1
|
Han H, Feng P, Yuan G. Molecular typing of gliomas on the basis of integrin family genes and a functional study of ITGA7. Sci Rep 2025; 15:12306. [PMID: 40210748 PMCID: PMC11985493 DOI: 10.1038/s41598-025-97342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Gliomas are highly malignant tumors of the central nervous system, and their complex molecular heterogeneity poses major therapeutic challenges. Integrins are important members of the class of cell adhesion molecules (CAMs), consisting of α-subunits and β-subunits that form 24 different heterodimers. To elucidate the complex role of integrins in glioma pathogenesis, we analyzed integrin family genes. We used a scoring system based on gene set enrichment analysis (GSEA) to identify prognostic biomarkers and nonnegative matrix factorization (NMF) to establish a new integrin-based molecular classification of gliomas. Subsequent analyses of the clinical relevance of the molecular subtypes and the underlying mechanisms demonstrated a strong correlation between integrin-based molecular subtypes and glioma malignancy. We further characterized the different clinical features and tumor microenvironments (TMEs) associated with these subtypes. We identified subtype-specific driver genes using the limma R package and weighted gene coexpression network analysis (WGCNA). We subsequently identified key integrin-mediated genes that significantly contribute to poor prognosis through a combined approach of machine learning (ML) and protein‒protein interaction (PPI) network analysis. Finally, we performed in vitro cellular experiments on the integrin family gene ITGA7 and demonstrated that ITGA7 can serve as a biomarker for gliomas. Our findings provide important insights into the multifaceted roles of integrins in glioma biology, provide an opportunity for the discovery of novel targeted therapies on the basis of the subtype-specific vulnerability of integrins, and provide a basis for the study of the role of ITGA7 in gliomas.
Collapse
Affiliation(s)
- Hongxi Han
- Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
- Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Peng Feng
- Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
- Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Guoqiang Yuan
- Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China.
- Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou City, 730000, Gansu Province, People's Republic of China.
| |
Collapse
|
2
|
Kamal KY, Trombetta-Lima M. Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress. Int J Mol Sci 2025; 26:2802. [PMID: 40141444 PMCID: PMC11943188 DOI: 10.3390/ijms26062802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical unloading leads to profound musculoskeletal degeneration, muscle wasting, and weakness. Understanding the specific signaling pathways involved is essential for uncovering effective interventions. This review provides new perspectives on mechanotransduction pathways, focusing on the critical roles of focal adhesions (FAs) and oxidative stress in skeletal muscle atrophy under mechanical unloading. As pivotal mechanosensors, FAs integrate mechanical and biochemical signals to sustain muscle structural integrity. When disrupted, these complexes impair force transmission, activating proteolytic pathways (e.g., ubiquitin-proteasome system) that accelerate atrophy. Oxidative stress, driven by mitochondrial dysfunction and NADPH oxidase-2 (NOX2) hyperactivation, exacerbates muscle degeneration through excessive reactive oxygen species (ROS) production, impaired repair mechanisms, and dysregulated redox signaling. The interplay between FA dysfunction and oxidative stress underscores the complexity of muscle atrophy pathogenesis: FA destabilization heightens oxidative damage, while ROS overproduction further disrupts FA integrity, creating a self-amplifying vicious cycle. Therapeutic strategies, such as NOX2 inhibitors, mitochondrial-targeted antioxidants, and FAK-activating compounds, promise to mitigate muscle atrophy by preserving mechanotransduction signaling and restoring redox balance. By elucidating these pathways, this review advances the understanding of muscle degeneration during unloading and identifies promising synergistic therapeutic targets, emphasizing the need for combinatorial approaches to disrupt the FA-ROS feedback loop.
Collapse
Affiliation(s)
- Khaled Y. Kamal
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9700 Groningen, The Netherlands;
| |
Collapse
|
3
|
Qu HQ, Delfiner MS, Gangireddy C, Vaidya A, Nguyen K, Whitman IR, Wang J, Song J, Bristow MR, McTiernan CF, Gerhard GS, Hakonarson H, Feldman AM. Rare variants in cardiomyopathy genes predispose to cardiac injury in severe COVID-19 patients of African or Hispanic ancestry. J Mol Med (Berl) 2025; 103:175-185. [PMID: 39730912 PMCID: PMC11799050 DOI: 10.1007/s00109-024-02510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
In one of the earliest reports from China during COVID-19, it was noted that over 20% of patients hospitalized with the disease had significant elevations of troponin, a marker of myocardial tissue damage, that put them at a higher risk. In a hypothesis-independent whole exome sequencing (WES) study in hospitalized COVID-19 patients of diverse ancestry, we observed putative enrichment in pathogenic variants in genes known to be involved in the pathogenesis of cardiomyopathy. This observation led us to hypothesize that the observed high morbidity and mortality in these patients might be due to the presence of rare genetic factors that had previously been silent but became relevant as a consequence of the severe stress inflicted by an infection with SARS-CoV-2. To test this hypothesis, we analyzed our WES data generated from a cohort of 325 patients sequentially admitted for COVID-19 infection. In this predominantly minority population (53.9% African ancestry and 37.9% Hispanic/Latin ancestry), our initial analysis screen identified 263 variants that were identified as highly deleterious (HD) from a total of 26,661 variants of interest that represented 215 genes. Of those, we identified 46 genes (in 58 patients) harboring rare HD coding variants that were previously implicated in dilated cardiomyopathy and were considered as disease initiators for the severe COVID-19 in this study. These findings offer valuable insights into the molecular mechanisms and genetic susceptibility to heart injury in severe COVID-19. KEY MESSAGES: COVID-19 may cause cardiac damage in some affected patients without a plausible biological explanation. Our study reveals an enrichment of highly deleterious variants linked to cardiomyopathy in severe COVID-19 patients. Genetic profiling unveils the molecular basis of severe COVID-19-related heart injury, potentially aiding in patient stratification.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew S Delfiner
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Chethan Gangireddy
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Anjali Vaidya
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kenny Nguyen
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Isaac R Whitman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - JuFang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael R Bristow
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles F McTiernan
- Division of Cardiology, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Glenn S Gerhard
- Department of Human Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Arthur M Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Yan J, Wang X, Cao P, Li Q, Wu H. Downregulation of miR-214 promotes dilated Cardiomyopathy Progression through PDE5A-Mediated cGMP regulation. Sci Rep 2024; 14:28070. [PMID: 39543318 PMCID: PMC11564883 DOI: 10.1038/s41598-024-78983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a myocardial disorder resulting in a substantial decline in cardiac function and potentially leading to heart failure. This research combines bioinformatics analysis with empirical validation to explore the roles and mechanisms of miR-214 in DCM. Using the DEseq2 R package, a total of 125 differentially expressed circulating miRNAs (DE c-miRNAs) and 784 DE genes (DEGs) were identified. Cross-analysis between target genes of DE c-miRNAs and DEGs identified 124 common genes, and protein-protein interaction analysis of common genes identified 11 hub genes. Twelve DE c-miRNAs were further verified by quantifying their levels in the serum of DCM patients and healthy individuals. miR-214 levels were significantly decreased in serum from DCM patients, positively correlated with left ventricular ejection fraction and left ventricular fractional shortening. Further analysis showed that miR-214 directly targets and negatively regulates phosphodiesterase 5 A (PDE5A). Elevated PDE5A expression reduced cGMP levels; however, using sildenafil, a PDE5A inhibitor, reversed this effect, substantiating the regulatory mechanism of miR-214 on cGMP via PDE5A. These results provide new potential targets for the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Jingjing Yan
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xinzhou Wang
- Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, 450002, China
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, 450002, Henan, China
| | - Panxia Cao
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qiaozhi Li
- Heart Center, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Hong Wu
- Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, 450002, China.
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, 450002, Henan, China.
- Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
6
|
Gao S, Yao W, Zhou R, Pei Z. Exercise training affects calcium ion transport by downregulating the CACNA2D1 protein to reduce hypertension-induced myocardial injury in mice. iScience 2024; 27:109351. [PMID: 38495825 PMCID: PMC10940998 DOI: 10.1016/j.isci.2024.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/26/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Hypertension is a risk factor for cardiovascular disease, and exercise has cardioprotective effects on the heart. However, the mechanism by which exercise affects hypertension-induced myocardial injury remains unclear. Exercise response model of hypertension-induced myocardial injury in mice was analyzed using multiomics data to identify potential factors. The study found that serum Ca2+ and brain natriuretic peptide concentrations were significantly higher in the HTN (hypertension) group than in the control, HTN+MICT (moderate intensity continuous exercise), and HTN+HIIT (high intensity intermittent exercise) groups. Cardiac tissue damage and fibrosis increased in the HTN group, but exercise training reduced pathological changes, with more improvement in the HTN+HIIT group. Transcriptomic and proteomic studies showed significant differences in CACNA2D1 expression between the different treatment groups. HIIT ameliorated HTN-induced myocardial injury in mice by decreasing Ca2+ concentration and diastolizing vascular smooth muscle by downregulating CACNA2D1 via exercise.
Collapse
Affiliation(s)
- Shan Gao
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Wei Yao
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, China
| | - Rui Zhou
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, China
| | - Zuowei Pei
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
- Faculty of Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
7
|
Lazzarino M, Zanetti M, Chen SN, Gao S, Peña B, Lam CK, Wu JC, Taylor MRG, Mestroni L, Sbaizero O. Defective Biomechanics and Pharmacological Rescue of Human Cardiomyocytes with Filamin C Truncations. Int J Mol Sci 2024; 25:2942. [PMID: 38474188 PMCID: PMC10932268 DOI: 10.3390/ijms25052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Actin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants (FLNCtv) are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying FLNCtv. CRISPR/Cas9 genome-edited homozygous FLNCKO-/- hiPSC-CMs and heterozygous knock-out FLNCKO+/- hiPSC-CMs were analyzed and compared to wild-type FLNC (FLNCWT) hiPSC-CMs. Atomic force microscopy (AFM) was used to perform micro-indentation to evaluate passive and dynamic mechanical properties. A qualitative analysis of the beating traces showed gene dosage-dependent-manner "irregular" peak profiles in FLNCKO+/- and FLNCKO-/- hiPSC-CMs. Two Young's moduli were calculated: E1, reflecting the compression of the plasma membrane and actin cortex, and E2, including the whole cell with a cytoskeleton and nucleus. Both E1 and E2 showed decreased stiffness in mutant FLNCKO+/- and FLNCKO-/- iPSC-CMs compared to that in FLNCWT. The cell adhesion force and work of adhesion were assessed using the retraction curve of the SCFS. Mutant FLNC iPSC-CMs showed gene dosage-dependent decreases in the work of adhesion and adhesion forces from the heterozygous FLNCKO+/- to the FLNCKO-/- model compared to FLNCWT, suggesting damaged cytoskeleton and membrane structures. Finally, we investigated the effect of crenolanib on the mechanical properties of hiPSC-CMs. Crenolanib is an inhibitor of the Platelet-Derived Growth Factor Receptor α (PDGFRA) pathway which is upregulated in FLNCtv hiPSC-CMs. Crenolanib was able to partially rescue the stiffness of FLNCKO-/- hiPSC-CMs compared to control, supporting its potential therapeutic role.
Collapse
Affiliation(s)
- Marco Lazzarino
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Michele Zanetti
- CNR-IOM, Area Science Park, 34149 Trieste, Italy; (M.L.); (M.Z.)
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Suet Nee Chen
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Shanshan Gao
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Brisa Peña
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Bioengineering Department, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; (C.K.L.); (J.C.W.)
| | - Matthew R. G. Taylor
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Luisa Mestroni
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
| | - Orfeo Sbaizero
- Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.N.C.); (S.G.); (B.P.); (M.R.G.T.); (L.M.)
- Engineering and Architecture Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
8
|
Shibao C, Peche VS, Williams IM, Samovski D, Pietka TA, Abumrad NN, Gamazon E, Goldberg IJ, Wasserman D, Abumrad NA. Microvascular insulin resistance associates with enhanced muscle glucose disposal in CD36 deficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302950. [PMID: 38405702 PMCID: PMC10889024 DOI: 10.1101/2024.02.16.24302950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Dysfunction of endothelial insulin delivery to muscle associates with insulin resistance. CD36, a fatty acid transporter and modulator of insulin signaling is abundant in endothelial cells, especially in capillaries. Humans with inherited 50% reduction in CD36 expression have endothelial dysfunction but whether it is associated with insulin resistance is unclear. Using hyperinsulinemic/euglycemic clamps in Cd36-/- and wildtype mice, and in 50% CD36 deficient humans and matched controls we found that Cd36-/- mice have enhanced systemic glucose disposal despite unaltered transendothelial insulin transfer and reductions in microvascular perfusion and blood vessel compliance. Partially CD36 deficient humans also have better glucose disposal than controls with no capillary recruitment by insulin. CD36 knockdown in primary human-derived microvascular cells impairs insulin action on AKT, endothelial nitric oxide synthase, and nitric oxide release. Thus, insulin resistance of microvascular function in CD36 deficiency paradoxically associates with increased glucose utilization, likely through a remodeling of muscle gene expression.
Collapse
Affiliation(s)
- Cyndya Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville TN
| | - Vivek S. Peche
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Ian M. Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville TN
| | - Dmitri Samovski
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Terri A. Pietka
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville TN
| | - Eric Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY
| | - David Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville TN
| | - Nada A. Abumrad
- Department of Medicine, Division of Nutritional Sciences and Obesity Research, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Chen Z, Kelly JR, Morales JE, Sun RC, De A, Burkin DJ, McCarty JH. The alpha7 integrin subunit in astrocytes promotes endothelial blood-brain barrier integrity. Development 2023; 150:dev201356. [PMID: 36960827 PMCID: PMC10112902 DOI: 10.1242/dev.201356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
The blood-brain barrier (BBB) is a vascular endothelial cell boundary that partitions the circulation from the central nervous system to promote normal brain health. We have a limited understanding of how the BBB is formed during development and maintained in adulthood. We used quantitative transcriptional profiling to investigate whether specific adhesion molecules are involved in BBB functions, with an emphasis on understanding how astrocytes interact with endothelial cells. Our results reveal a striking enrichment of multiple genes encoding laminin subunits as well as the laminin receptor gene Itga7, which encodes the alpha7 integrin subunit, in astrocytes. Genetic ablation of Itga7 in mice led to aberrant BBB permeability and progressive neurological pathologies. Itga7-/- mice also showed a reduction in laminin protein expression in parenchymal basement membranes. Blood vessels in the Itga7-/- brain showed separation from surrounding astrocytes and had reduced expression of the tight junction proteins claudin 5 and ZO-1. We propose that the alpha7 integrin subunit in astrocytes via adhesion to laminins promotes endothelial cell junction integrity, all of which is required to properly form and maintain a functional BBB.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jack R. Kelly
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - John E. Morales
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Raymond C. Sun
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Arpan De
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dean J. Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Joseph H. McCarty
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|