1
|
Eromosele OB, Shapira-Daniels A, Yuan A, Lukan A, Akinrimisi O, Chukwurah M, Nayor M, Benjamin EJ, Lin H. The association of exhaled carbon monoxide with atrial fibrillation and left atrial size in the Framingham Heart Study. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 45:100439. [PMID: 39234302 PMCID: PMC11372625 DOI: 10.1016/j.ahjo.2024.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Background Exhaled carbon monoxide (eCO) is associated with subclinical and overt cardiovascular disease and stroke. The association between eCO with left atrial size, prevalent, or incident atrial fibrillation (AF) are uncertain. Methods eCO was measured using an Ecolyzer instrument among Framingham Heart Study Offspring and Omni participants who attended an examination from 1994 to 1998. We analyzed multivariable-adjusted (current smoking, and other covariates including age, race, sex, height, weight, systolic blood pressure, diastolic blood pressure, diabetes, hypertension treatment, prevalent myocardial infarction [MI], and prevalent heart failure [HF]). Cox and logistic regression models assessed the relations between eCO and incident AF (primary model), and prevalent AF and left atrial (LA) size (pre-specified secondary analyses). We also conducted secondary analyses adjusting for biomarkers, and interim MI and interim HF. Results Our study sample included 3814 participants (mean age 58 ± 10 years; 54.4 % women, 88.4 % White). During an average of 18.8 ± 6.5 years follow-up, 683 participants were diagnosed with AF. eCO was associated with incident AF after adjusting for established AF risk factors (HR, 1.31 [95 % CI, 1.09-1.58]). In secondary analyses the association remained significant after additionally adjusting for C-reactive protein and B-type natriuretic peptide, and interim MI and CHF, and in analyses excluding individuals who currently smoked. eCO was not significantly associated with LA size and prevalent AF. Conclusion In our community-based sample of individuals without AF, higher mean eCO concentrations were associated with incident AF. Further investigation is needed to explore the biological mechanisms linking eCO with AF.
Collapse
Affiliation(s)
- Oseiwe B. Eromosele
- Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ayelet Shapira-Daniels
- Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Amy Yuan
- Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Abdulkareem Lukan
- Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Olumuyiwa Akinrimisi
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Marius Chukwurah
- Department of Medicine, Division of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Nayor
- Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Emelia J. Benjamin
- Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Honghuang Lin
- Boston University and NHLBI's Framingham Heart Study, USA
| |
Collapse
|
2
|
Wang Y, Ge Y, Yan W, Wang L, Zhuang Z, He D. From smoke to stroke: quantifying the impact of smoking on stroke prevalence. BMC Public Health 2024; 24:2301. [PMID: 39180018 PMCID: PMC11344360 DOI: 10.1186/s12889-024-19754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
PURPOSE The objective of this study is to assess the impact of smoking on stroke prevalence and to delineate the relationship between smoking-related factors and the risk of stroke, incorporating an analysis of demographic variations influencing this association. METHODS Our analysis encompassed 9,176 participants, evaluating clinical attributes alongside smoking-related characteristics such as duration of cigarette consumption, and levels of nicotine, tar, and carbon monoxide. We employed weighted univariate logistic regression and restricted cubic splines to examine the association between smoking indicators and stroke risk, complemented by subgroup analyses for demographic differentiation. RESULTS The overall prevalence of stroke in our cohort was 3.4%. Statistically significant associations were found between stroke incidence and factors such as age, gender, education, and marital status (p < 0.05). Adjusted logistic regression models showed increased odds ratios (ORs) for stroke with higher nicotine and carbon monoxide levels across progressively adjusted models: Model 1 (unadjusted), Model 2 (adjusted for age, gender), Model 3 (further adjusted for education, marital status, BMI, PIR), and Model 4 (fully adjusted for additional factors including hypertension, hyperlipidemia, diabetes, and drinking). Specifically, ORs for nicotine increased from 2.39 in Model 1 to 2.64 in Model 4; for carbon monoxide, from 1.10 to 1.11 over the same models.The threshold analysis using restricted cubic splines revealed critical points for stroke risk increase at smoke exposure levels of 410 units, tar 12 mg, nicotine 1.1 mg, and carbon monoxide 12 ppm. Above these thresholds, stroke risk escalates significantly. Additionally, the presence of family smoking history was associated with higher stroke risks compared to those without such history. CONCLUSION This study confirms that smoking significantly contributes to increased stroke risk, particularly through exposure to nicotine and carbon monoxide. The findings emphasize the necessity for tailored stroke prevention strategies that specifically address smoking behaviors and consider demographic susceptibilities. Incorporating smoking-related indicators into risk assessment models could enhance the precision of stroke prevention efforts.
Collapse
Affiliation(s)
- Yuntao Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Ying Ge
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wei Yan
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Lina Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zhenzhen Zhuang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Daikun He
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
3
|
Clancy U, Cheng Y, Brara A, Doubal FN, Wardlaw JM. Occupational and domestic exposure associations with cerebral small vessel disease and vascular dementia: A systematic review and meta-analysis. Alzheimers Dement 2024; 20:3021-3033. [PMID: 38270898 PMCID: PMC11032565 DOI: 10.1002/alz.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION The prevalence of cerebral smallvessel disease (SVD) and vascular dementia according to workplace or domestic exposure to hazardous substances is unclear. METHODS We included studies assessing occupational and domestic hazards/at-risk occupations and SVD features. We pooled prevalence estimates using random-effects models where possible, or presented a narrative synthesis. RESULTS We included 85 studies (n = 47,743, mean age = 44·5 years). 52/85 reported poolable estimates. SVD prevalence in populations exposed to carbon monoxide was 81%(95% CI = 60-93%; n = 1373; results unchanged in meta-regression), carbon disulfide73% (95% CI = 54-87%; n = 131), 1,2-dichloroethane 88% (95% CI = 4-100%, n = 40), toluene 82% (95% CI = 3-100%, n = 64), high altitude 49% (95% CI = 38-60%; n = 164),and diving 24% (95% CI = 5-67%, n = 172). We narratively reviewed vascular dementia studies and contact sport, lead, military, pesticide, and solvent exposures as estimates were too few/varied to pool. DISCUSSION SVD and vascular dementia may be associated with occupational/domestic exposure to hazardous substances. CRD42021297800.
Collapse
Affiliation(s)
- Una Clancy
- Centre for Clinical Brain Sciences and the UK Dementia Research InstituteChancellor's BuildingUniversity of EdinburghEdinburghUK
| | - Yajun Cheng
- Center of Cerebrovascular DiseasesDepartment of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Amrita Brara
- Centre for Clinical Brain Sciences and the UK Dementia Research InstituteChancellor's BuildingUniversity of EdinburghEdinburghUK
| | - Fergus N. Doubal
- Centre for Clinical Brain Sciences and the UK Dementia Research InstituteChancellor's BuildingUniversity of EdinburghEdinburghUK
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences and the UK Dementia Research InstituteChancellor's BuildingUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Backhouse EV, Bauermeister S, Wardlaw JM. Lifetime influences on imaging markers of adverse brain health and vascular disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100194. [PMID: 38292018 PMCID: PMC10827485 DOI: 10.1016/j.cccb.2023.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
Cerebral small vessel disease (cSVD) is highly prevalent in the general population, increases with age and vascular risk factor exposure, and is a common cause of stroke and dementia. There is great variation in cSVD burden experienced in older age, and maintaining brain health across the life course requires looking beyond an individual's current clinical status and traditional vascular risk factors. Of particular importance are social determinants of health which can be more important than healthcare or lifestyle choices in influencing later life health outcomes, including brain health. In this paper we discuss the social determinants of cerebrovascular disease, focusing on the impact of socioeconomic status on markers of cSVD. We outline the potential mechanisms behind these associations, including early life exposures, health behaviours and brain reserve and maintenance, and we highlight the importance of public health interventions to address the key determinants and risk factors for cSVD from early life stages.
Collapse
Affiliation(s)
- Ellen V Backhouse
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah Bauermeister
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- MRC UK Dementia Research Institute, University of Oxford, Oxford OX3 7JX, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Zhang D, Liu D, Wang C, Su Y, Zhang X. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Adv Colloid Interface Sci 2023; 322:103037. [PMID: 37931381 DOI: 10.1016/j.cis.2023.103037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Inspired by natural catalytic compartments, various synthetic compartments that seclude catalytic reactions have been developed to understand complex multistep biosynthetic pathways, bestow therapeutic effects, or extend biosynthetic pathways in living cells. These emerging nanoreactors possessed many advantages over conventional biomedicine, such as good catalytic activity, specificity, and sustainability. In the past decade, a great number of efficient catalytic systems based on diverse nanoreactors (polymer vesicles, liposome, polymer micelles, inorganic-organic hybrid materials, MOFs, etc.) have been designed and employed to initiate in situ catalyzed chemical reactions for therapy. This review aims to present the recent progress in the development of catalytic systems based on nanoreactors for therapeutic applications, with a special emphasis on the principles and design strategies. Besides, the key components of nanoreactor-based catalytic systems, including nanocarriers, triggers or energy inputs, and products, are respectively introduced and discussed in detail. Challenges and prospects in the fabrication of therapeutic catalytic nanoreactors are also discussed as a conclusion to this review. We believe that catalytic nanoreactors will play an increasingly important role in modern biomedicine, with improved therapeutic performance and minimal side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yanhong Su
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
6
|
Qiu G, Yu K, Yu C, Li W, Lv J, Guo Y, Bian Z, Yang L, Chen Y, Chen Z, Hu FB, Li L, Wu T. Association of exhaled carbon monoxide with risk of cardio-cerebral-vascular disease in the China Kadoorie Biobank cohort study. Sci Rep 2020; 10:19507. [PMID: 33177548 PMCID: PMC7659340 DOI: 10.1038/s41598-020-76353-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Exhaled carbon monoxide (COex) level has been proposed as a noninvasive and easily-obtainable cardiovascular risk marker, however, with limited prospective evidence, and its association with stroke risk has been rarely explored. Measurements of COex were performed during 2004-2008 baseline examinations in the China Kadoorie Biobank study among 512,891 adults aged 30-79 years from 10 diverse study areas. After excluding participants with baseline cardiopulmonary diseases, stroke and cancer, 178,485 men and 267,202 women remained. Cox regression yielded hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of cardio-cerebral-vascular disease (CCVD) associated with COex levels, with sequential addition of adjustment for proxy variables for CO exposure, including study area indexing ambient CO variations at large, and smoking and solid fuel use, apart from adjusting for traditional cardiovascular risk factors. During 7-year follow-up, we documented 1744 and 1430 major coronary events (myocardial infarction plus fatal ischemic heart disease), 8849 and 10,922 ischemic strokes, and 2492 and 2363 hemorrhagic strokes among men and women, respectively. The HRs with 95% CIs comparing the highest with lowest COex quintile were 2.15 [1.72, 2.69] for major coronary events, 1.65 [1.50, 1.80] for ischemic stroke, and 1.35 [1.13, 1.61] for hemorrhagic stroke among men, while among women higher associated risk was only observed for major coronary events (1.64 [1.35, 2.00]) and ischemic stroke (1.87 [1.73, 2.01]). The elevated risks were consistent when COex level was over 3 ppm. However, these associations were all attenuated until null by sequential addition of stratification by study areas, and adjustments of smoking and solid fuel use. Nevertheless, the association with ischemic stroke was maintained among the subgroup of male smokers even with adjustment for the depth and amount of cigarette smoking (HR [95% CI]: 1.37 [1.06, 1.77]), while a negative association with hemorrhagic stroke also appeared within this subgroup. Higher COex level (over 3 ppm) was associated with elevated risk of ischemic CCVD, but not independently of CO exposure. Our finding suggests that, though not an independent risk factor, COex could potentially provide a cost-effective biomarker for ischemic cardio-cerebral-vascular risk, given that CO exposure is ubiquitous.
Collapse
Affiliation(s)
- Gaokun Qiu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hongkong Rd, Wuhan, 430030, Hubei, People's Republic of China.
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hongkong Rd, Wuhan, 430030, Hubei, People's Republic of China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hongkong Rd, Wuhan, 430030, Hubei, People's Republic of China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Frank B Hu
- Department of Nutrition and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, People's Republic of China.
- Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hongkong Rd, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Tun B, Ehrbar R, Short M, Cheng S, Vasan RS, Xanthakis V. Association of Exhaled Carbon Monoxide With Ideal Cardiovascular Health, Circulating Biomarkers, and Incidence of Heart Failure in the Framingham Offspring Study. J Am Heart Assoc 2020; 9:e016762. [PMID: 33100134 PMCID: PMC7763395 DOI: 10.1161/jaha.120.016762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Exhaled carbon monoxide (eCO) is directly associated with traditional cardiovascular disease risk factors and incident cardiovascular disease. However, its relation with the cardiovascular health score and incidence of heart failure (HF) has not been investigated. Methods and Results We measured eCO in 3521 Framingham Heart Study Offspring participants attending examination cycle 6 (mean age 59 years, 53% women). We related the cardiovascular health score (composite of blood pressure, fasting plasma glucose, total cholesterol, body mass index, smoking, diet, and physical activity) to eCO adjusting for age, sex, and smoking. Higher cardiovascular health scores were associated with lower eCO (β=-0.02, P<0.0001), even among nonsmokers. Additionally, C-reactive protein, plasminogen activator inhibitor-1, fibrinogen, growth differentiation factor-15, homocysteine, and asymmetrical dimethylarginine were positively associated with eCO (P≤0.003 for all). The age- and sex-adjusted and multivariable-adjusted heritabilities of eCO were 49.5% and 31.4%, respectively. Over a median follow-up of 18 years, 309 participants (45% women) developed HF. After multivariable adjustment, higher eCO was associated with higher risk of HF (hazards ratio per SD increment: 1.39; 95% CI, 1.19-1.62 [P<0.001]) and with higher risk of HF with reduced ejection fraction (N=144 events; hazard ratio per SD increment in eCO: 1.43; 95% CI, 1.15-1.77 [P=0.001]). Conclusions In our community-based sample, higher levels of eCO were associated with lower cardiovascular health scores, an adverse cardiovascular biomarker profile, and a higher risk of HF, specifically HF with reduced ejection fraction. Our findings suggest that carbon monoxide may identify a novel pathway to HF development.
Collapse
Affiliation(s)
- Bradley Tun
- Department of Medicine Boston University School of Medicine and Boston Medical Center Boston MA
| | - Rachel Ehrbar
- Department of Biostatistics Boston University School of Public Health Boston MA
| | - Meghan Short
- Glenn Biggs Institute for Alzheimer's Disease & Neurodegenerative Diseases University of Texas Health Sciences Center San Antonio TX
| | - Susan Cheng
- Smidt Heart Institute Cedars-Sinai Medical Center Los Angeles CA
| | - Ramachandran S Vasan
- National Heart, Blood and Lung Institute Framingham Heart Study Framingham MA.,Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine Department of Medicine Boston University School of Medicine Boston MA.,Department of Epidemiology Boston University School of Public Health Boston MA
| | - Vanessa Xanthakis
- Department of Biostatistics Boston University School of Public Health Boston MA.,National Heart, Blood and Lung Institute Framingham Heart Study Framingham MA.,Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine Department of Medicine Boston University School of Medicine Boston MA
| |
Collapse
|
8
|
Gao F, Wang F, Nie X, Zhang Z, Chen G, Xia L, Wang LH, Wang CH, Hao ZY, Zhang WJ, Hong CY, You YZ. Mitochondria-targeted delivery and light controlled release of iron prodrug and CO to enhance cancer therapy by ferroptosis. NEW J CHEM 2020. [DOI: 10.1039/c9nj05860e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial malfunction is considered to be a decisive signal of apoptosis.
Collapse
|
9
|
Abstract
Gas-involving cancer theranostics have attracted considerable attention in recent years due to their high therapeutic efficacy and biosafety. We have reviewed the recent significant advances in the development of stimuli-responsive gas releasing molecules (GRMs) and gas nanogenerators for cancer bioimaging, targeted and controlled gas therapy, and gas-sensitized synergistic therapy. We have focused on gases with known anticancer effects, such as oxygen (O2), carbon monoxide (CO), nitric oxide (NO), hydrogen sulfide (H2S), hydrogen (H2), sulfur dioxide (SO2), carbon dioxide (CO2), and heavy gases that act via the gas-generating process. The GRMs and gas nanogenerators for each gas have been described in terms of the stimulation method, followed by their applications in ultrasound and multimodal imaging, and finally their primary and synergistic actions with other cancer therapeutic modalities. The current challenges and future possibilities of gas therapy and imaging vis-à-vis clinical translation have also been discussed.
Collapse
Affiliation(s)
- Lichan Chen
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| |
Collapse
|
10
|
Frey BM, Petersen M, Mayer C, Schulz M, Cheng B, Thomalla G. Characterization of White Matter Hyperintensities in Large-Scale MRI-Studies. Front Neurol 2019; 10:238. [PMID: 30972001 PMCID: PMC6443932 DOI: 10.3389/fneur.2019.00238] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023] Open
Abstract
Background: White matter hyperintensities of presumed vascular origin (WMH) are a common finding in elderly people and a growing social malady in the aging western societies. As a manifestation of cerebral small vessel disease, WMH are considered to be a vascular contributor to various sequelae such as cognitive decline, dementia, depression, stroke as well as gait and balance problems. While pathophysiology and therapeutical options remain unclear, large-scale studies have improved the understanding of WMH, particularly by quantitative assessment of WMH. In this review, we aimed to provide an overview of the characteristics, research subjects and segmentation techniques of these studies. Methods: We performed a systematic review according to the PRISMA statement. One thousand one hundred and ninety-six potentially relevant articles were identified via PubMed search. Six further articles classified as relevant were added manually. After applying a catalog of exclusion criteria, remaining articles were read full-text and the following information was extracted into a standardized form: year of publication, sample size, mean age of subjects in the study, the cohort included, and segmentation details like the definition of WMH, the segmentation method, reference to methods papers as well as validation measurements. Results: Our search resulted in the inclusion and full-text review of 137 articles. One hundred and thirty-four of them belonged to 37 prospective cohort studies. Median sample size was 1,030 with no increase over the covered years. Eighty studies investigated in the association of WMH and risk factors. Most of them focussed on arterial hypertension, diabetes mellitus type II and Apo E genotype and inflammatory markers. Sixty-three studies analyzed the association of WMH and secondary conditions like cognitive decline, mood disorder and brain atrophy. Studies applied various methods based on manual (3), semi-automated (57), and automated segmentation techniques (75). Only 18% of the articles referred to an explicit definition of WMH. Discussion: The review yielded a large number of studies engaged in WMH research. A remarkable variety of segmentation techniques was applied, and only a minority referred to a clear definition of WMH. Most addressed topics were risk factors and secondary clinical conditions. In conclusion, WMH research is a vivid field with a need for further standardization regarding definitions and used methods.
Collapse
Affiliation(s)
- Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marvin Petersen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Mayer
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801964. [PMID: 30066474 DOI: 10.1002/adma.201801964] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
The fast advances of theranostic nanomedicine enable the rational design and construction of diverse functional nanoplatforms for versatile biomedical applications, among which gas-generating nanoplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies. Here, the recent developments of the rational design and chemical construction of versatile GGNs for efficient gas therapies by either exogenous physical triggers or endogenous disease-environment responsiveness are reviewed. These gases involve some therapeutic gases that can directly change disease status, such as oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen (H2 ), hydrogen sulfide (H2 S) and sulfur dioxide (SO2 ), and other gases such as carbon dioxide (CO2 ), dl-menthol (DLM), and gaseous perfluorocarbon (PFC) for supplementary assistance of the theranostic process. Abundant nanocarriers have been adopted for gas delivery into lesions, including poly(d,l-lactic-co-glycolic acid), micelles, silica/mesoporous silica, organosilica, MnO2 , graphene, Bi2 Se3 , upconversion nanoparticles, CaCO3 , etc. Especially, these GGNs have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use. The biosafety issue, challenges faced, and future developments on the rational construction of GGNs are also discussed for further promotion of their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
12
|
Chen HY, Li SC, Chen LF, Wang W, Wang Y, Yan XW. The effects of cigarette smoking and smoking cessation on high-density lipoprotein functions: implications for coronary artery disease. Ann Clin Biochem 2018; 56:100-111. [PMID: 29961342 DOI: 10.1177/0004563218788386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Smoking cessation was associated with improved prognosis of coronary artery disease. This study was designed to investigate the effect of smoking cessation on high-density lipoprotein functionality in coronary artery disease patients. METHODS In this prospective, randomized and parallel controlled study, coronary artery disease smokers ( n = 28) and healthy smokers ( n = 30) were divided into smoking cessation group and continuous smoking group, respectively. Blood samples were collected before and after three-month smoking cessation. Plasma high-density lipoprotein was isolated by density gradient centrifugation. The ability of high-density lipoprotein against copper-induced oxidation of lipoprotein was determined to evaluate the antioxidative property of high-density lipoprotein, and the macrophage migration inhibited by high-density lipoprotein was tested to identify the antichemotactic property of high-density lipoprotein. High-density lipoprotein-induced macrophage cholesterol efflux was measured by fluorescence spectrometry using NBD cholesterol analogue. Healthy non-smoking volunteers were enrolled as the baseline control. RESULTS The baseline antioxidative, antichemotactic ability of high-density lipoprotein and high-density lipoprotein-induced cellular cholesterol efflux in coronary artery disease smokers and healthy smokers were significantly attenuated when compared with those in healthy non-smokers. After three-month smoking cessation, both the antioxidative ability and antichemotactic ability of high-density lipoprotein were improved significantly in coronary artery disease smokers. However, high-density lipoprotein-induced cellular cholesterol efflux was not increased by smoking cessation. In in vitro experiments, carbon monoxide reduced the antioxidative ability and nicotine enhanced the antichemotactic ability of high-density lipoprotein. CONCLUSIONS Smoking cessation is an effective measure to improve high-density lipoprotein functions in coronary artery disease smokers. Our study re-emphasizes the importance of smoking cessation in the secondary prevention of coronary artery disease.
Collapse
Affiliation(s)
- Hong-Ying Chen
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Shi-Cheng Li
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Lian-Feng Chen
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Wei Wang
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Yu Wang
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| | - Xiao-Wei Yan
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, P. R. China
| |
Collapse
|
13
|
Bereczki D, Balla J, Bereczki D. Heme Oxygenase-1: Clinical Relevance in Ischemic Stroke. Curr Pharm Des 2018; 24:2229-2235. [PMID: 30014798 PMCID: PMC6302555 DOI: 10.2174/1381612824666180717101104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Stroke is the second-leading cause of death and a leading cause of serious long-term disability worldwide, with an increasing global burden due to the growing and aging population. However, strict eligibility criteria for current treatment opportunities make novel therapeutic approaches desirable. Oxidative stress plays a pivotal role during cerebral ischemia, eventually leading to neuronal injury and cell death. The significant correlation between redox imbalance and ischemic stroke has led to various treatment strategies targeting the endogenous antioxidant system in order to ameliorate the adverse prognosis in patients with cerebral infarction. One of the most extensively investigated cellular defense pathway in this regard is the Nrf2-heme oxygenase-1 (HO-1) axis. In this review, our aim is to focus on the potential clinical relevance of targeting the HO-1 pathway in ischemic stroke.
Collapse
Affiliation(s)
- Daniel Bereczki
- Address correspondence to this author at the Department of Neurology, Medical Centre, Hungarian Defence Forces, Róbert Károly krt. 44., Budapest, H-1134, Hungary; Tel: +36-70-701-0671; E-mail:
| | | | | |
Collapse
|