, and X chromosome-linked protein and metabolite changes; and provide an interactive online application as a publicly-available resource.
Collapse
Affiliation(s)
- Mengbo Li
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Evangeline Pearson
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jacob Cao
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Oneka Guneratne
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Jean Yang
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia. .,Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia. .,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia. .,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia. .,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia. .,Central Clinical School, Sydney Medical School, Faculty of Medicine, The University of Sydney, Sydney, NSW, Australia. .,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
32
|
Abstract
Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and one of the most common causes of heart failure. It is characterized by left or biventricular dilation and a reduced systolic function. The causes are manifold and range from myocarditis to alcohol and other toxins, to rheumatological, endocrinological, and metabolic diseases. Peripartum cardiomyopathy is a special form that occurs at the end of or shortly after pregnancy. Genetic mutations can be detected in approximately 30-50% of DCM patients. Owing to the growing possibilities of genetic diagnostics, increasingly more triggering variants and hereditary mechanisms emerge. This is particularly important with regard to risk stratification for patients with variants with an increased risk of arrhythmias. Patient prognosis is determined by the occurrence of heart failure and arrhythmias. In addition to the treatment of the underlying disease or the elimination of triggering harmful toxins, therapy consists in guideline-directed heart failure treatment including drug and device therapy.
Collapse
Affiliation(s)
- A Hänselmann
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - C Veltmann
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - J Bauersachs
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D Berliner
- Dept. of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
33
|
Gao K, Song YP, Song A, Chen H, Zhao LT, Zhang HW. Therapeutic efficacy of shenmai injection as an adjuvant treatment in dilated cardiomyopathy: A protocol for systematic review. Medicine (Baltimore) 2020; 99:e19158. [PMID: 32080094 PMCID: PMC7034733 DOI: 10.1097/md.0000000000019158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Shenmai injection (SMI) is a Traditional Chinese Medicine patent prescription consisting of extractions from ophiopogonis radix and ginseng radix rubra. Clinical studies showed that SMI combined with conventional medicine treatment (CMT) can enhance the therapeutic efficacy for dilated cardiomyopathy (DCM). However, there is still a lack of comprehensive and systematic evidence, which urgently requires us to verify its therapeutic efficacy. Hence, we provide a protocol for systematic review and meta-analysis. METHODS The systematic search on the MEDLINE/PubMed, China National Knowledge Infrastructure (CNKI), Wanfang database, VIP database, the Cochrane Library, Embase and Chinese Biomedical Database (CBM) in Chinese and English language with dates ranging from the earliest record to August 8, 2019. Next, the quality of each trial was assessed according to the criteria of the Cochrane Handbook for Systematic Reviews of Interventions. Then, the outcome data were recorded and pooled by RevMan 5.3 software. RESULTS The systematic review and meta-analysis aims to review and pool current clinical outcomes of SMI for the adjuvant treatment of DCM. CONCLUSION This study will provide a high-quality evidence of SMI for the adjuvant treatment on DCM patients. PROSPERO REGISTRATION NUMBER CRD42019146369.
Collapse
Affiliation(s)
- Kai Gao
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang
| | - Yan-Ping Song
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Anna Song
- Michigan State University, East Lansing, Michigan
| | - Hao Chen
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang
| | - Lin-Tao Zhao
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Hai-Wang Zhang
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang
| |
Collapse
|
34
|
Verdonschot JAJ, Robinson EL, James KN, Mohamed MW, Claes GRF, Casas K, Vanhoutte EK, Hazebroek MR, Kringlen G, Pasierb MM, van den Wijngaard A, Glatz JFC, Heymans SRB, Krapels IPC, Nahas S, Brunner HG, Szklarczyk R. Mutations in PDLIM5 are rare in dilated cardiomyopathy but are emerging as potential disease modifiers. Mol Genet Genomic Med 2019; 8:e1049. [PMID: 31880413 PMCID: PMC7005607 DOI: 10.1002/mgg3.1049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A causal genetic mutation is found in 40% of families with dilated cardiomyopathy (DCM), leaving a large percentage of families genetically unsolved. This prevents adequate counseling and clear recommendations in these families. We aim to identify novel genes or modifiers associated with DCM. METHODS We performed computational ranking of human genes based on coexpression with a predefined set of genes known to be associated with DCM, which allowed us to prioritize gene candidates for their likelihood of being involved in DCM. Top candidates will be checked for variants in the available whole-exome sequencing data of 142 DCM patients. RNA was isolated from cardiac biopsies to investigate gene expression. RESULTS PDLIM5 was classified as the top candidate. An interesting heterozygous variant (189_190delinsGG) was found in a DCM patient with a known pathogenic truncating TTN-variant. The PDLIM5 loss-of-function (LoF) variant affected all cardiac-specific isoforms of PDLIM5 and no LoF variants were detected in the same region in a control cohort of 26,000 individuals. RNA expression of PDLIM5 and its direct interactors (MYOT, LDB3, and MYOZ2) was increased in cardiac tissue of this patient, indicating a possible compensatory mechanism. The PDLIM5 variant cosegregated with the TTN-variant and the phenotype, leading to a high disease penetrance in this family. A second patient was an infant with a homozygous 10 kb-deletion of exon 2 in PDLIM5 resulting in early-onset cardiac disease, showing the importance of PDLIM5 in cardiac function. CONCLUSIONS Heterozygous PDLIM5 variants are rare and therefore will not have a major contribution in DCM. Although they likely play a role in disease development as this gene plays a major role in contracting cardiomyocytes and homozygous variants lead to early-onset cardiac disease. Other environmental and/or genetic factors are probably necessary to unveil the cardiac phenotype in PDLIM5 mutation carriers.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Emma L Robinson
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kiely N James
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Mohamed W Mohamed
- Sanford Children's Hospital, Fargo, ND, USA.,North Dakota University, Fargo, ND, USA
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kari Casas
- Sanford Children's Hospital, Fargo, ND, USA.,North Dakota University, Fargo, ND, USA
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mark R Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Cardiovascular Research, University of Leuven, Leuven, Belgium.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Shareef Nahas
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Human Genetics, Donders Center for Neuroscience, Radboudumc, Nijmegen, The Netherlands.,GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Radek Szklarczyk
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|