1
|
Zhang X, Jacobs KA, Raygor KP, Li S, Li J, Wang RA. Arterial endothelial deletion of hereditary hemorrhagic telangiectasia 2/ Alk1 causes epistaxis and cerebral microhemorrhage with aberrant arteries and defective smooth muscle coverage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.622742. [PMID: 39651127 PMCID: PMC11623514 DOI: 10.1101/2024.11.25.622742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder with manifestations including severe nose bleeding and microhemorrhage in brains. Despite being the second most common inherited bleeding disorder, the pathophysiological mechanism underlying HHT-associated hemorrhage is poorly understood. HHT pathogenesis is thought to follow a Knudsonian two-hit model, requiring a second somatic mutation for lesion formation. Mutations in activin receptor-like kinase 1 ( ALK1 ) gene cause HHT type 2. We hypothesize that somatic mutation of Alk1 in arterial endothelial cells (AECs) leads to arterial defects and hemorrhage. Here, we mutated Alk1 in AECs in postnatal mice using Bmx(PAC)-Cre ERT2 and found that somatic arterial endothelial mutation of Alk1 was sufficient to induce spontaneous epistaxis and multifocal cerebral microhemorrhage. This bleeding occurred in the presence of tortuous and enlarged blood vessels, loss of arterial molecular marker Efnb2 , disorganization of vascular smooth muscle, and impaired vasoregulation. Our data suggest that arterial endothelial deletion of Alk1 leading to reduced arterial identity and disrupted vascular smooth muscle cell coverage is a plausible molecular mechanism for HHT-associated severe epistaxis. This work provides the first evidence that somatic Alk1 mutation in AECs can cause hemorrhagic vascular lesions, offering a novel preclinical model critically needed for studying HHT-associated epistaxis, and delineating an arterial mechanism to HHT pathophysiology.
Collapse
|
2
|
Ota T. An Updated Review on the Pathogenesis of Brain Arteriovenous Malformations and Its Therapeutic Targets. JOURNAL OF NEUROENDOVASCULAR THERAPY 2024; 19:2024-0008. [PMID: 39958460 PMCID: PMC11826344 DOI: 10.5797/jnet.ra.2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 02/18/2025]
Abstract
Brain arteriovenous malformations (bAVMs) are associated with a high risk of intracerebral hemorrhage, which causes severe complications in patients. Although the genetic factors leading to hereditary bAVMs have been extensively investigated, their pathogenesis are still under study. This review examines updated data on the molecular and genetic aspects of bAVMs, the architecture of microvasculature, the roles of angiogenic factors, and signaling pathways. The compiled information may help us understand the pathogenesis of both sporadic and hereditary bAVMs and develop appropriate preemptive treatment approaches.
Collapse
Affiliation(s)
- Takahiro Ota
- Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| |
Collapse
|
3
|
Nakisli S, Lagares A, Nielsen CM, Cuervo H. Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations. Front Physiol 2023; 14:1210563. [PMID: 37601628 PMCID: PMC10437819 DOI: 10.3389/fphys.2023.1210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Previously considered passive support cells, mural cells-pericytes and vascular smooth muscle cells-have started to garner more attention in disease research, as more subclassifications, based on morphology, gene expression, and function, have been discovered. Central nervous system (CNS) arteriovenous malformations (AVMs) represent a neurovascular disorder in which mural cells have been shown to be affected, both in animal models and in human patients. To study consequences to mural cells in the context of AVMs, various animal models have been developed to mimic and predict human AVM pathologies. A key takeaway from recently published work is that AVMs and mural cells are heterogeneous in their molecular, cellular, and functional characteristics. In this review, we summarize the observed perturbations to mural cells in human CNS AVM samples and CNS AVM animal models, and we discuss various potential mechanisms relating mural cell pathologies to AVMs.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Alfonso Lagares
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Imas12, Madrid, Spain
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid, Spain
| |
Collapse
|
4
|
Choi H, Kim BG, Kim YH, Lee SJ, Lee YJ, Oh SP. BMP10 functions independently from BMP9 for the development of a proper arteriovenous network. Angiogenesis 2023; 26:167-186. [PMID: 36348215 PMCID: PMC9908740 DOI: 10.1007/s10456-022-09859-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic vascular disorder characterized by the presence of arteriovenous malformation (AVM) in multiple organs. HHT is caused by mutations in genes encoding major constituents for transforming growth factor-β (TGF-β) family signaling: endoglin (ENG), activin receptor-like kinase 1 (ALK1), and SMAD4. The identity of physiological ligands for this ENG-ALK1 signaling pertinent to AVM formation has yet to be clearly determined. To investigate whether bone morphogenetic protein 9 (BMP9), BMP10, or both are physiological ligands of ENG-ALK1 signaling involved in arteriovenous network formation, we generated a novel Bmp10 conditional knockout mouse strain. We examined whether global Bmp10-inducible knockout (iKO) mice develop AVMs at neonatal and adult stages in comparison with control, Bmp9-KO, and Bmp9/10-double KO (dKO) mice. Bmp10-iKO and Bmp9/10-dKO mice showed AVMs in developing retina, postnatal brain, and adult wounded skin, while Bmp9-KO did not display any noticeable vascular defects. Bmp10 deficiency resulted in increased proliferation and size of endothelial cells in AVM vessels. The impaired neurovascular integrity in the brain and retina of Bmp10-iKO and Bmp9/10-dKO mice was detected. Bmp9/10-dKO mice exhibited the lethality and vascular malformation similar to Bmp10-iKO mice, but their phenotypes were more pronounced. Administration of BMP10 protein, but not BMP9 protein, prevented retinal AVM in Bmp9/10-dKO and endothelial-specific Eng-iKO mice. These data indicate that BMP10 is indispensable for the development of a proper arteriovenous network, whereas BMP9 has limited compensatory functions for the loss of BMP10. We suggest that BMP10 is the most relevant physiological ligand of the ENG-ALK1 signaling pathway pertinent to HHT pathogenesis.
Collapse
Affiliation(s)
- Hyunwoo Choi
- Barrow Aneurysm & AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Bo-Gyeong Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Gaetbeol-Ro, Yeonsu-Gu, 21999, Incheon, Republic of Korea
| | - Yong Hwan Kim
- Barrow Aneurysm & AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Gaetbeol-Ro, Yeonsu-Gu, 21999, Incheon, Republic of Korea.
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Republic of Korea.
| | - S Paul Oh
- Barrow Aneurysm & AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
5
|
Shu Y, Guo Y, Zheng Y, He S, Shi Z. RNA methylation in vascular disease: a systematic review. J Cardiothorac Surg 2022; 17:323. [PMID: 36536469 PMCID: PMC9762007 DOI: 10.1186/s13019-022-02077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the rise in morbidity and mortality associated with vascular diseases, the underlying pathophysiological molecular mechanisms are still unclear. RNA N6-methyladenosine modification, as the most common cellular mechanism of RNA regulation, participates in a variety of biological functions and plays an important role in epigenetics. A large amount of evidence shows that RNA N6-methyladenosine modifications play a key role in the morbidity caused by vascular diseases. Further research on the relationship between RNA N6-methyladenosine modifications and vascular diseases is necessary to understand disease mechanisms at the gene level and to provide new tools for diagnosis and treatment. In this study, we summarize the currently available data on RNA N6-methyladenosine modifications in vascular diseases, addressing four aspects: the cellular regulatory system of N6-methyladenosine methylation, N6-methyladenosine modifications in risk factors for vascular disease, N6-methyladenosine modifications in vascular diseases, and techniques for the detection of N6-methyladenosine-methylated RNA.
Collapse
Affiliation(s)
- Yue Shu
- Geriatric Multi-Clinic Center, Hainan ChengMei Hospital, Haikou, Hainan People’s Republic of China ,Department of Special Medical Services, Hainan Cancer Hospital, Haikou, Hainan People’s Republic of China
| | - Yilong Guo
- grid.488137.10000 0001 2267 2324Medical School of Chinese PLA, Beijing, People’s Republic of China ,grid.414252.40000 0004 1761 8894Department of Vascular and Endovascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yin Zheng
- Geriatric Multi-Clinic Center, Hainan ChengMei Hospital, Haikou, Hainan People’s Republic of China ,Department of Special Medical Services, Hainan Cancer Hospital, Haikou, Hainan People’s Republic of China
| | - Shuwu He
- grid.443397.e0000 0004 0368 7493Department of Cardiovascular Surgery, The Second Affiliated Hospital of Hainan Medical University, 48th of Bai Shui Tang Road, Haikou, 570311 Hainan People’s Republic of China
| | - Zhensu Shi
- grid.443397.e0000 0004 0368 7493Department of Cardiovascular Surgery, The Second Affiliated Hospital of Hainan Medical University, 48th of Bai Shui Tang Road, Haikou, 570311 Hainan People’s Republic of China
| |
Collapse
|
6
|
A human model of arteriovenous malformation (AVM)-on-a-chip reproduces key disease hallmarks and enables drug testing in perfused human vessel networks. Biomaterials 2022; 288:121729. [PMID: 35999080 PMCID: PMC9972357 DOI: 10.1016/j.biomaterials.2022.121729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 02/09/2023]
Abstract
Brain arteriovenous malformations (AVMs) are a disorder wherein abnormal, enlarged blood vessels connect arteries directly to veins, without an intervening capillary bed. AVMs are one of the leading causes of hemorrhagic stroke in children and young adults. Most human sporadic brain AVMs are associated with genetic activating mutations in the KRAS gene. Our goal was to develop an in vitro model that would allow for simultaneous morphological and functional phenotypic data capture in real time during AVM disease progression. By generating human endothelial cells harboring a clinically relevant mutation found in most human patients (activating mutations within the small GTPase KRAS) and seeding them in a dynamic microfluidic cell culture system that enables vessel formation and perfusion, we demonstrate that vessels formed by KRAS4AG12V mutant endothelial cells (ECs) were significantly wider and more leaky than vascular beds formed by wild-type ECs, recapitulating key structural and functional hallmarks of human AVM pathogenesis. Immunofluorescence staining revealed a breakdown of adherens junctions in mutant KRAS vessels, leading to increased vascular permeability, a hallmark of hemorrhagic stroke. Finally, pharmacological blockade of MEK kinase activity, but not PI3K inhibition, improved endothelial barrier function (decreased permeability) without affecting vessel diameter. Collectively, our studies describe the creation of human KRAS-dependent AVM-like vessels in vitro in a self-assembling microvessel platform that is amenable to phenotypic observation and drug delivery.
Collapse
|
7
|
Winkler EA, Pacult MA, Catapano JS, Scherschinski L, Srinivasan VM, Graffeo CS, Oh SP, Lawton MT. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era. Neurosurg Focus 2022; 53:E2. [DOI: 10.3171/2022.4.focus2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Mark A. Pacult
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Joshua S. Catapano
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Lea Scherschinski
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Visish M. Srinivasan
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Christopher S. Graffeo
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - S. Paul Oh
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - Michael T. Lawton
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| |
Collapse
|
8
|
Sweaad WK, Stefanizzi FM, Chamorro-Jorganes A, Devaux Y, Emanueli C. Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. J Mol Cell Cardiol 2021; 160:56-70. [PMID: 33991529 DOI: 10.1016/j.yjmcc.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant and well-studied internal modification of messenger RNAs among the various RNA modifications in eukaryotic cells. Moreover, it is increasingly recognized to regulate non-coding RNAs. The dynamic and reversible nature of m6A is ensured by the precise and coordinated activity of specific proteins able to insert ("write"), bind ("read") or remove ("erase") the m6A modification from coding and non-coding RNA molecules. Mounting evidence suggests a pivotal role for m6A in prenatal and postnatal development and cardiovascular pathophysiology. In the present review we summarise and discuss the major functions played by m6A RNA methylation and its components particularly referring to the cardiovascular system. We present the methods used to study m6A and the most abundantly methylated RNA molecules. Finally, we highlight the possible involvement of the m6A mark in cardiovascular disease as well as the need for further studies to better describe the mechanisms of action and the potential therapeutic role of this RNA modification.
Collapse
Affiliation(s)
- Walid Khalid Sweaad
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aránzazu Chamorro-Jorganes
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The use of genetic models has facilitated the study of the origins and mechanisms of vascular disease. Mouse models have been developed to specifically target endothelial cell populations, with the goal of pinpointing when and where causative mutations wreck their devastating effects. Together, these approaches have propelled the development of therapies by providing an in-vivo platform to evaluate diagnoses and treatment options. This review summarizes the most widely used mouse models that have facilitated the study of vascular disease, with a focus on mouse models of vascular malformations and the road ahead. RECENT FINDINGS Over the past 3 decades, the vascular biology scientific community has been steadily generating a powerful toolkit of useful mouse lines that can be used to tightly regulate gene ablation, or to express transgenic genes, in the murine endothelium. Some of these models inducibly (constitutively) alter gene expression across all endothelial cells, or within distinct subsets, by expressing either Cre recombinase (or inducible versions such as CreERT), or the tetracycline controlled transactivator protein tTA (or rtTA). This now relatively standard technology has been used to gain cutting edge insights into vascular disorders, by allowing in-vivo modeling of key molecular pathways identified as dysregulated across the vast spectrum of vascular anomalies, malformations and dysplasias. However, as sequencing of human patient samples expands, the number of interesting candidate molecular culprits keeps increasing. Consequently, there is now a pressing need to create new genetic mouse models to test hypotheses and to query mechanisms underlying vascular disease. SUMMARY The current review assesses the collection of mouse driver lines that have been instrumental is identifying genes required for blood vessel formation, remodeling, maintenance/quiescence and disease. In addition, the usefulness of these driver lines is underscored here by cataloguing mouse lines developed to experimentally assess the role of key candidate genes in vascular malformations. Despite this solid and steady progress, numerous new candidate vascular malformation genes have recently been identified for which no mouse model yet exists.
Collapse
Affiliation(s)
- Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Sati L, Soygur B, Goksu E, Bassorgun CI, McGrath J. CTCFL expression is associated with cerebral vascular abnormalities. Tissue Cell 2021; 72:101528. [PMID: 33756271 DOI: 10.1016/j.tice.2021.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/06/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
CTCFL is expressed in testis, oocytes and embryonic stem cells, and is aberrantly expressed in malignant cells, and is classified as a cancer-testis gene. We have previously shown by using a tetracycline-inducible Ctcfl transgene that inappropriate expression of Ctcfl negatively impacts fetal development and causes early postnatal lethality in the mouse. The affected pups displayed severe vascular abnormalities and localized hemorrhages in the brain evocative of cerebral cavernous malformations (CCM) and arteriovenous malformations (AVM) in humans. Thus, we aim to analyze; a) the presence of CCM-related proteins CCM1/KRIT1, CCM2/malcavernin and CCM3/PDCD10 in Ctcfl transgenic animals and, b) whether there is CTCFL expression in human CCM and AVM tissues. Ctcfl transgenic animals exhibited increased CD31 expression in vascular areas of the dermis and periadnexal regions but no difference was observed for vWF and α-SMA expressions. CCM-related proteins CCM1/KRIT1, CCM2/malcavernin and CCM3/PDCD10 were aberrantly expressed in coronal sections of the head in transgenic animals. We also observed CTCFL expression in human CCMs and AVMs. The induced expression of CTCFL resulting in vascular brain malformations in mice combined with the presence of CTCFL in human vascular malformations provide new insights into the role of this gene in vascular development in humans.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey; Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ethem Goksu
- Department of Neurosurgery, Akdeniz University School of Medicine, Antalya, Turkey
| | | | - James McGrath
- Departments of Genetics and Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Affiliation(s)
- Kia J Jones
- Emory University and Atlanta VA Medical Center, Atlanta, Georgia
| | | |
Collapse
|
13
|
Marín-Ramos NI, Thein TZ, Ghaghada KB, Chen TC, Giannotta SL, Hofman FM. miR-18a Inhibits BMP4 and HIF-1α Normalizing Brain Arteriovenous Malformations. Circ Res 2020; 127:e210-e231. [PMID: 32755283 DOI: 10.1161/circresaha.119.316317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Brain arteriovenous malformations (AVMs) are abnormal tangles of vessels where arteries and veins directly connect without intervening capillary nets, increasing the risk of intracerebral hemorrhage and stroke. Current treatments are highly invasive and often not feasible. Thus, effective noninvasive treatments are needed. We previously showed that AVM-brain endothelial cells (BECs) secreted higher VEGF (vascular endothelial growth factor) and lower TSP-1 (thrombospondin-1) levels than control BEC; and that microRNA-18a (miR-18a) normalized AVM-BEC function and phenotype, although its mechanism remained unclear. OBJECTIVE To elucidate the mechanism of action and potential clinical application of miR-18a as an effective noninvasive treatment to selectively restore the phenotype and functionality of AVM vasculature. METHODS AND RESULTS The molecular pathways affected by miR-18a in patient-derived BECs and AVM-BECs were determined by Western blot, RT-qPCR (quantitative reverse transcription polymerase chain reaction), ELISA, co-IP, immunostaining, knockdown and overexpression studies, flow cytometry, and luciferase reporter assays. miR-18a was shown to increase TSP-1 and decrease VEGF by reducing PAI-1 (plasminogen activator inhibitor-1/SERPINE1) levels. Furthermore, miR-18a decreased the expression of BMP4 (bone morphogenetic protein 4) and HIF-1α (hypoxia-inducible factor 1α), blocking the BMP4/ALK (activin-like kinase) 2/ALK1/ALK5 and Notch signaling pathways. As determined by Boyden chamber assays, miR-18a also reduced the abnormal AVM-BEC invasiveness, which correlated with a decrease in MMP2 (matrix metalloproteinase 2), MMP9, and ADAM10 (ADAM metallopeptidase domain 10) levels. In vivo pharmacokinetic studies showed that miR-18a reaches the brain following intravenous and intranasal administration. Intranasal co-delivery of miR-18a and NEO100, a good manufacturing practices-quality form of perillyl alcohol, improved the pharmacokinetic profile of miR-18a in the brain without affecting its pharmacological properties. Ultra-high-resolution computed tomography angiography and immunostaining studies in an Mgp-/- AVM mouse model showed that miR-18a decreased abnormal cerebral vasculature and restored the functionality of the bone marrow, lungs, spleen, and liver. CONCLUSIONS miR-18a may have significant clinical value in preventing, reducing, and potentially reversing AVM.
Collapse
Affiliation(s)
- Nagore I Marín-Ramos
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Thu Zan Thein
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Ketan B Ghaghada
- Department of Pediatric Radiology, Texas Children's Hospital, Houston (K.B.G.)
| | - Thomas C Chen
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles.,Departments of Pathology (T.C.C., F.M.H.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Steven L Giannotta
- Departments of Neurosurgery (N.I.M.-R., T.Z.T., T.C.C., S.L.G.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Florence M Hofman
- Departments of Pathology (T.C.C., F.M.H.), Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
14
|
Fish JE, Flores Suarez CP, Boudreau E, Herman AM, Gutierrez MC, Gustafson D, DiStefano PV, Cui M, Chen Z, De Ruiz KB, Schexnayder TS, Ward CS, Radovanovic I, Wythe JD. Somatic Gain of KRAS Function in the Endothelium Is Sufficient to Cause Vascular Malformations That Require MEK but Not PI3K Signaling. Circ Res 2020; 127:727-743. [PMID: 32552404 PMCID: PMC7447191 DOI: 10.1161/circresaha.119.316500] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: We previously identified somatic activating mutations in the KRAS (Kirsten rat sarcoma viral oncogene homologue) gene in the endothelium of the majority of human sporadic brain arteriovenous malformations; a disorder characterized by direct connections between arteries and veins. However, whether this genetic abnormality alone is sufficient for lesion formation, as well as how active KRAS signaling contributes to arteriovenous malformations, remains unknown. Objective: To establish the first in vivo models of somatic KRAS gain of function in the endothelium in both mice and zebrafish to directly observe the phenotypic consequences of constitutive KRAS activity at a cellular level in vivo, and to test potential therapeutic interventions for arteriovenous malformations. Methods and Results: Using both postnatal and adult mice, as well as embryonic zebrafish, we demonstrate that endothelial-specific gain of function mutations in Kras (G12D or G12V) are sufficient to induce brain arteriovenous malformations. Active KRAS signaling leads to altered endothelial cell morphogenesis and increased cell size, ectopic sprouting, expanded vessel lumen diameter, and direct connections between arteries and veins. Furthermore, we show that these lesions are not associated with altered endothelial growth dynamics or a lack of proper arteriovenous identity but instead seem to feature exuberant angiogenic signaling. Finally, we demonstrate that KRAS-dependent arteriovenous malformations in zebrafish are refractory to inhibition of the downstream effector PI3K but instead require active MEK (mitogen-activated protein kinase kinase 1) signaling. Conclusions: We demonstrate that active KRAS expression in the endothelium is sufficient for brain arteriovenous malformations, even in the setting of uninjured adult vasculature. Furthermore, the finding that KRAS-dependent lesions are reversible in zebrafish suggests that MEK inhibition may represent a promising therapeutic treatment for arteriovenous malformation patients.
Collapse
Affiliation(s)
- Jason E Fish
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada.,Peter Munk Cardiac Centre (J.E.F.), University Health Network, Canada.,Department of Laboratory Medicine and Pathobiology (J.E.F., D.G.), University of Toronto, Canada
| | - Carlos Perfecto Flores Suarez
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Emilie Boudreau
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Alexander M Herman
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Manuel Cantu Gutierrez
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,Graduate Program in Developmental Biology (M.C.G., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Dakota Gustafson
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada.,Department of Laboratory Medicine and Pathobiology (J.E.F., D.G.), University of Toronto, Canada
| | - Peter V DiStefano
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Meng Cui
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Zhiqi Chen
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Karen Berman De Ruiz
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Taylor S Schexnayder
- Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,and Advanced Technology Cores (T.S.S., C.S.W.), Baylor College of Medicine, Houston, TX
| | - Christopher S Ward
- Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,and Advanced Technology Cores (T.S.S., C.S.W.), Baylor College of Medicine, Houston, TX
| | - Ivan Radovanovic
- Krembil Research Institute (I.R.), University Health Network, Canada.,Division of Neurosurgery, Sprott Department of Surgery (I.R.), University Health Network, Canada.,Department of Surgery (I.R.), University of Toronto, Canada
| | - Joshua D Wythe
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,Graduate Program in Developmental Biology (M.C.G., J.D.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
15
|
Ota T, Komiyama M. Pathogenesis of non-hereditary brain arteriovenous malformation and therapeutic implications. Interv Neuroradiol 2020; 26:244-253. [PMID: 32024399 DOI: 10.1177/1591019920901931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain arteriovenous malformations have a high risk of intracranial hemorrhage, which is a substantial cause of morbidity and mortality in patients with brain arteriovenous malformations. Although a variety of genetic factors leading to hereditary brain arteriovenous malformations have been extensively investigated, their pathogenesis is still not well elucidated, especially in sporadic brain arteriovenous malformations. The authors have reviewed the updated data of not only the genetic aspects of sporadic brain arteriovenous malformations, but also the architecture of microvasculature, the roles of the angiogenic factors, and the signaling pathways. This knowledge may allow us to infer the pathogenesis of sporadic brain arteriovenous malformations and develop pre-emptive treatments for them.
Collapse
Affiliation(s)
- Takahiro Ota
- Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Masaki Komiyama
- Department of Neurointervention, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
16
|
Oka M, Kushamae M, Aoki T, Yamaguchi T, Kitazato K, Abekura Y, Kawamata T, Mizutani T, Miyamoto S, Takagi Y. KRAS G12D or G12V Mutation in Human Brain Arteriovenous Malformations. World Neurosurg 2019; 126:e1365-e1373. [PMID: 30902772 DOI: 10.1016/j.wneu.2019.03.105] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (BAVMs) are vascular malformations composed of tangles of abnormally developed vasculature without capillaries. Abnormal shunting of arteries and veins is formed, resulting in high-pressure vascular channels, which potentially lead to rupture. BAVMs are generally considered a congenital disorder. But clinical evidence regarding involution, regrowth, and de novo formation argue against the static condition of this disease. Recently, the presence of the somatic activating KRAS mutations in more than half of BAVM cases was reported, suggesting the role of KRAS function in the pathogenesis. METHODS KRAS mutation in codon35 (G→A, G12D; G→T, G12V) was examined by a digital polymerase chain reaction analysis using genome purified from paraffin-embedded slides of human BAVMs. We also examined protein expression of KRAS G12D in lesions to corroborate results from digital polymerase chain reaction analysis. RESULTS We detected codon35 G→A mutation in 15 (39.5%) among 38 samples and codon35 G→T mutation in 10 (27.0%) among 37 samples we could assess mutations. There were no samples positive for both codon35 G→A and G→T mutation. The ratio of codon35 G→A mutation ranged from 0.60% to 12.28% and that of G→T was from 1.20% to 8.99%. We next examined protein expression of KRAS G12D in BAVM lesions in immunohistochemistry. A KRAS G12D mutant was detected mainly in endothelial cells of dilated vessels in lesions. CONCLUSIONS KRAS mutations in codon35 were detected in about two thirds of specimens examined. KRAS function may actively contribute to the pathobiology of BAVM and can become a therapeutic target.
Collapse
Affiliation(s)
- Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Department of Neurosurgery, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan; Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita City, Osaka, Japan
| | - Tadashi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Keiko Kitazato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Yu Abekura
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto City, Kyoto, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto City, Kyoto, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima City, Tokushima, Japan.
| |
Collapse
|
17
|
Abstract
Long noncoding RNAs (LncRNAs) were important genes involved in a variety of biological functions. They are aberrantly expressed in many types of diseases. In this study, we described LncRNAs profiles in 4 pairs of human brain arteriovenous malformation(AVM) and the corresponding fragment of superior temporal arteries(STA) or small scalp arteries (controlled arteries, CA) and try to find LncRNAs that correlated with the human brain AVM and with clinical symptoms.4 pairs of AVM tissues and corresponding STA or scalp artery fragments (depended on the operative approach) of 4 AVM patients who were admitted in Beijing TianTan hospital were collected. Then LncRNA and mRNA expression profiling analysis was performed by Arraystar-LncRNA array. From the data, we found 1931 LncRNAs upregulated (>2 folds) and 1852 downregulated (<2 folds) in total 28,012 LncRNAs that could be detected. We also found 1577 upregulated mRNAs (>2 folds) and 1699 downregulated (<2 folds) in 21,780 mRNAs that could be detected. LncRNAs (ENST00000423394, ENST00000444114, TCONS_00013855, and ENST00000452148) were evaluated by qPCR in 14 pairs of AVM nidus and the control. This 4 LncRNAs were aberrantly expressed in AVM nidus compared with the control. LncRNA (ENST00000423394) correlated with epilepsy (R = 0.34, P = .02, 95% confidence interval 0.08-0.85)We found that development of AVM may correspond with downregulation of NADPH reductase, lipoprotein lipase and Optic atrophy related proteins. It also may correspond with upregulation of Fcγreceptor. The downregulation of NADPH reductase may correlate with seizures of AVM patients.
Collapse
Affiliation(s)
- Xiong Li
- Department of Neurosurgery, Beijing ChaoYang Hospital
| | - FuXin Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| |
Collapse
|
18
|
Osmanagic-Myers S, Rezniczek GA. Arteriovenous specification: BMPER and TWSG1 determine endothelial cell fate via activation of synergistic BMP and Notch signaling. FEBS J 2018; 285:1399-1402. [PMID: 29654706 PMCID: PMC5947552 DOI: 10.1111/febs.14439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 12/04/2022]
Abstract
Two extracellular BMP modulators, BMPER and TWSG1, act in a pro‐BMP fashion to activate endothelial‐specific members of the TGF‐β/BMP receptor family. Through cross‐talk with the Notch signaling pathways, they are key regulators of downstream Notch targets, including ephrin B2. This adds to our understanding of BMP and Notch signaling, how these pathways converge, and thereby control arteriovenous specification.
![]()
Collapse
Affiliation(s)
- Selma Osmanagic-Myers
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Günther A Rezniczek
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Herne, Germany
| |
Collapse
|