1
|
Shen Y, Hong Y, Huang X, Chen J, Li Z, Qiu J, Liang X, Mai C, Li W, Li X, Zhang Y. ALDH2 regulates mesenchymal stem cell senescence via modulation of mitochondrial homeostasis. Free Radic Biol Med 2024; 223:172-183. [PMID: 39097205 DOI: 10.1016/j.freeradbiomed.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Although mitochondrial aldehyde dehydrogenase 2 (ALDH2) is involved in aging and aging-related diseases, its role in the regulation of human mesenchymal stem cell (MSC) senescence has not been investigated. This study aimed to determine the role of ALDH2 in regulating MSC senescence and illustrate the potential mechanisms. MSCs were isolated from young (YMSCs) and aged donors (AMSCs). Senescence-associated β-galactosidase (SA-β-gal) staining and Western blotting were used to assess MSC senescence. Reactive oxygen species (ROS) generation and mitochondrial membrane potential were determined to evaluate mitochondrial function. We showed that the expression of ALDH2 increased alongside cellular senescence of MSCs. Overexpression of ALDH2 accelerated YMSC senescence whereas down-regulation alleviated premature senescent phenotypes of AMSCs. Transcriptome and biochemical analyses revealed that an elevated ROS level and mitochondrial dysfunction contributed to ALDH2 function in MSC senescence. Using molecular docking, we identified interferon regulatory factor 7 (IRF7) as the potential target of ALDH2. Mechanistically, ectopic expression of ALDH2 led to mitochondrial dysfunction and accelerated senescence of MSCs by increasing the stability of IRF7 through a direct physical interaction. These effects were partially reversed by knockdown of IRF7. These findings highlight a crucial role of ALDH2 in driving MSC senescence by regulating mitochondrial homeostasis, providing a novel potential strategy against human aging-related diseases.
Collapse
Affiliation(s)
- Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ziqi Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Qiu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoting Liang
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cong Mai
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Pan W, Li S, Li K, Zhou P. Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Potential in Organ Transplantation. Stem Cells Int 2024; 2024:2043550. [PMID: 38708382 PMCID: PMC11068458 DOI: 10.1155/2024/2043550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
At present, organ transplantation remains the most appropriate therapy for patients with end-stage organ failure. However, the field of organ transplantation is still facing many challenges, including the shortage of organ donors, graft function damage caused by organ metastasis, and antibody-mediated immune rejection. It is therefore urgently necessary to find new and effective treatment. Stem cell therapy has been regarded as a "regenerative medicine technology." Mesenchymal stem cells (MSCs), as the most common source of cells for stem cell therapy, play an important role in regulating innate and adaptive immune responses and have been widely used in clinical trials for the treatment of autoimmune and inflammatory diseases. Increasing evidence has shown that MSCs mainly rely on paracrine pathways to exert immunomodulatory functions. In addition, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are the main components of paracrine substances of MSCs. Herein, an overview of the application of the function of MSCs and MSC-EVs in organ transplantation will focus on the progress reported in recent experimental and clinical findings and explore their uses for graft preconditioning and recipient immune tolerance regulation. Additionally, the limitations on the use of MSC and MSC-EVs are also discussed, covering the isolation of exosomes and preservation techniques. Finally, the opportunities and challenges for translating MSCs and MSC-EVs into clinical practice of organ transplantation are also evaluated.
Collapse
Affiliation(s)
- Wennuo Pan
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shaohan Li
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
3
|
d'Hervé Q, Girerd N, Bozec E, Lamiral Z, Panisset V, Frimat L, Huttin O, Girerd S. Factors associated with changes in echocardiographic parameters following kidney transplantation. Clin Res Cardiol 2024; 113:412-424. [PMID: 37084138 DOI: 10.1007/s00392-023-02203-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Chronic kidney disease leads to cardiac remodelling of multifactorial origin known as "uraemic cardiomyopathy", the reversibility of which after kidney transplantation (KT) remains controversial. Our objectives were to assess, in the modern era, changes in echocardiographic parameters following KT and identify predictive clinical and biological factors associated with echocardiographic changes. METHODS One hundred six patients (mean age 48 ± 16, 73% male) who underwent KT at the University Hospital of Nancy between 2007 and 2018 were retrospectively investigated. Pre- and post-KT echocardiography findings (8.6 months before and 22 months after KT on average, respectively) were centralised, blind-reviewed and compared. RESULTS A majority of patients (60%) had either a left ventricular (LV) ejection fraction < 50%, at least moderately abnormal LV mass index or left atrial (LA) dilatation at pretransplanted echocardiography. After KT, LV remodelling and diastolic doppler indices did not significantly change whereas LA volume index (LAVI) increased (35.9 mL/m2 post-KT vs. 30.9 mL/m2 pre-KT, p = 0.006). Advancing age, cardiac valvular disease, delayed graft function, lower post-KT haemoglobin, and more severe post-KT hypertension were associated with higher LAVI after KT. Higher post-KT serum creatinine, more severe post-KT hypertension and lower pre-KT blood calcium levels were associated with a deterioration in LAVI after KT. DISCUSSION/CONCLUSION Adverse remodelling of the left atrial volume occurred after KT, predominantly in patients with lower pre-KT blood calcium, poorer graft function and post-KT hypertension. These results suggest that a better management of modifiable factors such as pre-KT hyperparathyroidism or post-KT hypertension could limit post-KT cardiac remodelling.
Collapse
Affiliation(s)
- Q d'Hervé
- Nephrology Department, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - N Girerd
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques-1433, and Inserm U1116, University Hospital of Nancy, F-CRIN INI-CRCT, Vandoeuvre-lès-Nancy, France
| | - E Bozec
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques-1433, and Inserm U1116, University Hospital of Nancy, F-CRIN INI-CRCT, Vandoeuvre-lès-Nancy, France
| | - Z Lamiral
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques-1433, and Inserm U1116, University Hospital of Nancy, F-CRIN INI-CRCT, Vandoeuvre-lès-Nancy, France
| | - V Panisset
- Nephrology Department, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - L Frimat
- Nephrology Department, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - O Huttin
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques-1433, and Inserm U1116, University Hospital of Nancy, F-CRIN INI-CRCT, Vandoeuvre-lès-Nancy, France
- Cardiology Department, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - S Girerd
- Nephrology Department, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France.
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques-1433, and Inserm U1116, University Hospital of Nancy, F-CRIN INI-CRCT, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
4
|
Chang SH, Park CG. Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity. Immune Netw 2023; 23:e44. [PMID: 38188600 PMCID: PMC10767552 DOI: 10.4110/in.2023.23.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Chung Gyu Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Medical Research center, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
5
|
Meucci MC, Reinders MEJ, Groeneweg KE, Bezstarosti S, Marsan NA, Bax JJ, De Fijter JW, Delgado V. Left Atrial Structural and Functional Response in Kidney Transplant Recipients Treated With Mesenchymal Stromal Cell Therapy and Early Tacrolimus Withdrawal. J Am Soc Echocardiogr 2023; 36:172-179. [PMID: 36347387 DOI: 10.1016/j.echo.2022.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Autologous bone marrow-derived mesenchymal stromal cell (MSC) therapy and withdrawal of calcineurin inhibitors (CNIs) has been shown to improve systemic blood pressure control and left ventricular hypertrophy regression in kidney transplant recipients. In the current subanalysis, we aimed to evaluate the impact of this novel immunosuppressive regimen on the longitudinal changes of left atrial (LA) structure and function after kidney transplantation. METHODS Kidney transplant recipients randomized to MSC therapy-infused at weeks 6 and 7 after transplantation, with complete discontinuation at week 8 of tacrolimus (MSC group)-or standard tacrolimus dose (control group) were evaluated with transthoracic echocardiography at weeks 4 and 24 after kidney transplantation. The changes in echocardiographic parameters were compared between the randomization arms using an analysis of covariance model adjusted for baseline variable. RESULTS Fifty-four participants (MSC therapy = 27; tacrolimus therapy = 27) were included. There was no significant interaction between the allocated treatment and the changes of indexed maximal LA volume (LAVImax) over the study period. Conversely, between 4 and 24 weeks post-transplantation, an increase in indexed minimal LA volume (LAVImin) was observed in control subjects, while it remained unchanged in the MSC group, leading to a significant difference between groups (P = .021). Additionally, patients treated with MSC therapy showed a benefit in LA function, assessed by a significant interaction between changes in LA emptying fraction and LA reservoir strain and the randomization arm (P = .012 and P = .027, respectively). CONCLUSIONS The combination of MSC therapy and CNIs withdrawal prevents progressive LA dilation and dysfunction in the first 6 months after kidney transplantation. LAVImin and LA reservoir strain may be more sensitive markers of LA reverse remodeling, compared with LAVImax.
Collapse
Affiliation(s)
- Maria Chiara Meucci
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marlies E J Reinders
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Koen E Groeneweg
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne Bezstarosti
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; Heart Center, University of Turku and Turku University Hospital, Turku, Finland
| | - Johan W De Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; Hospital University Germans Trias i Pujol, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|