1
|
Ghazal R, Wang M, Liu D, Tschumperlin DJ, Pereira NL. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ Res 2025; 136:773-802. [PMID: 40146800 PMCID: PMC11949229 DOI: 10.1161/circresaha.124.325402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cardiac fibrosis, a hallmark of heart failure and various cardiomyopathies, represents a complex pathological process that has long challenged therapeutic intervention. High-throughput omics technologies have begun revolutionizing our understanding of the molecular mechanisms driving cardiac fibrosis and are providing unprecedented insights into its heterogeneity and progression. This review provides a comprehensive analysis of how techniques-encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics-are providing insight into our understanding of cardiac fibrosis. Genomic studies have identified novel genetic variants and regulatory networks associated with fibrosis susceptibility and progression, and single-cell transcriptomics has unveiled distinct cardiac fibroblast subpopulations with unique molecular signatures. Epigenomic profiling has revealed dynamic chromatin modifications controlling fibroblast activation states, and proteomic analyses have identified novel biomarkers and potential therapeutic targets. Metabolomic studies have uncovered important alterations in cardiac energetics and substrate utilization during fibrotic remodeling. The integration of these multi-omic data sets has led to the identification of previously unrecognized pathogenic mechanisms and potential therapeutic targets, including cell-type-specific interventions and metabolic modulators. We discuss how these advances are driving the development of precision medicine approaches for cardiac fibrosis while highlighting current challenges and future directions in translating multi-omic insights into effective therapeutic strategies. This review provides a systems-level perspective on cardiac fibrosis that may inform the development of more effective, personalized therapeutic approaches for heart failure and related cardiovascular diseases.
Collapse
Affiliation(s)
- Rachad Ghazal
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
| | - Min Wang
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | - Duan Liu
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | | | - Naveen L. Pereira
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
Chen M, Huang Z, Miao G, Ren J, Liu J, Roman MJ, Devereux RB, Fabsitz RR, Zhang Y, Umans JG, Cole SA, Kelly TN, Fiehn O, Zhao J. Longitudinal lipidomic profiles of left ventricular mass and left ventricular hypertrophy in American Indians. JCI Insight 2024; 9:e181172. [PMID: 39405119 PMCID: PMC11601894 DOI: 10.1172/jci.insight.181172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUNDLeft ventricular hypertrophy (LVH) and dyslipidemia are strong, independent predictors for cardiovascular disease, but their relationship is less well studied. A longitudinal lipidomic profiling of left ventricular mass (LVM) and LVH is still lacking.METHODSUsing liquid chromatography-mass spectrometry (LC-MS), we repeatedly measured 1,542 lipids from 1,755 unique American Indians attending 2 exams (mean, 5 years apart). Cross-sectional associations of individual lipid species with LVM index (LVMI) were examined by generalized estimating equation (GEE), followed by replication in an independent biracial cohort (65% White, 35% Black). Baseline plasma lipids associated with LVH risk beyond traditional risk factors were identified by logistic GEE model in American Indians. Longitudinal associations between changes in lipids and changes in LVMI were examined by GEE, adjusting for baseline lipids, baseline LVMI, and covariates.RESULTSMultiple lipid species were significantly associated with LVMI or the risk of LVH in American Indians. Some lipids were confirmed in Black and White individuals. Moreover, some LVH-related lipids were inversely associated with risk of coronary heart disease (CHD). Longitudinal changes in several lipid species were significantly associated with changes in LVMI.CONCLUSIONAltered fasting plasma lipidome and its longitudinal change over time were significantly associated with LVMI and risk for LVH in American Indians. Our results offer insight into the role of individual lipid species in LV remodeling and risk of LVH, independent of known risk factors.FUNDINGThis study was supported by the NIH grant (R01DK107532). The Strong Heart Study has been funded in whole or in part with federal funds from the National Heart, Lung, and Blood Institute, NIH, Department of Health and Human Services, under contract nos. 75N92019D00027, 75N92019D00028, 75N92019D00029, and 75N92019D00030.
Collapse
Affiliation(s)
- Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jin Ren
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jinling Liu
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mary J. Roman
- Division of Cardiology, Weill Cornell Medical College, New York, New York, USA
| | - Richard B. Devereux
- Division of Cardiology, Weill Cornell Medical College, New York, New York, USA
| | - Richard R. Fabsitz
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, Maryland, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Shelley A. Cole
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tanika N. Kelly
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UCD, Davis, California, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Maushagen J, Addin NS, Schuppert C, Ward-Caviness CK, Nattenmüller J, Adamski J, Peters A, Bamberg F, Schlett CL, Wang-Sattler R, Rospleszcz S. Serum metabolite signatures of cardiac function and morphology in individuals from a population-based cohort. Biomark Res 2024; 12:31. [PMID: 38444025 PMCID: PMC10916302 DOI: 10.1186/s40364-024-00578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Changes in serum metabolites in individuals with altered cardiac function and morphology may exhibit information about cardiovascular disease (CVD) pathway dysregulations and potential CVD risk factors. We aimed to explore associations of cardiac function and morphology, evaluated using magnetic resonance imaging (MRI) with a large panel of serum metabolites. METHODS Cross-sectional data from CVD-free individuals from the population-based KORA cohort were analyzed. Associations between 3T-MRI-derived left ventricular (LV) function and morphology parameters (e.g., volumes, filling rates, wall thickness) and markers of carotid plaque with metabolite profile clusters and single metabolites as outcomes were assessed by adjusted multinomial logistic regression and linear regression models. RESULTS In 360 individuals (mean age 56.3 years; 41.9% female), 146 serum metabolites clustered into three distinct profiles that reflected high-, intermediate- and low-CVD risk. Higher stroke volume (relative risk ratio (RRR): 0.53, 95%-CI [0.37; 0.76], p-value < 0.001) and early diastolic filling rate (RRR: 0.51, 95%-CI [0.37; 0.71], p-value < 0.001) were most strongly protectively associated against the high-risk profile compared to the low-risk profile after adjusting for traditional CVD risk factors. Moreover, imaging markers were associated with 10 metabolites in linear regression. Notably, negative associations of stroke volume and early diastolic filling rate with acylcarnitine C5, and positive association of function parameters with lysophosphatidylcholines, diacylphosphatidylcholines, and acylalkylphosphatidylcholines were observed. Furthermore, there was a negative association of LV wall thickness with alanine, creatinine, and symmetric dimethylarginine. We found no significant associations with carotid plaque. CONCLUSIONS Serum metabolite signatures are associated with cardiac function and morphology even in individuals without a clinical indication of CVD.
Collapse
Affiliation(s)
- Juliane Maushagen
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Medical Faculty, Ludwig- Maximilians-Universität (LMU), München, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Nuha Shugaa Addin
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Medical Faculty, Ludwig- Maximilians-Universität (LMU), München, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Christopher Schuppert
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, U.S. EPA, Chapel Hill, NC, USA
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Medical Faculty, Ludwig- Maximilians-Universität (LMU), München, Germany
- German Center for Diabetes Research, DZD, Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Rui Wang-Sattler
- German Center for Diabetes Research, DZD, Neuherberg, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany.
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Medical Faculty, Ludwig- Maximilians-Universität (LMU), München, Germany.
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.
- German Center for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
4
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
5
|
Zhang M, Brady TM, Buckley JP, Appel LJ, Hong X, Wang G, Liang L, Wang X, Mueller NT. Metabolome-Wide Association Study of Cord Blood Metabolites With Blood Pressure in Childhood and Adolescence. Hypertension 2022; 79:2806-2820. [PMID: 36111548 PMCID: PMC9649875 DOI: 10.1161/hypertensionaha.122.20139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/28/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND No studies have examined whether the cord blood metabolome-a reflection of in utero metabolism-influences blood pressure (BP) in children. OBJECTIVES To examine prospective associations of cord blood metabolites with systolic BP (SBP), diastolic BP (DBP), and risk of elevated BP in childhood and adolescence. METHODS In the Boston Birth Cohort, we measured metabolites in cord blood plasma, and SBP and DBP at clinic visits between 3 and 18 years. We examined associations of cord metabolites with SBP and DBP percentiles using linear mixed models and with elevated BP using mixed-effects Poisson regression. RESULTS Our study included 902 mother-child dyads (60% Black, 23% Hispanic, 45% female). Children were followed for a median of 9.2 (interquartile range, 6.7-11.7) years, and the median number of BP observations per child was 7 (interquartile range, 4-11). After false discovery rate correction, 3 metabolites were associated with SBP, 96 with DBP, and 24 with elevated BP; 2 metabolites (1-methylnicotinamide, dimethylguanidino valeric acid) were associated with all 3 outcomes, and 21 metabolites were associated with both DBP and elevated BP. After multivariable adjustment, 48 metabolites remained significantly associated with DBP. Metabolites that showed the strongest associations with SBP, DBP, and elevated BP included nucleotides (eg, xanthosine, hypoxanthine, xanthine) and acylcarnitines (eg, C6 and C7 carnitines), which represent fatty acid oxidation and purine metabolism pathways. CONCLUSIONS In our urban and predominantly racial/ethnic minority cohort, we provide evidence that metabolomic alterations in utero, in particular, acylcarnitine- and purine-metabolism metabolites, may be involved in the early life origins of hypertension.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
| | - Tammy M Brady
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jessie P Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Lawrence J Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Division of General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Johns Hopkins University, Baltimore, MD
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Johns Hopkins University, Baltimore, MD
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xiaobin Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Center on the Early Life Origins of Disease, Johns Hopkins University, Baltimore, MD
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
6
|
Human Immunodeficiency Virus Infection-Associated Cardiomyopathy and Heart Failure. J Pers Med 2022; 12:jpm12111760. [PMID: 36573732 PMCID: PMC9695202 DOI: 10.3390/jpm12111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
The landscape of human immunodeficiency virus (HIV) epidemiology and treatment is ever-changing, with the widespread and evolving use of antiretroviral therapy (ART). With timely ART, people living with HIV (PLWH) are nearing the life expectancies and the functionality of the general population; nevertheless, the effects of HIV and ART on cardiovascular health remain under investigation. The pathophysiology of HIV-related cardiomyopathy and heart failure (HF) have historically been attributed to systemic inflammation and changes in cardiometabolic function and cardiovascular architecture. Importantly, newer evidence suggests that ART also plays a role in modulating the process of HIV-related cardiomyopathy and HF. In the short term, newer highly active ART (HAART) seems to have cardioprotective effects; however, emerging data on the long-term cardiovascular outcomes of certain HAART medications, i.e., protease inhibitors, raise concerns about the potential adverse effects of these drugs in the clinical course of HIV-related HF. As such, the traditional phenotypes of dilated cardiomyopathy and left ventricular systolic failure that are associated with HIV-related heart disease are incrementally being replaced with increasing rates of diastolic dysfunction and ischemic heart disease. Moreover, recent studies have found important links between HIV-related HF and other clinical and biochemical entities, including depression, which further complicate cardiac care for PLWH. Considering these trends in the era of ART, the traditional paradigms of HIV-related cardiomyopathy and HF are being called into question, as is the therapeutic role of interventions such as ventricular assist devices and heart transplantation. In all, the mechanisms of HIV-related myocardial damage and the optimal approaches to the prevention and the treatment of cardiomyopathy and HF in PLWH remain under investigation.
Collapse
|
7
|
Zhang M, Buckley JP, Liang L, Hong X, Wang G, Wang MC, Wills-Karp M, Wang X, Mueller NT. A metabolome-wide association study of in utero metal and trace element exposures with cord blood metabolome profile: Findings from the Boston Birth Cohort. ENVIRONMENT INTERNATIONAL 2022; 158:106976. [PMID: 34991243 PMCID: PMC8742133 DOI: 10.1016/j.envint.2021.106976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to metals lead (Pb), mercury (Hg), and cadmium (Cd) and trace elements selenium (Se) and manganese (Mn) has been linked to the developmental origins of cardiometabolic diseases, but the mechanisms are not well-understood. OBJECTIVE Conduct a metabolome-wide association study to understand how in utero exposure to Pb, Hg, Cd, Se, and Mn affects the metabolic programming of fetuses. METHODS We used data from the Boston Birth Cohort, which enrolled mother-child pairs from Boston, MA. We measured metals and trace elements in maternal red blood cells (RBCs) collected 24-72 h after delivery, and metabolites in cord blood collected at birth. We used multivariable linear regression to examine associations of metals and trace elements with metabolites and Bonferroni correction to account for multiple comparisons. We assessed non-linear associations of metals and trace elements with metabolites using restricted cubic spline plots. RESULTS This analysis included 670 mother-child pairs (57% non-Hispanic Black and 24% Hispanic). After Bonferroni correction, there were 25 cord metabolites associated with at least one of the metals or trace elements. Pb was negatively associated with the xenobiotic piperine, Cd was positively associated with xenobiotics cotinine and hydroxycotinine, and Hg was associated with 8 lipid metabolites (in both directions). Se and Mn shared associations with 6 metabolites (in both directions), which mostly included nucleotides and amino acids; Se was additionally associated with 7 metabolites (mostly amino acids, nucleotides, and carnitines) and Mn was additionally associated with C36:4 hydroxy phosphatidylcholine. Restricted cubic spline plots showed that most associations were linear. DISCUSSION Maternal RBC metal and trace element concentrations were associated in a dose-dependent fashion with cord blood metabolites. What remains to be determined is whether these metals- and trace elements-associated changes in cord metabolites can influence a child's risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Jessie P Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Comprehensive metabolomics profiling reveals common metabolic alterations underlying the four major non-communicable diseases in treated HIV infection. EBioMedicine 2021; 71:103548. [PMID: 34419928 PMCID: PMC8385138 DOI: 10.1016/j.ebiom.2021.103548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background HIV infection and normal aging share immune and inflammatory changes that result in premature aging and non-communicable diseases (NCDs), but the exact pathophysiology is not yet uncovered. We identified the common metabolic pathways underlying various NCDs in treated HIV infection. Methods We performed untargeted metabolomics including 87 HIV-negative (–) normal controls (NCs), 87 HIV-positive (+) NCs, and 148 HIV+ subjects with only one type of NCDs, namely, subclinical carotid atherosclerosis, neurocognitive impairment (NCI), liver fibrosis (LF) and renal impairment. All HIV+ subjects were virally suppressed. Results HIV+ patients presented widespread alterations in cellular metabolism compared to HIV– NCs. Glycerophospholipid (GPL) metabolism was the only one disturbed pathway presented in comparisons including HIV– NCs across age groups, HIV+ NCs across age groups, HIV+ NCs vs HIV– NCs and each of HIV+ NCDs vs HIV+ NCs. D-glutamine and D-glutamate metabolism and alanine-aspartate-glutamate metabolism were presented in comparisons between HIV+ NCs vs HIV– NCs, HIV+ LF or HIV+ NCI vs HIV+ NCs. Consistently, subsequent analysis identified a metabolomic fingerprint specific for HIV+ NCDs, containing 42 metabolites whose relative abundance showed either an upward (mainly GPL-derived lipid mediators) or a downward trend (mainly plasmalogen phosphatidylcholines, plasmalogen phosphatidylethanolamines, and glutamine) from HIV– NCs to HIV+ NCs and then HIV+ NCDs, reflecting a trend of increased oxidative stress. Interpretation GPL metabolism emerges as the common metabolic disturbance linking HIV to NCDs, followed by glutamine and glutamate metabolism. Together, our data point to the aforementioned metabolisms and related metabolites as potential key targets in studying pathophysiology of NCDs in HIV infection and developing therapeutic interventions. Funding China National Science and Technology Major Projects on Infectious Diseases, National Natural Science Foundation of China, Yi-wu Institute of Fudan University, and Shanghai Municipal Health and Family Planning Commission.
Collapse
|
9
|
Role of metabolomics in identifying cardiac hypertrophy: an overview of the past 20 years of development and future perspective. Expert Rev Mol Med 2021; 23:e8. [PMID: 34376261 DOI: 10.1017/erm.2021.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy (CH) is an augmentation of either the right ventricular or the left ventricular mass in order to compensate for the increase of work load on the heart. Metabolic abnormalities lead to histological changes of cardiac myocytes and turn into CH. The molecular mechanisms that lead to initiate CH have been of widespread concern, hence the development of the new field of research, metabolomics: one 'omics' approach that can reveal comprehensive information of the paradigm shift of metabolic pathways network in contrast to individual enzymatic reaction-based metabolites, have attempted and until now only 19 studies have been conducted using experimental animal and human specimens. Nuclear magnetic resonance spectroscopy and mass spectrometry-based metabolomics studies have found that CH is a metabolic disease and is mainly linked to the harmonic imbalance of glycolysis, citric acid cycle, amino acids and lipid metabolism. The current review will summarise the main outcomes of the above mentioned 19 studies that have expanded our understanding of the molecular mechanisms that may lead to CH and eventually to heart failure.
Collapse
|
10
|
Shitole SG, Lazar JM, Hanna DB, Kim RS, Anastos K, Garcia MJ, Tien PC, Lima JAC, Kaplan RC, Kizer JR. HIV, hepatitis C virus and risk of new-onset left ventricular dysfunction in women. AIDS 2021; 35:1647-1655. [PMID: 33859109 PMCID: PMC8286303 DOI: 10.1097/qad.0000000000002920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND HIV and HCV have each been linked with cardiac dysfunction. Studies of HIV have often lacked appropriate controls and primarily involved men, whereas data for HCV are sparse. METHODS We performed repeat echocardiography over a median interval of 12 years in participants from the Women's Interagency HIV Study in order to evaluate the relationships of HIV and HCV with incident left ventricular (LV) dysfunction (systolic or diastolic). RESULTS Of the 311 women included (age 39 ± 9), 70% were HIV-positive and 20% HCV-positive. Forty three participants (13.8%) developed LV dysfunction, of which 79.1% was diastolic. Compared with participants with neither infection, the group with HIV--HCV coinfection showed a significantly increased risk of incident LV dysfunction after adjustment for risk factors [RR = 2.96 (95% CI = 1.05-8.31)], but associations for the HCV monoinfected and HIV monoinfected groups were not statistically significant [RR = 2.54 (0.83-7.73) and RR = 1.66 (0.65-4.25), respectively]. Comparison of HCV-positive and HCV-negative women showed a significantly increased risk independent of covariates [RR = 1.96 (1.02-3.77)] but this was not the case for HIV-positive vs. HIV-negative women [RR = 1.43 (0.76-2.69)]. There was no evidence of HCV-by-HIV interaction. A more restrictive definition of LV diastolic dysfunction led to fewer incident cases, but a similar, though nonsignificant, risk estimate for HCV. CONCLUSION Among mostly middle-aged women, HCV but not HIV infection was associated with a pronounced risk of incident LV dysfunction. Although the influence of residual confounding cannot be excluded, these findings bolster the potential benefits that could be realized by adopting recent recommendations for expanding HCV screening and treatment.
Collapse
Affiliation(s)
- Sanyog G Shitole
- Cardiology Section, San Francisco VA Healthcare System and Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Jason M Lazar
- Division of Cardiology, Department of Medicine, State University of New York Health Science Center - Brooklyn, Brooklyn
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine
| | - Kathryn Anastos
- Division of General Internal Medicine, Department of Medicine
| | - Mario J Garcia
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine and Montefiore Health System, Bronx, NY
| | - Phyllis C Tien
- Section of Infectious Diseases, San Francisco VA Healthcare System, and Departments of Medicine and Clinical Pharmacy, University of California San Francisco, San Francisco, CA
| | - João A C Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jorge R Kizer
- Cardiology Section, San Francisco VA Healthcare System and Department of Medicine, University of California San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Bravo CA, Hua S, Deik A, Lazar J, Hanna DB, Scott J, Chai JC, Kaplan RC, Anastos K, Robles OA, Clish CB, Kizer JR, Qi Q. Metabolomic Profiling of Left Ventricular Diastolic Dysfunction in Women With or at Risk for HIV Infection: The Women's Interagency HIV Study. J Am Heart Assoc 2020; 9:e013522. [PMID: 32063116 PMCID: PMC7070185 DOI: 10.1161/jaha.119.013522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
Background People living with HIV have an increased risk of left ventricular diastolic dysfunction (LVDD) and heart failure. HIV-associated LVDD may reflect both cardiomyocyte and systemic metabolic derangements, but the underlying pathways remain unclear. Methods and Results To explore such pathways, we conducted a pilot study in the Bronx and Brooklyn sites of the WIHS (Women's Interagency HIV Study) who participated in concurrent, but separate, metabolomics and echocardiographic ancillary studies. Liquid chromatography tandem mass spectrometry-based metabolomic profiling was performed on plasma samples from 125 HIV-infected (43 with LVDD) and 35 HIV-uninfected women (9 with LVDD). Partial least squares discriminant analysis identified polar metabolites and lipids in the glycerophospholipid-metabolism and fatty-acid-oxidation pathways associated with LVDD. After multivariable adjustment, LVDD was significantly associated with higher concentrations of diacylglycerol 30:0 (odds ratio [OR], 1.60, 95% CI [1.01-2.55]); triacylglycerols 46:0 (OR 1.60 [1.04-2.48]), 48:0 (OR 1.63 [1.04-2.54]), 48:1 (OR 1.62 [1.01-2.60]), and 50:0 (OR 1.61 [1.02-2.53]); acylcarnitine C7 (OR 1.88 [1.21-2.92]), C9 (OR 1.99 [1.27-3.13]), and C16 (OR 1.80 [1.13-2.87]); as well as lower concentrations of phosphocholine (OR 0.59 [0.38-0.91]). There was no evidence of effect modification of these relationships by HIV status. Conclusions In this pilot study, women with or at risk of HIV with LVDD showed alterations in plasma metabolites in the glycerophospholipid-metabolism and fatty-acid-oxidation pathways. Although these findings require replication, they suggest that improved understanding of metabolic perturbations and their potential modification could offer new approaches to prevent cardiac dysfunction in this high-risk group.
Collapse
Affiliation(s)
- Claudio A. Bravo
- Division of CardiologyDepartment of MedicineColumbia University Medical CenterNew YorkNY
| | - Simin Hua
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
| | - Amy Deik
- Metabolomics PlatformBroad Institute of MIT and HarvardCambridgeMA
| | - Jason Lazar
- Division of Cardiovascular MedicineState University of New York Downstate Medical CenterBrooklynNY
| | - David B. Hanna
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
| | - Justin Scott
- Metabolomics PlatformBroad Institute of MIT and HarvardCambridgeMA
| | - Jin Choul Chai
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
| | - Robert C. Kaplan
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWA
| | - Kathryn Anastos
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
- Department of MedicineAlbert Einstein College of MedicineBronxNY
| | | | - Clary B. Clish
- Metabolomics PlatformBroad Institute of MIT and HarvardCambridgeMA
| | - Jorge R. Kizer
- Division of CardiologySan Francisco Veterans Affairs Health Care SystemUniversity of California San FranciscoSan FranciscoCA
| | - Qibin Qi
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNY
| |
Collapse
|