1
|
Pham SDT, Chatziantoniou C, van Vliet JT, van Tuijl RJ, Bulk M, Costagli M, de Rochefort L, Kraff O, Ladd ME, Pine K, Ronen I, Siero JCW, Tosetti M, Villringer A, Biessels GJ, Zwanenburg JJM. Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA). Neuroinformatics 2025; 23:11. [PMID: 39841291 PMCID: PMC11754306 DOI: 10.1007/s12021-024-09703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 01/23/2025]
Abstract
Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements. In this study we present the Small vessEL MArker (SELMA) analysis software as a novel, user-friendly, open-source tool for velocity analysis in cerebral perforating arteries. The implementation of the analysis algorithm in SELMA was validated against previously published data with a Bland-Altman analysis. The inter-rater reliability of SELMA was assessed on PC-MRI data of sixty participants from three MRI vendors between eight different sites. The mean velocity (vmean) and velocity PI of SELMA was very similar to the original results (vmean: mean difference ± standard deviation: 0.1 ± 0.8 cm/s; velocity PI: mean difference ± standard deviation: 0.01 ± 0.1) despite the slightly higher number of detected vessels in SELMA (Ndetected: mean difference ± standard deviation: 4 ± 9 vessels), which can be explained by the vessel selection paradigm of SELMA. The Dice Similarity Coefficient of drawn regions of interest between two operators using SELMA was 0.91 (range 0.69-0.95) and the overall intra-class coefficient for Ndetected, vmean, and velocity PI were 0.92, 0.84, and 0.85, respectively. The differences in the outcome measures was higher between sites than vendors, indicating the challenges in harmonizing the 2D PC-MRI sequence even across sites with the same vendor. We show that SELMA is a consistent and user-friendly analysis tool for small cerebral vessels.
Collapse
Affiliation(s)
- S D T Pham
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - C Chatziantoniou
- Division Imaging & Oncology, Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - J T van Vliet
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R J van Tuijl
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M Bulk
- Department of Radiology, University Medical Center Leiden, Leiden, The Netherlands
| | - M Costagli
- Department of Neuroscience, Genetics, Maternal and Child Health, University of Genoa, RehabilitationGenoa, Ophthalmology, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - L de Rochefort
- Aix Marseille University, CNRS, CRMBM, Marseille, France
| | - O Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - M E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - I Ronen
- Department of Radiology, University Medical Center Leiden, Leiden, The Netherlands
- Brighton and Sussex Medical School, University of Sussex, Falmer, UK
| | - J C W Siero
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - M Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - G J Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J J M Zwanenburg
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Feng J, Tang Y, You W, Jiang Y, Xu Z, Zhao Y, Liu X, Lv J, Liu P, Wei H, Mossa-Basha M, Li Y, Wang Y, Zhu C. Risk analysis of intracranial aneurysm rupture based on the arterial segment of origin. Front Neurol 2024; 15:1339144. [PMID: 39233674 PMCID: PMC11371744 DOI: 10.3389/fneur.2024.1339144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Background and objective The rupture risk of intracranial aneurysms (IAs) is related to their arterial origin, but whether the different segments of the artery have different risks and act as independent risk factors is still unknown. Our study aimed to investigate the rupture risk of IAs in different arterial segments in a large Chinese cohort. Methods Imaging and clinical data of consecutive patients with IAs diagnosed by Computed Tomography angiography (CTA) from January 2013 to December 2022 were collected. Two neuroradiologists independently identified ruptured and unruptured IAs based on imaging and medical records. The internal carotid artery (ICA), middle cerebral artery (MCA), anterior cerebral artery (ACA), vertebral artery (VA), and posterior cerebral artery (PCA) were segmented according to the Bouthillier and Fischer segmentation methods. Stenoses of the proximal parent vessel were evaluated and documented. The Institutional Review Board (IRB) at Beijing Tiantan Hospital approved this retrospective study. Results A total of 3,837 aneurysms {median size 3.5 mm [interquartile range (IQR) 2.6-5.1 mm]; 532 ruptured} were included in this study from 2,968 patients [mean age: 57 years (IQR 50-64); male patients: 1,153]. Ruptured aneurysms were most commonly located in the posterior inferior cerebellar artery (PICA) (52.9%), anterior communicating artery (ACoA) (33.8%), other locations (33.3%), ACA (22.4%), and basilar artery (BA) (21.4%). The locations with the highest likelihood of rupture were the C7 ICA (21.3%), M2 MCA (24.0%), distal MCA (25.0%), and A2 ACA (28.1%). IAs originating from the C7 (p < 0.001), dM1 (p = 0.022), and dA1 (p = 0.021) segments were independent risk factors for rupture. IAs without stenosis of the proximal parent vessel were associated with a higher risk of rupture (p = 0.023). Conclusion There are unique associations between the origins of aneurysms from various arterial segments. Aneurysms originating from the anterior communicating artery (ACoA), BA, PICA, A2, dA, C7, and M2 indicate a higher risk of rupture. Aneurysms originating from C4, C5, and C6 indicate a lower risk of rupture. C7 IAs, ACoA IAs, and PICA IAs seem to be independent risk factors.
Collapse
Affiliation(s)
- Junqiang Feng
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yudi Tang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei You
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuhua Jiang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhengkun Xu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Yan Zhao
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xinke Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Lv
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haining Wei
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Tang J, Pahlavian SH, Joe E, Gamez MT, Zhao T, Ma S, Jin J, Cen SY, Chui H, Yan L. Assessment of arterial pulsatility of cerebral perforating arteries using 7T high-resolution dual-VENC phase-contrast MRI. Magn Reson Med 2024; 92:605-617. [PMID: 38440807 PMCID: PMC11186522 DOI: 10.1002/mrm.30073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE Directly imaging the function of cerebral perforating arteries could provide valuable insight into the pathology of cerebral small vessel diseases (cSVD). Arterial pulsatility has been identified as a useful biomarker for assessing vascular dysfunction. In this study, we investigate the feasibility and reliability of using dual velocity encoding (VENC) phase-contrast MRI (PC-MRI) to measure the pulsatility of cerebral perforating arteries at 7 T. METHODS Twenty participants, including 12 young volunteers and 8 elder adults, underwent high-resolution 2D PC-MRI scans with VENCs of 20 cm/s and 40 cm/s at 7T. The sensitivity of perforator detection and the reliability of pulsatility measurement of cerebral perforating arteries using dual-VENC PC-MRI were evaluated by comparison with the single-VENC data. The effects of temporal resolution in the PC-MRI acquisition and aging on the pulsatility measurements were investigated. RESULTS Compared to the single VENCs, dual-VENC PC-MRI provided improved sensitivity of perforator detection and more reliable pulsatility measurements. Temporal resolution impacted the pulsatility measurements, as decreasing temporal resolution led to an underestimation of pulsatility. Elderly adults had elevated pulsatility in cerebral perforating arteries compared to young adults, but there was no difference in the number of detected perforators between the two age groups. CONCLUSION Dual-VENC PC-MRI is a reliable imaging method for the assessment of pulsatility of cerebral perforating arteries, which could be useful as a potential imaging biomarker of aging and cSVD.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Soroush Heidari Pahlavian
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Elizabeth Joe
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Maria Tereza Gamez
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Tianrui Zhao
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - Samantha Ma
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Siemens Medical Solutions USA, Los Angeles, California, United States
| | - Jin Jin
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Siemens Medical Solutions USA, Los Angeles, California, United States
| | - Steven Yong Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Helena Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Lirong Yan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
4
|
Bartstra JW, van den Beukel T, Kranenburg G, Geurts LJ, den Harder AM, Witkamp T, Wolterink JM, Zwanenburg JJM, van Valen E, Koek HL, Mali WPTM, de Jong PA, Hendrikse J, Spiering W. Increased Intracranial Arterial Pulsatility and Microvascular Brain Damage in Pseudoxanthoma Elasticum. AJNR Am J Neuroradiol 2024; 45:386-392. [PMID: 38548304 PMCID: PMC11288551 DOI: 10.3174/ajnr.a8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/02/2023] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND PURPOSE Carotid siphon calcification might contribute to the high prevalence of cerebrovascular disease in pseudoxanthoma elasticum through increased arterial flow pulsatility. This study aimed to compare intracranial artery flow pulsatility, brain volumes, and small-vessel disease markers between patients with pseudoxanthoma elasticum and controls and the association between arterial calcification and pulsatility in pseudoxanthoma elasticum. MATERIALS AND METHODS Fifty patients with pseudoxanthoma elasticum and 40 age- and sex-matched controls underwent 3T MR imaging, including 2D phase-contrast acquisitions for flow pulsatility in the assessment of ICA and MCA and FLAIR acquisitions for brain volumes, white matter lesions, and infarctions. All patients with pseudoxanthoma elasticum underwent CT scanning to measure siphon calcification. Flow pulsatility (2D phase-contrast), brain volumes, white matter lesions, and infarctions (3D T1 and 3D T2 FLAIR) were compared between patients and controls. The association between siphon calcification and pulsatility in pseudoxanthoma elasticum was tested with linear regression models. RESULTS Patients with pseudoxanthoma elasticum (mean age, 57 [SD, 12] years; 24 men) had significantly higher pulsatility indexes (1.05; range, 0.94-1.21 versus 0.94; range, 0.82-1.04; P = .02), lower mean GM volumes (597 [SD, 53] mL versus 632 [SD, 53] mL; P < .01), more white matter lesions (2.6; range, 0.5-7.5 versus 1.1; range, 0.5-2.4) mL; P = .05), and more lacunar infarctions (64 versus 8, P = .04) than controls (mean age, 58 [SD, 11] years; 20 men). Carotid siphon calcification was associated with higher pulsatility indexes in patients with pseudoxanthoma elasticum (β = 0.10; 95% CI, 0.01-0.18). CONCLUSIONS Patients with pseudoxanthoma elasticum have increased intracranial artery flow pulsatility and measures of small-vessel disease. Carotid siphon calcification might underlie the high prevalence of cerebrovascular disease in pseudoxanthoma elasticum.
Collapse
Affiliation(s)
- J W Bartstra
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - T van den Beukel
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - G Kranenburg
- Department of Vascular Medicine (G.K., W.S.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - L J Geurts
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - A M den Harder
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - T Witkamp
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - J M Wolterink
- Department of Applied Mathematics (J.M.W., E.v.V., H.L.K.), Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - J J M Zwanenburg
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - E van Valen
- Department of Applied Mathematics (J.M.W., E.v.V., H.L.K.), Technical Medical Centre, University of Twente, Enschede, the Netherlands
- Department of Geriatrics (E.v.V., H.L.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - H L Koek
- Department of Applied Mathematics (J.M.W., E.v.V., H.L.K.), Technical Medical Centre, University of Twente, Enschede, the Netherlands
- Department of Geriatrics (E.v.V., H.L.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - W P T M Mali
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - P A de Jong
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - J Hendrikse
- From the Department of Radiology (J.W.B., T.v.d.B., L.J.G., A.M.d.H., T.W., J.J.M.Z., W.P.T.M.M., P.A.d.J., J.H.), University Medical Center Utrecht, Utrecht /University, the Netherlands
| | - W Spiering
- Department of Vascular Medicine (G.K., W.S.), University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
5
|
Van Den Brink H, Pham S, Siero JC, Arts T, Onkenhout L, Kuijf H, Hendrikse J, Wardlaw JM, Dichgans M, Zwanenburg JJ, Biessels GJ. Assessment of Small Vessel Function Using 7T MRI in Patients With Sporadic Cerebral Small Vessel Disease: The ZOOM@SVDs Study. Neurology 2024; 102:e209136. [PMID: 38497722 PMCID: PMC11067699 DOI: 10.1212/wnl.0000000000209136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/07/2023] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia, but little is known about disease mechanisms at the level of the small vessels. 7T-MRI allows assessing small vessel function in vivo in different vessel populations. We hypothesized that multiple aspects of small vessel function are altered in patients with cSVD and that these abnormalities relate to disease burden. METHODS Patients and controls participated in a prospective observational cohort study, the ZOOM@SVDs study. Small vessel function measures on 7T-MRI included perforating artery blood flow velocity and pulsatility index in the basal ganglia and centrum semiovale, vascular reactivity to visual stimulation in the occipital cortex, and reactivity to hypercapnia in the gray and white matter. Lesion load on 3T-MRI and cognitive function were used to assess disease burden. RESULTS Forty-six patients with sporadic cSVD (mean age ± SD 65 ± 9 years) and 22 matched controls (64 ± 7 years) participated in the ZOOM@SVDs study. Compared with controls, patients had increased pulsatility index (mean difference 0.09, p = 0.01) but similar blood flow velocity in basal ganglia perforating arteries and similar flow velocity and pulsatility index in centrum semiovale perforating arteries. The duration of the vascular response to brief visual stimulation in the occipital cortex was shorter in patients than in controls (mean difference -0.63 seconds, p = 0.02), whereas reactivity to hypercapnia was not significantly affected in the gray and total white matter. Among patients, reactivity to hypercapnia was lower in white matter hyperintensities compared with normal-appearing white matter (blood-oxygen-level dependent mean difference 0.35%, p = 0.001). Blood flow velocity and pulsatility index in basal ganglia perforating arteries and reactivity to brief visual stimulation correlated with disease burden. DISCUSSION We observed abnormalities in several aspects of small vessel function in patients with cSVD indicative of regionally increased arteriolar stiffness and decreased reactivity. Worse small vessel function also correlated with increased disease burden. These functional measures provide new mechanistic markers of sporadic cSVD.
Collapse
Affiliation(s)
- Hilde Van Den Brink
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Stanley Pham
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Jeroen C Siero
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Tine Arts
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Laurien Onkenhout
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Hugo Kuijf
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Jeroen Hendrikse
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Joanna M Wardlaw
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Martin Dichgans
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Jaco J Zwanenburg
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| | - Geert Jan Biessels
- From the Department of Neurology and Neurosurgery (H.V.D.B., L.O., G.J.B.), UMC Utrecht Brain Center; Department of Radiology (S.P., J.C.S., T.A., J.H., J.J.Z.), Center for Image Sciences, University Medical Center Utrecht; Spinoza Centre for Neuroimaging Amsterdam (J.C.S.); Image Sciences Institute (H.K.), University Medical Center Utrecht, the Netherlands; Brain Research Imaging Centre (J.M.W.), Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre at the University of Edinburgh, United Kingdom; Institute for Stroke and Dementia Research (M.D.), University Hospital, LMU Munich; Munich Cluster for Systems Neurology (SyNergy) (M.D.); and German Center for Neurodegenerative Disease (DZNE) (M.D.), Germany
| |
Collapse
|
6
|
Xie L, Zhang Y, Hong H, Xu S, Cui L, Wang S, Li J, Liu L, Lin M, Luo X, Li K, Zeng Q, Zhang M, Zhang R, Huang P. Higher intracranial arterial pulsatility is associated with presumed imaging markers of the glymphatic system: An explorative study. Neuroimage 2024; 288:120524. [PMID: 38278428 DOI: 10.1016/j.neuroimage.2024.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Arterial pulsation has been suggested as a key driver of paravascular cerebrospinal fluid flow, which is the foundation of glymphatic clearance. However, whether intracranial arterial pulsatility is associated with glymphatic markers in humans has not yet been studied. METHODS Seventy-three community participants were enrolled in the study. 4D phase-contrast magnetic resonance imaging (MRI) was used to quantify the hemodynamic parameters including flow pulsatility index (PIflow) and area pulsatility index (PIarea) from 13 major intracerebral arterial segments. Three presumed neuroimaging markers of the glymphatic system were measured: including dilation of perivascular space (PVS), diffusivity along the perivascular space (ALPS), and volume fraction of free water (FW) in white matter. We explored the relationships between PIarea, PIflow, and the presumed glymphatic markers, controlling for related covariates. RESULTS PIflow in the internal carotid artery (ICA) C2 segment (OR, 1.05; 95 % CI, 1.01-1.10, per 0.01 increase in PI) and C4 segment (OR, 1.05; 95 % CI, 1.01-1.09) was positively associated with the dilation of basal ganglia PVS, and PIflow in the ICA C4 segment (OR, 1.06, 95 % CI, 1.02-1.10) was correlated with the dilation of PVS in the white matter. ALPS was associated with PIflow in the basilar artery (β, -0.273, p, 0.046) and PIarea in the ICA C2 (β, -0.239, p, 0.041) and C7 segments (β, -0.238, p, 0.037). CONCLUSIONS Intracranial arterial pulsatility was associated with presumed neuroimaging markers of the glymphatic system, but the results were not consistent across different markers. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Linyun Xie
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Yao Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Hui Hong
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shan Xu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Lei Cui
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shuyue Wang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Jixuan Li
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Lingyun Liu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Miao Lin
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xiao Luo
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Kaicheng Li
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Qingze Zeng
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Ruiting Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China.
| |
Collapse
|
7
|
Huang P, Chen K, Liu C, Zhen Z, Zhang R. Visualizing Cerebral Small Vessel Degeneration During Aging and Diseases Using Magnetic Resonance Imaging. J Magn Reson Imaging 2023; 58:1323-1337. [PMID: 37052571 DOI: 10.1002/jmri.28736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Cerebral small vessel disease is a major contributor to brain disorders in older adults. It is associated with a much higher risk of stroke and dementia. Due to a lack of clinical and fluid biomarkers, diagnosing and grading small vessel disease are highly dependent on magnetic resonance imaging. In the past, researchers mostly used brain parenchymal imaging markers to represent small vessel damage, but the relationships between these surrogate markers and small vessel pathologies are complex. Recent progress in high-resolution magnetic resonance imaging methods, including time-of-flight MR angiography, phase-contrast MR angiography, black blood vessel wall imaging, susceptibility-weighted imaging, and contrast-enhanced methods, allow for direct visualization of cerebral small vessel structures. They could be powerful tools for understanding aging-related small vessel degeneration and improving disease diagnosis and treatment. This article will review progress in these imaging techniques and their application in aging and disease studies. Some challenges and future directions are also discussed. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: 3.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kang Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiming Zhen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. The neurovascular unit in healthy and injured spinal cord. J Cereb Blood Flow Metab 2023; 43:1437-1455. [PMID: 37190756 PMCID: PMC10414016 DOI: 10.1177/0271678x231172008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
The neurovascular unit (NVU) reflects the close temporal and spatial link between neurons and blood vessels. However, the understanding of the NVU in the spinal cord is far from clear and largely based on generalized knowledge obtained from the brain. Herein, we review the present knowledge of the NVU and highlight candidate approaches to investigate the NVU, particularly focusing on the spinal cord. Several unique features maintain the highly regulated microenvironment in the NVU. Autoregulation and neurovascular coupling ensure regional blood flow meets the metabolic demand according to the blood supply or local neural activation. The blood-central nervous system barrier partitions the circulating blood from neural parenchyma and facilitates the selective exchange of substances. Furthermore, we discuss spinal cord injury (SCI) as a common injury from the perspective of NVU dysfunction. Hopefully, this review will help expand the understanding of the NVU in the spinal cord and inspire new insights into SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Roberts GS, Peret A, Jonaitis EM, Koscik RL, Hoffman CA, Rivera-Rivera LA, Cody KA, Rowley HA, Johnson SC, Wieben O, Johnson KM, Eisenmenger LB. Normative Cerebral Hemodynamics in Middle-aged and Older Adults Using 4D Flow MRI: Initial Analysis of Vascular Aging. Radiology 2023; 307:e222685. [PMID: 36943077 PMCID: PMC10140641 DOI: 10.1148/radiol.222685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
Background Characterizing cerebrovascular hemodynamics in older adults is important for identifying disease and understanding normal neurovascular aging. Four-dimensional (4D) flow MRI allows for a comprehensive assessment of cerebral hemodynamics in a single acquisition. Purpose To establish reference intracranial blood flow and pulsatility index values in a large cross-sectional sample of middle-aged (45-65 years) and older (>65 years) adults and characterize the effect of age and sex on blood flow and pulsatility. Materials and Methods In this retrospective study, patients aged 45-93 years (cognitively unimpaired) underwent cranial 4D flow MRI between March 2010 and March 2020. Blood flow rates and pulsatility indexes from 13 major arteries and four venous sinuses and total cerebral blood flow were collected. Intraobserver and interobserver reproducibility of flow and pulsatility measures was assessed in 30 patients. Descriptive statistics (mean ± SD) of blood flow and pulsatility were tabulated for the entire group and by age and sex. Multiple linear regression and linear mixed-effects models were used to assess the effect of age and sex on total cerebral blood flow and vessel-specific flow and pulsatility, respectively. Results There were 759 patients (mean age, 65 years ± 8 [SD]; 506 female patients) analyzed. For intra- and interobserver reproducibility, median intraclass correlation coefficients were greater than 0.90 for flow and pulsatility measures across all vessels. Regression coefficients β ± standard error from multiple linear regression showed a 4 mL/min decrease in total cerebral blood flow each year (age β = -3.94 mL/min per year ± 0.44; P < .001). Mixed effects showed a 1 mL/min average annual decrease in blood flow (age β = -0.95 mL/min per year ± 0.16; P < .001) and 0.01 arbitrary unit (au) average annual increase in pulsatility over all vessels (age β = 0.011 au per year ± 0.001; P < .001). No evidence of sex differences was observed for flow (β = -1.60 mL/min per male patient ± 1.77; P = .37), but pulsatility was higher in female patients (sex β = -0.018 au per male patient ± 0.008; P = .02). Conclusion Normal reference values for blood flow and pulsatility obtained using four-dimensional flow MRI showed correlations with age. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Steinman in this issue.
Collapse
Affiliation(s)
- Grant S. Roberts
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Anthony Peret
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Erin M. Jonaitis
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Rebecca L. Koscik
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Carson A. Hoffman
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Leonardo A. Rivera-Rivera
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Karly A. Cody
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Howard A. Rowley
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Sterling C. Johnson
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Oliver Wieben
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Kevin M. Johnson
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| | - Laura B. Eisenmenger
- From the Department of Medical Physics (G.S.R., L.A.R.R., O.W.,
K.M.J.), Department of Radiology (A.P., C.A.H., H.A.R., O.W., K.M.J., L.B.E.),
Wisconsin Alzheimer’s Institute (E.M.J., R.L.K., S.C.J.), and Wisconsin
Alzheimer’s Disease Research Center (E.M.J., L.A.R.R., K.A.C., S.C.J.),
University of Wisconsin School of Medicine and Public Health, 600 Highland Ave,
Madison, WI 53792-3252; and Geriatric Research Education and Clinical Center,
William S. Middleton Memorial Veterans Hospital, Madison, Wis (S.C.J.)
| |
Collapse
|
10
|
Zhang M, Hou X, Qian Y, Chong W, Zhang X, Duan CZ, Ou C. Evaluation of aneurysm rupture risk based upon flowrate-independent hemodynamic parameters: a multi-center pilot study. J Neurointerv Surg 2022:neurintsurg-2022-018691. [PMID: 35688619 DOI: 10.1136/neurintsurg-2022-018691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/21/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Specifying generic flow boundary conditions in aneurysm hemodynamic simulations yields a great degree of uncertainty for the evaluation of aneurysm rupture risk. Herein, we proposed the use of flowrate-independent parameters in discriminating unstable aneurysms and compared their prognostic performance against that of conventional absolute parameters. METHODS This retrospective study included 186 aneurysms collected from three international centers, with the stable aneurysms having a minimum follow-up period of 24 months. The flowrate-independent aneurysmal wall shear stress (WSS) and energy loss (EL) were defined as the coefficients of the second-order polynomials characterizing the relationships between the respective parameters and the parent-artery flows. Performance of the flowrate-independent parameters in discriminating unstable aneurysms with the logistic regression, Adaboost, and support-vector machine (SVM) methods was quantified and compared against that of the conventional parameters, in terms of sensitivity, specificity, and area under the curve (AUC). RESULTS In discriminating unstable aneurysms, the proposed flowrate-independent EL achieved the highest sensitivity (0.833, 95% CI 0.586 to 0.964) and specificity (0.833, 95% CI 0.672 to 0.936) on the SVM, with the AUC outperforming the conventional EL by 0.133 (95% CI 0.039 to 0.226, p=0.006). Likewise, the flowrate-independent WSS outperformed the conventional WSS in terms of the AUC (difference: 0.137, 95% CI 0.033 to 0.241, p=0.010). CONCLUSION The flowrate-independent hemodynamic parameters surpassed their conventional counterparts in predicting the stability of aneurysms, which may serve as a promising set of hemodynamic metrics to be used for the prediction of aneurysm rupture risk when physiologically real vascular boundary conditions are unavailable.
Collapse
Affiliation(s)
- Mingzi Zhang
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Xiaoxi Hou
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yi Qian
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Winston Chong
- Neuroradiology Department, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuan-Zhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chubin Ou
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia .,Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Hannawi Y, Vaidya D, Yanek LR, Johansen MC, Kral BG, Becker LC, Becker DM, Nyquist PA. Association of Vascular Properties With the Brain White Matter Hyperintensity in Middle-Aged Population. J Am Heart Assoc 2022; 11:e024606. [PMID: 35621212 PMCID: PMC9238713 DOI: 10.1161/jaha.121.024606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The periventricular white matter is more sensitive to the systemic hemodynamic alterations than the deep white matter because of differences in its vascular structure and systemic circulation relationship. We hypothesize that periventricular white matter hyperintensity (PVWMH) volume shows greater association than deep white matter hyperintensity (DWMH) volume with vascular properties (VPs) reflecting arterial stiffness and cardiovascular remodeling, indicators of the systemic circulation. Methods and Results A total of 426 participants (age, 59.0±6.1 years; 57.5% women; and 39.7% Black race) in the Genetic Study of Atherosclerosis Risk who were aged ≥50 years and had brain magnetic resonance imaging were studied. VPs included pulse pressure, hypertensive response to exercise, diastolic brachial artery diameter, diastolic common carotid artery diameter, common carotid artery distensibility coefficient, and left ventricular function. The relative associations of VPs with PVWMH and DWMH as multiple measures within the same individual were determined using multilevel linear models. We also determined if age modified the differences in VPs associations with PVWMH and DWMH. Our findings indicated that, within the same subject, PVWMH volume had greater association than DWMH volume with pulse pressure (P=0.002), hypertensive response to exercise (P=0.04), diastolic brachial artery diameter (P=0.012), and diastolic common carotid artery diameter (P=0.04), independent of age and cardiovascular risk factors. The differences of PVWMH versus DWMH associations with VPs did not differ at any age threshold. Conclusions We show, for the first time, that PVWMH has greater association than DWMH, independent of age, with vascular measurements of arterial stiffness and cardiovascular remodeling suggesting that changes in the systemic circulation affect the PVWMH and DWMH differently.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care Department of Neurology The Ohio State University Columbus OH
| | - Dhananjay Vaidya
- GeneSTAR Research Program Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Lisa R Yanek
- GeneSTAR Research Program Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Michelle C Johansen
- Department of Neurology Johns Hopkins University School of Medicine Baltimore MD
| | - Brian G Kral
- GeneSTAR Research Program Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Lewis C Becker
- GeneSTAR Research Program Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Diane M Becker
- GeneSTAR Research Program Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Paul A Nyquist
- Department of Neurology Johns Hopkins University School of Medicine Baltimore MD.,Department of Neurosurgery Johns Hopkins University School of Medicine Baltimore MD.,Division of Neurocritical Care Department of Anesthesiology and Critical Care Medicine Johns Hopkins University School of Medicine Baltimore MD
| |
Collapse
|
12
|
Imai R, Mizutani K, Akiyama T, Horiguchi T, Takatsume Y, Toda M. Imaging of the venous plexus of Rektorzik using CT-digital subtraction venography: a retrospective study. Neuroradiology 2022; 64:1961-1968. [PMID: 35449478 DOI: 10.1007/s00234-022-02962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The venous plexus of Rektorzik (VPR), first described by Rektorzik in 1858, is a venous plexus around the internal carotid artery in the carotid canal. However, the VPR has never been investigated using the recently developed imaging modalities. In this study, we analyzed the VPR using computed tomography-digital subtraction venography (CT-DSV). METHODS This study included 253 patients who had undergone head CT-DSV. The presence or absence of the right and left VPRs and their connecting veins were visually examined by two researchers. RESULTS The VPR was observed in 60 patients (24%), 39 of which showed VPR only on the right side, 10 only on the left side, and 11 on both sides. VPR was significantly more common on the right side (p = 0.0002) and was observed more frequently around the horizontal segment of the internal carotid artery than around the vertical segment. The most common veins identified as distal and proximal VPR connections were the cavernous sinus (63/71, 89%) and the anterior condylar confluence (27/71, 38%), respectively. The mean age was significantly lower in patients with the VPR than in those without (53 vs. 57 years, p = 0.02). CONCLUSION The VPR was significantly more frequent on the right side and in younger patients but was not a radiographically constant structure. In most cases, the VPR connected the cavernous sinus and anterior condylar confluence. Preoperative evaluation of VPR may lead to refined surgical procedures.
Collapse
Affiliation(s)
- Ryotaro Imai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiro Mizutani
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| | - Takenori Akiyama
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takashi Horiguchi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yoshifumi Takatsume
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
13
|
van Tuijl RJ, Ruigrok YM, Geurts LJ, van der Schaaf IC, Biessels GJ, Rinkel GJE, Velthuis BK, Zwanenburg JJM. Does the Internal Carotid Artery Attenuate Blood-Flow Pulsatility in Small Vessel Disease? A 7 T 4D-Flow MRI Study. J Magn Reson Imaging 2022; 56:527-535. [PMID: 34997655 PMCID: PMC9546379 DOI: 10.1002/jmri.28062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background Increased cerebral blood‐flow pulsatility is associated with cerebral small vessel disease (cSVD). Reduced pulsatility attenuation over the internal carotid artery (ICA) could be a contributing factor to the development of cSVD and could be associated with intracranial ICA calcification (iICAC). Purpose To compare pulsatility, pulsatility attenuation, and distensibility along the ICA between patients with cSVD and controls and to assess the association between iICAC and pulsatility and distensibility. Study Type Retrospective, explorative cross‐sectional study. Subjects A total of 17 patients with cSVD, manifested as lacunar infarcts or deep intracerebral hemorrhage, and 17 age‐ and sex‐matched controls. Field Strength/Sequence Three‐dimensional (3D) T1‐weighted gradient echo imaging and 4D phase‐contrast (PC) MRI with a 3D time‐resolved velocity encoded gradient echo sequence at 7 T. Assessment Blood‐flow velocity pulsatility index (vPI) and arterial distensibility were calculated for seven ICA segments (C1–C7). iICAC presence and volume were determined from available brain CT scans (acquired as part of standard clinical care) in patients with cSVD. Statistical Tests Independent t‐tests and linear mixed models. The threshold for statistically significance was P < 0.05 (two tailed). Results The cSVD group showed significantly higher ICA vPI and significantly lower distensibility compared to controls. Controls showed significant attenuation of vPI over the carotid siphon (−4.9% ± 3.6%). In contrast, patients with cSVD showed no attenuation, but a significant increase of vPI (+6.5% ± 3.1%). iICAC presence and volume correlated positively with vPI (r = 0.578) in patients with cSVD and negatively with distensibility (r = −0.386). Conclusion Decreased distensibility and reduced pulsatility attenuation are associated with increased iICAC and may contribute to cSVD. Confirmation in a larger prospective study is required. Evidence Level 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Rick J van Tuijl
- Department of Radiology, Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lennart J Geurts
- Department of Radiology, Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Irene C van der Schaaf
- Department of Radiology, Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gabriël J E Rinkel
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Birgitta K Velthuis
- Department of Radiology, Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Jaco J M Zwanenburg
- Department of Radiology, Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
14
|
Harlianto NI, Oosterhof N, Foppen W, Hol ME, Wittenberg R, van der Veen PH, van Ginneken B, Mohamed Hoesein FAA, Verlaan JJ, de Jong PA, Westerink J. Diffuse idiopathic skeletal hyperostosis is associated with incident stroke in patients with increased cardiovascular risk. Rheumatology (Oxford) 2021; 61:2867-2874. [PMID: 34791065 PMCID: PMC9258598 DOI: 10.1093/rheumatology/keab835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/02/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Earlier retrospective studies have suggested a relation between diffuse idiopathic skeletal hyperostosis [DISH] and cardiovascular disease, including myocardial infarction. The present study assessed the association between DISH and incidence of cardiovascular events and mortality in patients with high cardiovascular risk. METHODS In this prospective cohort study, we included 4624 patients (mean age 58.4 years, 69.6% male) from the Second Manifestations of ARTerial disease cohort. The main end point was major cardiovascular events [MACE: stroke, myocardial infarction, and vascular death]. Secondary endpoints included all-cause mortality and separate vascular events. Cause specific proportional hazard models were used to evaluate the risk of DISH on all outcomes, and subdistribution hazard models were used to evaluate the effect of DISH on the cumulative incidence. All models were adjusted for age, sex, body mass index, blood pressure, diabetes, non-HDL cholesterol, packyears, renal function, and C-reactive protein. RESULTS DISH was present in 435 (9.4%) patients. After a median follow-up of 8.7 (IQR 5.0-12.0) years, 864 patients had died and 728 patients developed a MACE event. DISH was associated with an increased cumulative incidence of ischaemic stroke.After adjustment in cause specific modelling, DISH remained significantly associated with ischaemic stroke (HR 1.55; 95%CI : 1.01-2.38), but not with MACE (HR 0.99; 95%CI : 0.79-1.24), myocardial infarction (HR 0.88; 95%CI : 0.59-1.31), vascular death (HR 0.94; 95%CI : 0.68-1.27), or all-cause mortality (HR 0.94; 95%CI : 0.77-1.16). CONCLUSION The presence of DISH is independently associated with an increased incidence and risk for ischaemic stroke, but not with MACE, myocardial infarction, vascular death, or all-cause mortality.
Collapse
Affiliation(s)
- Netanja I Harlianto
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Netherlands, Utrecht, the.,Department of Orthopedic Surgery, University Medical Center Utrecht and Utrecht University, the Netherlands, Utrecht
| | - Nadine Oosterhof
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Netherlands, Utrecht, the
| | - Wouter Foppen
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Netherlands, Utrecht, the
| | - Marjolein E Hol
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Netherlands, Utrecht, the
| | - Rianne Wittenberg
- Department of Radiology, Netherlands Cancer Institute, the Netherlands, Amsterdam
| | - Pieternella H van der Veen
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Netherlands, Utrecht, the
| | - Bram van Ginneken
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Firdaus A A Mohamed Hoesein
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Netherlands, Utrecht, the
| | - Jorrit-Jan Verlaan
- Department of Orthopedic Surgery, University Medical Center Utrecht and Utrecht University, the Netherlands, Utrecht
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Netherlands, Utrecht, the
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht and Utrecht University, the Netherlands, Utrecht
| | | |
Collapse
|
15
|
Bartstra JW, van Tuijl RJ, de Jong PA, Mali WPTM, van der Schaaf IC, Ruigrok YM, Rinkel GJE, Velthuis BK, Spiering W, Zwanenburg JJM. Pulsatility Attenuation along the Carotid Siphon in Pseudoxanthoma Elasticum. AJNR Am J Neuroradiol 2021; 42:2030-2033. [PMID: 34561212 DOI: 10.3174/ajnr.a7288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 01/26/2023]
Abstract
We compared velocity pulsatility, distensibility, and pulsatility attenuation along the intracranial ICA and MCA between 50 patients with pseudoxanthoma elasticum and 40 controls. Patients with pseudoxanthoma elasticum had higher pulsatility and lower distensibility at all measured locations, except for a similar distensibility at C4. The pulsatility attenuation over the siphon was similar between patients with pseudoxanthoma elasticum and controls. This finding suggests that other disease mechanisms are the main contributors to increased intracranial pulsatility in pseudoxanthoma elasticum.
Collapse
Affiliation(s)
- J W Bartstra
- From the Departments of Radiology (J.W.B., R.J.v.T., P.A.d.J., W.P.T.M.M., I.C.v.d.S., B.K.V., J.J.M.Z.)
| | - R J van Tuijl
- From the Departments of Radiology (J.W.B., R.J.v.T., P.A.d.J., W.P.T.M.M., I.C.v.d.S., B.K.V., J.J.M.Z.)
| | - P A de Jong
- From the Departments of Radiology (J.W.B., R.J.v.T., P.A.d.J., W.P.T.M.M., I.C.v.d.S., B.K.V., J.J.M.Z.)
| | - W P T M Mali
- From the Departments of Radiology (J.W.B., R.J.v.T., P.A.d.J., W.P.T.M.M., I.C.v.d.S., B.K.V., J.J.M.Z.)
| | - I C van der Schaaf
- From the Departments of Radiology (J.W.B., R.J.v.T., P.A.d.J., W.P.T.M.M., I.C.v.d.S., B.K.V., J.J.M.Z.)
| | - Y M Ruigrok
- Neurology and Neurosurgery (Y.M.R., G.J.E.R.), Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands
| | - G J E Rinkel
- Neurology and Neurosurgery (Y.M.R., G.J.E.R.), Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands
| | - B K Velthuis
- From the Departments of Radiology (J.W.B., R.J.v.T., P.A.d.J., W.P.T.M.M., I.C.v.d.S., B.K.V., J.J.M.Z.)
| | - W Spiering
- Department of Vascular Medicine (W.S.), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - J J M Zwanenburg
- From the Departments of Radiology (J.W.B., R.J.v.T., P.A.d.J., W.P.T.M.M., I.C.v.d.S., B.K.V., J.J.M.Z.)
| |
Collapse
|
16
|
van Hespen KM, Kuijf HJ, Hendrikse J, Luijten PR, Zwanenburg JJM. Blood Flow Velocity Pulsatility and Arterial Diameter Pulsatility Measurements of the Intracranial Arteries Using 4D PC-MRI. Neuroinformatics 2021; 20:317-326. [PMID: 34019208 PMCID: PMC9546978 DOI: 10.1007/s12021-021-09526-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/28/2022]
Abstract
4D phase contrast magnetic resonance imaging (PC-MRI) allows for the visualization and quantification of the cerebral blood flow. A drawback of software that is used to quantify the cerebral blood flow is that it oftentimes assumes a static arterial luminal area over the cardiac cycle. Quantifying the lumen area pulsatility index (aPI), i.e. the change in lumen area due to an increase in distending pressure over the cardiac cycle, can provide insight in the stiffness of the arteries. Arterial stiffness has received increased attention as a predictor in the development of cerebrovascular disease. In this study, we introduce software that allows for measurement of the aPI as well as the blood flow velocity pulsatility index (vPI) from 4D PC-MRI. The internal carotid arteries of seven volunteers were imaged using 7 T MRI. The aPI and vPI measurements from 4D PC-MRI were validated against measurements from 2D PC-MRI at two levels of the internal carotid arteries (C3 and C7). The aPI and vPI computed from 4D PC-MRI were comparable to those measured from 2D PC-MRI (aPI: mean difference: 0.03 (limits of agreement: -0.14 - 0.23); vPI: 0.03 (-0.17-0.23)). The measured blood flow rate for the C3 and C7 segments was similar, indicating that our proposed software correctly captures the variation in arterial lumen area and blood flow velocity that exists along the distal end of the carotid artery. Our software may potentially aid in identifying changes in arterial stiffness of the intracranial arteries caused by pathological changes to the vessel wall.
Collapse
Affiliation(s)
| | - Hugo J Kuijf
- Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | | | - Peter R Luijten
- Department of Radiology, UMC Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
17
|
van Tuijl RJ, Ruigrok YM, Velthuis BK, van der Schaaf IC, Rinkel GJE, Zwanenburg JJM. Velocity Pulsatility and Arterial Distensibility Along the Internal Carotid Artery. J Am Heart Assoc 2020; 9:e016883. [PMID: 32783485 PMCID: PMC7660833 DOI: 10.1161/jaha.120.016883] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Attenuation of velocity pulsatility along the internal carotid artery (ICA) is deemed necessary to protect the microvasculature of the brain. The role of the carotid siphon within the whole ICA trajectory in pulsatility attenuation is still poorly understood. This study aims to assess arterial variances in velocity pulsatility and distensibility over the whole ICA trajectory, including effects of age and sex. Methods and Results We assessed arterial velocity pulsatility and distensibility using flow-sensitized 2-dimensional phase-contrast 3.0 Tesla magnetic resonance imaging in 118 healthy participants. Velocity pulsatility index (vPI=(Vmax-Vmin)/Vmean) and arterial distensibility defined as area pulsatility index (Amax-Amin)/Amean) were calculated at C1, C3, and C7 segments of the ICA. vPI increased between C1 and C3 (0.85±0.13 versus 0.93±0.13, P<0.001 for averaged right+left ICA) and decreased between C3 and C7 (0.93±0.13 versus 0.84±0.13, P<0.001) with overall no effect (C1-C7). Conversely, the area pulsatility index decreased between C1 and C3 (0.18±0.06 versus 0.14±0.04, P<0.001) and increased between C3 and C7 (0.14±0.04 versus 0.31±0.09, P<0.001). vPI in men is higher than in women and increases with age (P<0.015). vPI over the carotid siphon declined with age but remained stable over the whole ICA trajectory. Conclusions Along the whole ICA trajectory, vPI increased from extracranial C1 up to the carotid siphon C3 with overall no effect on vPI between extracranial C1 and intracranial C7 segments. This suggests that the bony carotid canal locally limits the arterial distensibility of the ICA, increasing the vPI at C3 which is consequently decreased again over the carotid siphon. In addition, vPI in men is higher and increases with age.
Collapse
Affiliation(s)
- Rick J van Tuijl
- Department of Radiology University Medical Center Utrecht Utrecht The Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery Rudolf Magnus Institute of Neuroscience University Medical Center Utrecht Utrecht The Netherlands
| | - Birgitta K Velthuis
- Department of Radiology University Medical Center Utrecht Utrecht The Netherlands
| | | | - Gabriël J E Rinkel
- Department of Neurology and Neurosurgery Rudolf Magnus Institute of Neuroscience University Medical Center Utrecht Utrecht The Netherlands
| | - Jaco J M Zwanenburg
- Department of Radiology University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|