1
|
Kang Y, Jamison K, Jaywant A, Dams-O’Connor K, Kim N, Karakatsanis NA, Butler T, Schiff ND, Kuceyeski A, Shah SA. Longitudinal alterations in gamma-aminobutyric acid (GABAA) receptor availability over ∼ 1 year following traumatic brain injury. Brain Commun 2022; 4:fcac159. [PMID: 35794871 PMCID: PMC9253887 DOI: 10.1093/braincomms/fcac159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/24/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Longitudinal alterations of gamma-aminobutyric acid (GABAA) receptor availability following traumatic brain injury have remained uncharacterized and may reflect changes in neuronal structure and function linked to cognitive recovery. We measured GABAA receptor availability using the tracer [11C]flumazenil in nine adults with traumatic brain injury (3–6 months after injury, subacute scan) and in 20 non-brain-injured individuals. A subset of subjects with traumatic brain injury (n = 7) were scanned at a second chronic time-point, 7–13 months after their first scan; controls (n = 9) were scanned for a second time, 5–11 months after the first scan. After accounting for atrophy in subjects with traumatic brain injury, we find broad decreases in GABAA receptor availability predominantly within the frontal lobes, striatum, and posterior-medial thalami; focal reductions were most pronounced in the right insula and anterior cingulate cortex (p < 0.05). Greater relative increase, compared to controls, in global GABAA receptor availability appeared between subacute and chronic scans. At chronic scan (>1 year post-injury), we find increased pallidal receptor availability compared to controls. Conversely, receptor availability remained depressed across the frontal cortices. Longitudinal improvement in executive attention correlated with increases in receptor availability across bilateral fronto-parietal cortical regions and the anterior-lateral aspects of the thalami. The specific observations of persistent bi-frontal lobe reductions and bilateral pallidal elevation are consistent with the anterior forebrain mesocircuit hypothesis for recovery of consciousness following a wide range of brain injuries; our results provide novel correlative data in support of specific cellular mechanisms underlying persistent cognitive deficits. Collectively, these measurements support the use of [11C]flumazenil to track recovery of large-scale network function following brain injuries and measure response to therapeutics.
Collapse
Affiliation(s)
- Y Kang
- Department of Mathematics, Howard University , Washington, DC 20059 , USA
| | - K Jamison
- Department of Radiology, Weill Cornell Medicine , 407 E. 61 St., Rm 208, New York, NY 10065 , USA
| | - A Jaywant
- Department of Rehabilitation Medicine, Weill Cornell Medicine , New York, NY 10065 , USA
- Department of Psychiatry, Weill Cornell Medicine , New York, NY 10065 , USA
| | - K Dams-O’Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai , New York, NY 10029 , USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY 10029 , USA
| | - N Kim
- Department of Radiology, Weill Cornell Medicine , 407 E. 61 St., Rm 208, New York, NY 10065 , USA
| | - N A Karakatsanis
- Department of Radiology, Weill Cornell Medicine , 407 E. 61 St., Rm 208, New York, NY 10065 , USA
| | - T Butler
- Department of Radiology, Weill Cornell Medicine , 407 E. 61 St., Rm 208, New York, NY 10065 , USA
| | - N D Schiff
- Department of BMRI & Neurology, Weill Cornell Medicine , New York, NY 10065 , USA
| | - A Kuceyeski
- Department of Radiology, Weill Cornell Medicine , 407 E. 61 St., Rm 208, New York, NY 10065 , USA
| | - S A Shah
- Department of Radiology, Weill Cornell Medicine , 407 E. 61 St., Rm 208, New York, NY 10065 , USA
- Department of BMRI & Neurology, Weill Cornell Medicine , New York, NY 10065 , USA
| |
Collapse
|
2
|
Powers WJ, An H, Diringer MN. Cerebral Blood Flow and Metabolism. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Hughes JL, Beech JS, Jones PS, Wang D, Menon DK, Aigbirhio FI, Fryer TD, Baron JC. Early-stage 11C-Flumazenil PET predicts day-14 selective neuronal loss in a rodent model of transient focal cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:1997-2009. [PMID: 31637947 PMCID: PMC7786851 DOI: 10.1177/0271678x19883040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Predicting tissue outcome early after stroke is an important goal. MRI >3 h accurately predicts infarction but is insensitive to selective neuronal loss (SNL). Previous studies suggest that chronic-stage 11C-flumazenil PET (FMZ-PET) is a validated marker of SNL in rats, while early-stage FMZ-PET may predict infarction. Whether early FMZ-PET also predicts SNL is unknown. Following 45-min distal MCA occlusion, adult rats underwent FMZ-PET at 1 h and 48 h post-reperfusion to map distribution volume (VT), which reflects GABA-A receptor binding. NeuN immunohistochemistry was performed at Day 14. In each rat, VT and %NeuN loss were determined in 44 ROIs spanning the hemisphere. NeuN revealed isolated SNL and cortical infarction in five and one rats, respectively. In the SNL subgroup, VT-1 h was mildly reduced and only weakly predicted SNL, while VT-48 h was significantly increased and predicted SNL both individually (p < 0.01, Kendall) and across the group (p < 0.001), i.e. the higher the VT, the stronger the SNL. Similar correlations were found in the rat with infarction. Our findings suggest GABA-A receptors are still present on injured neurons at the 48 h timepoint, and the increased 48 h VT observed here is consistent with earlier rat studies showing early GABA-A receptor upregulation. That FMZ binding at 48 h was predictive of SNL may have clinical implications.
Collapse
Affiliation(s)
- Jessica L Hughes
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John S Beech
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Dechao Wang
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jean-Claude Baron
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Inserm U1266, Paris Descartes University, Sainte-Anne Hospital, Paris, France
| |
Collapse
|
4
|
Savitz SI, Baron JC, Fisher M, Albers GW, Arbe-Barnes S, Boltze J, Broderick J, Broschat KO, Elkind MSV, En’Wezoh D, Furlan AJ, Gorelick PB, Grotta J, Hancock AM, Hess DC, Holt W, Houser G, Hsia AW, Kim WK, Korinek WS, Le Moan N, Liberman M, Lilienfeld S, Luby M, Lynch JK, Mansi C, Simpkins AN, Nadareishvili Z, Nogueira RG, Pryor KE, Sanossian N, Schwamm LH, Selim M, Sheth KN, Spilker J, Solberg Y, Steinberg GK, Stice S, Tymianski M, Wechsler LR, Yoo AJ. Stroke Treatment Academic Industry Roundtable X. Stroke 2019; 50:1026–1031. [DOI: 10.1161/strokeaha.118.023927] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sean I. Savitz
- From the Institute for Stroke and Cerebrovascular Disease, The University of Texas Health Science Center at Houston, (S.I.S.)
| | - Jean-Claude Baron
- Department of Neurology, Hôpital Sainte-Anne, University Paris Descartes, INSERM U1266, France (J.-C.B.)
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA (M.F.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Gaining insights into brain oxygen metabolism has been one of the key areas of research in neurosciences. Extensive efforts have been devoted to developing approaches capable of providing measures of brain oxygen metabolism not only under normal physiological conditions but, more importantly, in various pathophysiological conditions such as cerebral ischemia. In particular, quantitative measures of cerebral metabolic rate of oxygen using positron emission tomography (PET) have been shown to be capable of discerning brain tissue viability during ischemic insults. However, the complex logistics associated with oxygen-15 PET have substantially hampered its wide clinical applicability. In contrast, magnetic resonance imaging (MRI)-based approaches have provided quantitative measures of cerebral oxygen metabolism similar to that obtained using PET. Given the wide availability, MRI-based approaches may have broader clinical impacts, particularly in cerebral ischemia, when time is a critical factor in deciding treatment selection. In this article, we review the pathophysiological basis of altered cerebral hemodynamics and oxygen metabolism in cerebral ischemia, how quantitative measures of cerebral metabolism were obtained using the Kety-Schmidt approach, the physical concepts of non-invasive oxygen metabolism imaging approaches, and, finally, clinical applications of the discussed imaging approaches.
Collapse
Affiliation(s)
- Weili Lin
- 1 Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,2 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Powers
- 2 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo Imaging of Human Neuroinflammation. ACS Chem Neurosci 2016; 7:470-83. [PMID: 26985861 DOI: 10.1021/acschemneuro.6b00056] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is implicated in the pathophysiology of a growing number of human disorders, including multiple sclerosis, chronic pain, traumatic brain injury, and amyotrophic lateral sclerosis. As a result, interest in the development of novel methods to investigate neuroinflammatory processes, for the purpose of diagnosis, development of new therapies, and treatment monitoring, has surged over the past 15 years. Neuroimaging offers a wide array of non- or minimally invasive techniques to characterize neuroinflammatory processes. The intent of this Review is to provide brief descriptions of currently available neuroimaging methods to image neuroinflammation in the human central nervous system (CNS) in vivo. Specifically, because of the relatively widespread accessibility of equipment for nuclear imaging (positron emission tomography [PET]; single photon emission computed tomography [SPECT]) and magnetic resonance imaging (MRI), we will focus on strategies utilizing these technologies. We first provide a working definition of "neuroinflammation" and then discuss available neuroimaging methods to study human neuroinflammatory processes. Specifically, we will focus on neuroimaging methods that target (1) the activation of CNS immunocompetent cells (e.g. imaging of glial activation with TSPO tracer [(11)C]PBR28), (2) compromised BBB (e.g. identification of MS lesions with gadolinium-enhanced MRI), (3) CNS-infiltration of circulating immune cells (e.g. tracking monocyte infiltration into brain parenchyma with iron oxide nanoparticles and MRI), and (4) pathological consequences of neuroinflammation (e.g. imaging apoptosis with [(99m)Tc]Annexin V or iron accumulation with T2* relaxometry). This Review provides an overview of state-of-the-art techniques for imaging human neuroinflammation which have potential to impact patient care in the foreseeable future.
Collapse
Affiliation(s)
| | - Cristina Granziera
- Neuro-Immunology,
Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier
Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
- LTS5, Ecole
Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
7
|
Cerebral Blood Flow and Metabolism. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab 2014; 34:2-18. [PMID: 24192635 PMCID: PMC3887360 DOI: 10.1038/jcbfm.2013.188] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
As a sequel of brain ischemia, selective neuronal loss (SNL)-as opposed to pannecrosis (i.e. infarction)-is attracting growing interest, particularly because it is now detectable in vivo. In acute stroke, SNL may affect the salvaged penumbra and hamper functional recovery following reperfusion. Rodent occlusion models can generate SNL predominantly in the striatum or cortex, showing that it can affect behavior for weeks despite normal magnetic resonance imaging. In humans, SNL in the salvaged penumbra has been documented in vivo mainly using positron emission tomography and (11)C-flumazenil, a neuronal tracer validated against immunohistochemistry in rodent stroke models. Cortical SNL has also been documented using this approach in chronic carotid disease in association with misery perfusion and behavioral deficits, suggesting that it can result from chronic or unstable hemodynamic compromise. Given these consequences, SNL may constitute a novel therapeutic target. Selective neuronal loss may also develop at sites remote from infarcts, representing secondary 'exofocal' phenomena akin to degeneration, potentially related to poststroke behavioral or mood impairments again amenable to therapy. Further work should aim to better characterize the time course, behavioral consequences-including the impact on neurological recovery and contribution to vascular cognitive impairment-association with possible causal processes such as microglial activation, and preventability of SNL.
Collapse
|
9
|
Ejaz S, Williamson DJ, Ahmed T, Sitnikov S, Hong YT, Sawiak SJ, Fryer TD, Aigbirhio FI, Baron JC. Characterizing infarction and selective neuronal loss following temporary focal cerebral ischemia in the rat: a multi-modality imaging study. Neurobiol Dis 2012; 51:120-32. [PMID: 23146994 DOI: 10.1016/j.nbd.2012.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/05/2012] [Accepted: 11/01/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Current models dictate that, depending on occurrence of early reperfusion, the ischemic penumbra either undergoes or escapes infarction (i.e., "pan-necrosis"). However, tissue outcome following temporary middle-cerebral artery occlusion (tMCAo) in rodents can also include selective neuronal loss (SNL), which even if subtle may impede functional recovery. In order to explore the pathophysiology of ischemic stroke, determine potential therapeutic targets and monitor effects of therapy, in vivo imaging surrogates of these varied histopathological outcomes applicable in the clinical setting would be useful. Although hyperintense signal on T(2)-weighted MRI in the chronic post-stroke stage is considered a reliable surrogate of tissue infarction, SNL is not associated with T(2)W abnormal signal. In the clinical setting, the neuron-specific PET ligand (11)C-flumazenil (FMZ) has been used to identify both pan-necrosis and peri-infarct SNL, but this inference has not been histopathological confirmed so far. Here we investigated the late tissue sequelae of tMCAo in the rodent using in vivo T(2)W MRI and FMZ-PET against post mortem immunohistochemistry as gold standard. METHODS Adult spontaneously hypertensive rats (SHRs) underwent 45 min distal-clip middle-cerebral artery occlusion and, 28 days later, FMZ-PET and T(2)W-MRI, immediately followed by immunohistochemistry for neuronal loss (NeuN), activated microglia and astrocytosis. Based on standard histopathological definitions, ischemic lesions were classified into pan-necrosis, partial infarction or SNL. NeuN changes and FMZ binding across the whole hemisphere were quantified in the same set of 44 regions-of-interest according to previously validated protocols; linear regressions between these two measures were carried out both within and across subjects. RESULTS Both cortical pan-necrosis/partial infarction and SNL were present in all rats except one, where SNL was isolated and extensive. Infarction/partial infarction, but not SNL, was associated with T(2)W hyperintense signals and cortical atrophy. In contrast, FMZ binding was decreased in all types of lesions including SNL, in proportion with NeuN staining intensity both within (p<0.05 to <0.001) and across (p<0.001) subjects, including the subject that showed pure SNL (p=0.01). CONCLUSION This novel study revealed three main facts: i) long-term histopathological cortical changes following 45 min tMCAo in SHRs included all three of SNL, partial infarction and frank infarction; ii) T2W MRI showed conspicuous high signal lesions for complete or partial infarction, but no changes for SNL; and iii) FMZ-PET was sensitive to all three types of tMCAo-induced histopathological changes, including isolated SNL, suggesting it is a valid surrogate for the histological sequelae of focal cerebral ischemia. In addition, the finding of almost universal completed cortical infarction at 28 days differed from our previous findings at 14-day survival using the same model and rat strain, where SNL was the almost exclusive outcome, possibly representing delayed infarct maturation. Prospective studies are needed to investigate this interesting possibility.
Collapse
Affiliation(s)
- Sohail Ejaz
- Stroke Research Group, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Virdee K, Cumming P, Caprioli D, Jupp B, Rominger A, Aigbirhio FI, Fryer TD, Riss PJ, Dalley JW. Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 2012; 36:1188-216. [PMID: 22342372 DOI: 10.1016/j.neubiorev.2012.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
Abstract
Positron emission tomography (PET) provides dynamic images of the biodistribution of radioactive tracers in the brain. Through application of the principles of compartmental analysis, tracer uptake can be quantified in terms of specific physiological processes such as cerebral blood flow, cerebral metabolic rate, and the availability of receptors in brain. Whereas early PET studies in animal models of brain diseases were hampered by the limited spatial resolution of PET instruments, dedicated small-animal instruments now provide molecular images of rodent brain with resolution approaching 1mm, the theoretic limit of the method. Major applications of PET for brain research have consisted of studies of animal models of neurological disorders, notably Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD), stroke, epilepsy and traumatic brain injury; these studies have particularly benefited from selective neurochemical lesion models (PD), and also transgenic rodent models (AD, HD). Due to their complex and uncertain pathophysiologies, corresponding models of neuropsychiatric disorders have proven more difficult to establish. Historically, there has been an emphasis on PET studies of dopamine transmission, as assessed with a range of tracers targeting dopamine synthesis, plasma membrane transporters, and receptor binding sites. However, notable recent breakthroughs in molecular imaging include the development of greatly improved tracers for subtypes of serotonin, cannabinoid, and metabotropic glutamate receptors, as well as noradrenaline transporters, amyloid-β and neuroinflammatory changes. This article reviews the considerable recent progress in preclinical PET and discusses applications relevant to a number of neurological and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Kanwar Virdee
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Maki T, Wakita H, Mase M, Itagaki I, Saito N, Ono F, Adachi K, Ito H, Takahashi R, Ihara M, Tomimoto H. Watershed infarcts in a multiple microembolic model of monkey. Neurosci Lett 2011; 499:80-3. [PMID: 21640789 DOI: 10.1016/j.neulet.2011.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/27/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022]
Abstract
It has long been debated whether watershed infarcts are caused by hemodynamic or embolic mechanisms. In the present study, we investigated microembolic roles in the pathogenesis of watershed infarcts by examining MRI in a macaque monkey model of multiple microinfarcts. 50 μm microbeads were injected into each internal carotid artery twice with a month interval. Monkeys (n=4) injected with 2250-2800 microbeads per unilateral side showed both cortical and internal watershed infarcts in the acute phase and atrophic changes with microbleeds in the chronic phase. These results suggest embolic pathogenesis can contribute to the genesis of both cortical and internal watershed infarcts in primates.
Collapse
Affiliation(s)
- Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Spratt NJ, Donnan GA, McLeod DD, Howells DW. 'Salvaged' stroke ischaemic penumbra shows significant injury: studies with the hypoxia tracer FMISO. J Cereb Blood Flow Metab 2011; 31:934-43. [PMID: 20877386 PMCID: PMC3063627 DOI: 10.1038/jcbfm.2010.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The degree of cellular injury within the stroke ischaemic penumbra is controversial. Clinical and experimental studies using the hypoxia tracer fluoromisonidazole (FMISO) have shown retention of this tracer in the penumbra, but cellular outcome has not been well characterised. We hypothesised that macroscopically intact FMISO-retaining penumbral tissues would show evidence of microscopic injury, and that no FMISO retention would be seen in the infarct core. To determine the distribution of FMISO retention, a tritium-labelled tracer (hydrogen-3 FMISO ([(3)H]FMISO)) was administered 5 minutes after induction of 2-hour temporary middle cerebral artery occlusion. Coregistered brain histology and autoradiography at 24 hours revealed marked retention of FMISO within the infarct. However, 48% of the FMISO-retaining tissue was not infarcted. Within this noninfarcted tissue, only 27% (17 of 64) of sampled regions showed no evidence of neuronal loss, whereas 44% (28 of 64) showed injury to >50% of neurons within the sample. To determine whether FMISO retention occurred after the tissue was already committed to infarction, FMISO was administered 4 to 6 hours after the onset of permanent vessel occlusion. Intense FMISO retention was consistently seen throughout the infarct core. In conclusion, FMISO retention occurs both within the ischaemic penumbra and within the early infarct core. Most penumbral tissues show evidence of selective cellular injury.
Collapse
Affiliation(s)
- Neil J Spratt
- Hunter Medical Research Institute and University of Newcastle School of Biomedical Sciences and Pharmacy, Callaghan, New South Wales, Australia.
| | | | | | | |
Collapse
|
13
|
Hughes J, Beech J, Jones P, Wang D, Menon D, Baron J. Mapping selective neuronal loss and microglial activation in the salvaged neocortical penumbra in the rat. Neuroimage 2010; 49:19-31. [DOI: 10.1016/j.neuroimage.2009.08.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/24/2009] [Accepted: 08/17/2009] [Indexed: 11/24/2022] Open
|
14
|
Yamauchi H, Nishii R, Higashi T, Kagawa S, Fukuyama H. Hemodynamic Compromise as a Cause of Internal Border-Zone Infarction and Cortical Neuronal Damage in Atherosclerotic Middle Cerebral Artery Disease. Stroke 2009; 40:3730-5. [DOI: 10.1161/strokeaha.109.560011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Hemodynamic compromise due to atherosclerotic middle cerebral artery (MCA) disease may induce internal border-zone infarction and cortical neuronal damage. This study aimed to determine whether internal border-zone infarction is associated with increased oxygen extraction fraction (OEF) and a decrease in central benzodiazepine receptors (BZRs) in the overlying cerebral cortex in atherosclerotic MCA disease.
Methods—
We measured the OEF by using positron emission tomography and
15
O gas in 100 nondisabled patients with atherosclerotic MCA disease in the chronic stage. On MRI, the infarcts were categorized as territorial, border-zone (external or internal), deep perforator, and superior perforator infarcts. In 62 patients, BZRs were measured using
11
C-flumazenil. By using 3-dimensional stereotactic surface projections, the abnormally decreased BZR index (“BZR index”) [(the extent of the pixels with Z score more than 2 compared with controls)×(average Z score in those pixels)] was calculated. In the hemisphere affected by MCA disease, the type of infarcts was correlated with the value of OEF or BZR index in the cerebral cortex of the MCA distribution.
Results—
Compared with patients without internal border-zone infarcts, those with these infarcts (n=18) had significantly increased OEF and significantly high BZR index. Multivariate analysis revealed that internal border-zone infarction was independently associated with increased OEF and high BZR index.
Conclusions—
In atherosclerotic MCA disease, internal border-zone infarction is associated with increased OEF and a decrease in BZRs in the overlying cerebral cortex, suggesting that hemodynamic compromise may induce internal border-zone infarction and cortical neuronal damage.
Collapse
Affiliation(s)
- Hiroshi Yamauchi
- From the Human Brain Research Center (H.Y., H.F.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Research Institute (R.N., T.H., S.K.), Shiga Medical Center, Moriyama, Japan
| | - Ryuichi Nishii
- From the Human Brain Research Center (H.Y., H.F.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Research Institute (R.N., T.H., S.K.), Shiga Medical Center, Moriyama, Japan
| | - Tatsuya Higashi
- From the Human Brain Research Center (H.Y., H.F.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Research Institute (R.N., T.H., S.K.), Shiga Medical Center, Moriyama, Japan
| | - Shinya Kagawa
- From the Human Brain Research Center (H.Y., H.F.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Research Institute (R.N., T.H., S.K.), Shiga Medical Center, Moriyama, Japan
| | - Hidenao Fukuyama
- From the Human Brain Research Center (H.Y., H.F.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Research Institute (R.N., T.H., S.K.), Shiga Medical Center, Moriyama, Japan
| |
Collapse
|
15
|
General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 2009; 17:179-88. [PMID: 19626389 DOI: 10.1007/s12640-009-9088-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 05/12/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Common general anesthetics administered to young rats at the peak of brain development cause widespread apoptotic neurodegeneration in their immature brain. Behavioral studies have shown that this leads to learning and memory deficiencies later in life. The subiculum, a part of the hippocampus proper and Papez's circuit, is involved in cognitive development and is vulnerable to anesthesia-induced developmental neurodegeneration. This degeneration is manifested by acute substantial neuroapoptotic damage and permanent neuronal loss in later stages of synaptogenesis. Since synapse formation is a critical component of brain development, we examined the effects of highly neurotoxic anesthesia combination (isoflurane, nitrous oxide, and midazolam) on ultrastructural development of synapses in the rat subiculum. We found that this anesthesia, when administered at the peak of synaptogenesis, causes long-lasting injury to the subicular neuropil. This is manifested as neuropil scarcity and disarray, morphological changes indicative of mitochondria degeneration, a decrease in the number of neuronal profiles with multiple synaptic boutons and significant decreases in synapse volumetric densities. We believe that observed morphological disturbances of developing synapses may, at least in part, contribute to the learning and memory deficits that occur later in life after exposure of the immature brain to general anesthesia.
Collapse
|
16
|
Guadagno JV, Jones PS, Aigbirhio FI, Wang D, Fryer TD, Day DJ, Antoun N, Nimmo-Smith I, Warburton EA, Baron JC. Selective neuronal loss in rescued penumbra relates to initial hypoperfusion. Brain 2008; 131:2666-78. [PMID: 18678564 DOI: 10.1093/brain/awn175] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Selective neuronal loss (SNL) in the rescued penumbra could account for suboptimal clinical recovery despite effective early reperfusion. Previous studies of SNL used single-photon emission tomography (SPECT), did not account for potential volume loss secondary to collapse of the infarct cavity, and failed to show a relationship with initial hypoperfusion. Here, we obtained acute-stage computerized tomography (CT) perfusion and follow-up quantitative (11)C-flumazenil (FMZ)-PET to map SNL in the non-infarcted tissue and assess its relationship with acute-stage hypoperfusion. We prospectively recruited seven patients with evidence of (i) acute (<6 h) extensive middle cerebral artery territory ischaemia based on clinical deficit (National Institutes of Health stroke scale, NIHSS score range: 8-23) and CT Perfusion (CTp) findings and (ii) early recanalization (spontaneous or following thrombolysis) based on spectacular clinical recovery (DeltaNIHSS > or =6 at 24 h), good clinical outcome (NIHSS < or =5) and small final infarct (6/7 subcortical) on late-stage MRI. Ten age-matched controls were also studied. FMZ image analysis took into account potential post-stroke volume loss. Across patients, clusters of significantly reduced FMZ binding were more prevalent and extensive in the non-infarcted middle cerebral artery cortical areas than in the non-affected hemisphere (P = 0.028, Wilcoxon sign rank test). Voxel-based between-group comparisons revealed several large clusters of significantly reduced FMZ binding in the affected peri-insular, superior temporal and prefrontal cortices (FDR P < 0.05), as compared with no cluster on the unaffected side. Finally, comparing CTp and PET data revealed a significant negative correlation between FMZ binding and initial hypoperfusion. Applying correction for volume loss did not substantially alter the significance of these results. Although based on a small patient sample sometimes studied late after the index stroke, and as such preliminary, our results establish the presence and distribution of FMZ binding loss in ultimately non-infarcted brain areas after stroke. In addition, the data suggest that this binding loss is proportional to initial hypoperfusion, in keeping with the hypothesis that the rescued penumbra is affected by SNL. Although its clinical counterparts remain uncertain, it is tempting to speculate that peri-infarct SNL could represent a new therapeutic target.
Collapse
Affiliation(s)
- J V Guadagno
- Department of Clinical Neurosciences, Neurology Unit, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|