1
|
Schleicher RL, Vorasayan P, McCabe ME, Bevers MB, Davis TP, Griffin JH, Hinduja A, Jadhav AP, Lee JM, Sawyer RN, Zlokovic BV, Sheth KN, Fedler JK, Lyden P, Kimberly WT. Analysis of brain edema in RHAPSODY. Int J Stroke 2024; 19:68-75. [PMID: 37382409 PMCID: PMC10789908 DOI: 10.1177/17474930231187268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Cerebral edema is a secondary complication of acute ischemic stroke, but its time course and imaging markers are not fully understood. Recently, net water uptake (NWU) has been proposed as a novel marker of edema. AIMS Studying the RHAPSODY trial cohort, we sought to characterize the time course of edema and test the hypothesis that NWU provides distinct information when added to traditional markers of cerebral edema after stroke by examining its association with other markers. METHODS A total of 65 patients had measurable supratentorial ischemic lesions. Patients underwent head computed tomography (CT), brain magnetic resonance imaging (MRI) scans, or both at the baseline visit and after 2, 7, 30, and 90 days following enrollment. CT and MRI scans were used to measure four imaging markers of edema: midline shift (MLS), hemisphere volume ratio (HVR), cerebrospinal fluid (CSF) volume, and NWU using semi-quantitative threshold analysis. Trajectories of the markers were summarized, as available. Correlations of the markers of edema were computed and the markers compared by clinical outcome. Regression models were used to examine the effect of 3K3A-activated protein C (APC) treatment. RESULTS Two measures of mass effect, MLS and HVR, could be measured on all imaging modalities, and had values available across all time points. Accordingly, mass effect reached a maximum level by day 7, normalized by day 30, and then reversed by day 90 for both measures. In the first 2 days after stroke, the change in CSF volume was associated with MLS (ρ = -0.57, p = 0.0001) and HVR (ρ = -0.66, p < 0.0001). In contrast, the change in NWU was not associated with the other imaging markers (all p ⩾ 0.49). While being directionally consistent, we did not observe a difference in the edema markers by clinical outcome. In addition, baseline stroke volume was associated with all markers (MLS (p < 0.001), HVR (p < 0.001), change in CSF volume (p = 0.003)) with the exception of NWU (p = 0.5). Exploratory analysis did not reveal a difference in cerebral edema markers by treatment arm. CONCLUSIONS Existing cerebral edema imaging markers potentially describe two distinct processes, including lesional water concentration (i.e. NWU) and mass effect (MLS, HVR, and CSF volume). These two types of imaging markers may represent distinct aspects of cerebral edema, which could be useful for future trials targeting this process.
Collapse
Affiliation(s)
- Riana L. Schleicher
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pongpat Vorasayan
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Megan E. McCabe
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Matthew B. Bevers
- Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - John H. Griffin
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Archana Hinduja
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert N. Sawyer
- Department of Neurology, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Berislav V. Zlokovic
- Department of Physiology & Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Kevin N. Sheth
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Janel K. Fedler
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Patrick Lyden
- Department of Physiology & Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Abstract
We search for ischemic stroke treatment knowing we have failed-intensely and often-to translate mechanistic knowledge into treatments that alleviate our patients' functional impairments. Lessons can be derived from our shared failures that may point to new directions and new strategies. First, the principle criticisms of both preclinical and clinical assessments are summarized. Next, previous efforts to develop single-mechanism treatments are reviewed. Finally, new definitions, novel approaches, and different directions are presented. In previous development efforts, the basic science and preclinical assessment of candidate treatments often lacked rigor and sufficiency; the clinical trials may have lacked power, rigor, or rectitude; or most likely both preclinical and clinical investigations were flawed. Single-target agents directed against specific molecular mechanisms proved unsuccessful. The term neuroprotection should be replaced as it has become ambiguous: protection of the entire neurovascular unit may be called cerebral cytoprotection or cerebroprotection. Success in developing cerebroprotection-either as an adjunct to recanalization or as stand-alone treatment-will require new definitions that recognize the importance of differential vulnerability in the neurovascular unit. Recent focus on pleiotropic multi-target agents that act via multiple mechanisms of action to interrupt ischemia at multiple steps may be more fruitful. Examples of pleiotropic treatments include therapeutic hypothermia and 3K3A-APC (activated protein C). Alternatively, the single-target drug NA-1 triggers multiple downstream signaling events. Renewed commitment to scientific rigor is essential, and funding agencies and journals may enforce quality principles of rigor in preclinical science. Appropriate animal models should be selected that are suited to the purpose of the investigation. Before clinical trials, preclinical assessment could include subjects that are aged, of both sexes, and harbor comorbid conditions such as diabetes or hypertension. With these new definitions, novel approaches, and renewed attention to rigor, the prospect for successful cerebroprotective therapy should improve.
Collapse
Affiliation(s)
- Patrick D Lyden
- Department of Physiology and Neuroscience, Department of Neurology, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA
| |
Collapse
|
3
|
Cudkowicz M, Chase MK, Coffey CS, Ecklund DJ, Thornell BJ, Lungu C, Mahoney K, Gutmann L, Shefner JM, Staley KJ, Bosch M, Foster E, Long JD, Bayman EO, Torner J, Yankey J, Peters R, Huff T, Conwit RA, Shinnar S, Patch D, Darras BT, Ellis A, Packer RJ, Marder KS, Chiriboga CA, Henchcliffe C, Moran JA, Nikolov B, Factor SA, Seeley C, Greenberg SM, Amato AA, DeGregorio S, Simuni T, Ward T, Kissel JT, Kolb SJ, Bartlett A, Quinn JF, Keith K, Levine SR, Gilles N, Coyle PK, Lamb J, Wolfe GI, Crumlish A, Mejico L, Iqbal MM, Bowen JD, Tongco C, Nabors LB, Bashir K, Benge M, McDonald CM, Henricson EK, Oskarsson B, Dobkin BH, Canamar C, Glauser TA, Woo D, Molloy A, Clark P, Vollmer TL, Stein AJ, Barohn RJ, Dimachkie MM, Le Pichon JB, Benatar MG, Steele J, Wechsler L, Clemens PR, Amity C, Holloway RG, Annis C, Goldberg MP, Andersen M, Iannaccone ST, Smith AG, Singleton JR, Doudova M, Haley EC, Quigg MS, Lowenhaupt S, Malow BA, Adkins K, Clifford DB, Teshome MA, Connolly N. Seven-Year Experience From the National Institute of Neurological Disorders and Stroke-Supported Network for Excellence in Neuroscience Clinical Trials. JAMA Neurol 2021; 77:755-763. [PMID: 32202612 DOI: 10.1001/jamaneurol.2020.0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance One major advantage of developing large, federally funded networks for clinical research in neurology is the ability to have a trial-ready network that can efficiently conduct scientifically rigorous projects to improve the health of people with neurologic disorders. Observations National Institute of Neurological Disorders and Stroke Network for Excellence in Neuroscience Clinical Trials (NeuroNEXT) was established in 2011 and renewed in 2018 with the goal of being an efficient network to test between 5 and 7 promising new agents in phase II clinical trials. A clinical coordinating center, data coordinating center, and 25 sites were competitively chosen. Common infrastructure was developed to accelerate timelines for clinical trials, including central institutional review board (a first for the National Institute of Neurological Disorders and Stroke), master clinical trial agreements, the use of common data elements, and experienced research sites and coordination centers. During the first 7 years, the network exceeded the goal of conducting 5 to 7 studies, with 9 funded. High interest was evident by receipt of 148 initial applications for potential studies in various neurologic disorders. Across the first 8 studies (the ninth study was funded at end of initial funding period), the central institutional review board approved the initial protocol in a mean (SD) of 59 (21) days, and additional sites were added a mean (SD) of 22 (18) days after submission. The median time from central institutional review board approval to first site activation was 47.5 days (mean, 102.1; range, 1-282) and from first site activation to first participant consent was 27 days (mean, 37.5; range, 0-96). The median time for database readiness was 3.5 months (mean, 4.0; range, 0-8) from funding receipt. In the 4 completed studies, enrollment met or exceeded expectations with 96% overall data accuracy across all sites. Nine peer-reviewed manuscripts were published, and 22 oral presentations or posters and 9 invited presentations were given at regional, national, and international meetings. Conclusions and Relevance NeuroNEXT initiated 8 studies, successfully enrolled participants at or ahead of schedule, collected high-quality data, published primary results in high-impact journals, and provided mentorship, expert statistical, and trial management support to several new investigators. Partnerships were successfully created between government, academia, industry, foundations, and patient advocacy groups. Clinical trial consortia can efficiently and successfully address a range of important neurologic research and therapeutic questions.
Collapse
Affiliation(s)
| | | | | | | | | | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | | | | | - Jeremy M Shefner
- Barrow Neurological Institute, University of Arizona College of Medicine, Tucson
| | | | | | | | | | | | | | | | | | | | - Robin A Conwit
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | | | - Shlomo Shinnar
- Montefiore Medical Center: Einstein Campus, Bronx, New York
| | - Donna Patch
- Montefiore Medical Center: Einstein Campus, Bronx, New York
| | | | - Audrey Ellis
- Boston Children's Hospital, Boston, Massachusetts
| | | | - Karen S Marder
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | - Claudia A Chiriboga
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | - Claire Henchcliffe
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | - Joyce Ann Moran
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | - Blagovest Nikolov
- Columbia University Irving Medical Center, New York, New York.,Weill Cornell Medical, New York, New York
| | | | - Carole Seeley
- Emory University School of Medicine, Atlanta, Georgia
| | - Steven M Greenberg
- Massachusetts General Hospital, Boston.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Anthony A Amato
- Massachusetts General Hospital, Boston.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Sara DeGregorio
- Massachusetts General Hospital, Boston.,Brigham and Women's Hospital, Boston, Massachusetts
| | - Tanya Simuni
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tina Ward
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John T Kissel
- Ohio State University Wexner Medical Center, Columbus
| | | | - Amy Bartlett
- Ohio State University Wexner Medical Center, Columbus
| | | | | | | | | | - Patricia K Coyle
- Stony Brook University, State University of New York, Stony Brook
| | - Jessica Lamb
- Stony Brook University, State University of New York, Stony Brook
| | - Gil I Wolfe
- University at Buffalo, State University of New York, Buffalo
| | | | - Luis Mejico
- SUNY Upstate Medical University, Syracuse, New York
| | | | | | | | | | | | | | | | | | | | | | | | - Tracy A Glauser
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Daniel Woo
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Angela Molloy
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Peggy Clark
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | | | | | - Richard J Barohn
- Children's Mercy Hospital, University of Kansas, Kansas City, Missouri
| | - Mazen M Dimachkie
- Children's Mercy Hospital, University of Kansas, Kansas City, Missouri
| | | | - Michael G Benatar
- University of Miami Miller School of Medicine, Coral Gables, Florida
| | - Julie Steele
- University of Miami Miller School of Medicine, Coral Gables, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Patrick Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Abstract
Novel therapeutic intervention that aims to enhance the endogenous recovery potential of the brain during the subacute phase of stroke has produced promising results. The paradigm shift in treatment approaches presents new challenges to preclinical and clinical researchers alike, especially in the functional endpoints domain. Shortcomings of the "neuroprotection" era of stroke research are yet to be fully addressed. Proportional recovery observed in clinics, and potentially in animal models, requires a thorough reevaluation of the methods used to assess recovery. To this end, this review aims to give a detailed evaluation of functional outcome measures used in clinics and preclinical studies. Impairments observed in clinics and animal models will be discussed from a functional testing perspective. Approaches needed to bridge the gap between clinical and preclinical research, along with potential means to measure the moving target recovery, will be discussed. Concepts such as true recovery of function and compensation and methods that are suitable for distinguishing the two are examined. Often-neglected outcomes of stroke, such as emotional disturbances, are discussed to draw attention to the need for further research in this area.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke Neurological Research Institute, White Plains, NY, USA
| | - Sunghee Cho
- Burke Neurological Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Neurological Research Institute, White Plains, NY, USA
| |
Collapse
|
6
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
7
|
Savitz SI, Baron JC, Fisher M, Albers GW, Arbe-Barnes S, Boltze J, Broderick J, Broschat KO, Elkind MSV, En’Wezoh D, Furlan AJ, Gorelick PB, Grotta J, Hancock AM, Hess DC, Holt W, Houser G, Hsia AW, Kim WK, Korinek WS, Le Moan N, Liberman M, Lilienfeld S, Luby M, Lynch JK, Mansi C, Simpkins AN, Nadareishvili Z, Nogueira RG, Pryor KE, Sanossian N, Schwamm LH, Selim M, Sheth KN, Spilker J, Solberg Y, Steinberg GK, Stice S, Tymianski M, Wechsler LR, Yoo AJ. Stroke Treatment Academic Industry Roundtable X. Stroke 2019; 50:1026–1031. [DOI: 10.1161/strokeaha.118.023927] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sean I. Savitz
- From the Institute for Stroke and Cerebrovascular Disease, The University of Texas Health Science Center at Houston, (S.I.S.)
| | - Jean-Claude Baron
- Department of Neurology, Hôpital Sainte-Anne, University Paris Descartes, INSERM U1266, France (J.-C.B.)
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA (M.F.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rajput PS, Lamb JA, Fernández JÁ, Bai J, Pereira BR, Lei IF, Leung J, Griffin JH, Lyden PD. Neuroprotection and vasculoprotection using genetically targeted protease-ligands. Brain Res 2019; 1715:13-20. [PMID: 30880117 DOI: 10.1016/j.brainres.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
Thrombin and activated protein C (APC) are known coagulation factors that exhibit profound effects in brain by acting on the protease activated receptor (PAR). The wild type (WT) proteases appear to impact cell survival powerfully, and therapeutic forms of APC are under development. Engineered recombinant thrombin or APC were designed to separate their procoagulant or anticoagulant effects from their cytoprotective properties. We measured vascular disruption and neuronal degeneration after a standard rodent filament stroke model. For comparison to a robust anticoagulant, we used a GpIIb/IIIa inhibitor, GR144053. During 2 h MCAo both WT murine APC and its mutant, 5A-APC, significantly decreased neuronal death 30 min after reperfusion. During 4 h MCAo, only 5A-APC significantly protected neurons but both WT-APC and 5A-APC exacerbated vascular disruption during 4 h MCAo. Human APC mutants appeared to reduce 24 h neuronal injury significantly when given after 2 h delay after MCAo. In contrast, 24 h vascular damage was worsened by high doses of WT and mutant APCs, although only statistically significantly for high dose 3K3A-APC. Mutated thrombin worsened vascular damage significantly without affecting neuron damage. GR144053 failed to ameliorate vascular disruption or neuronal injury despite significant anticoagulation. Differential effects on neurons and the vasculature were demonstrated using wild-type and mutated proteases. The mutants murine 3K3A-APC and 5A-APC protected neurons in this rodent model but in high doses worsened vascular leakage. Cytoactive effects of plasma proteases may be separated from their coagulation effects. Further studies should explore impact of dose and timing on cytoactive and vasculoactive properties of these drugs.
Collapse
Affiliation(s)
- Padmesh S Rajput
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jessica A Lamb
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jose Á Fernández
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jilin Bai
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Benedict R Pereira
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - I-Farn Lei
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jennifer Leung
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Patrick D Lyden
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States.
| |
Collapse
|
9
|
Lazic D, Sagare AP, Nikolakopoulou AM, Griffin JH, Vassar R, Zlokovic BV. 3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. J Exp Med 2019; 216:279-293. [PMID: 30647119 PMCID: PMC6363429 DOI: 10.1084/jem.20181035] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
3K3A-activated protein C (APC), a cell-signaling analogue of endogenous blood serine protease APC, exerts vasculoprotective, neuroprotective, and anti-inflammatory activities in rodent models of stroke, brain injury, and neurodegenerative disorders. 3K3A-APC is currently in development as a neuroprotectant in patients with ischemic stroke. Here, we report that 3K3A-APC inhibits BACE1 amyloidogenic pathway in a mouse model of Alzheimer's disease (AD). We show that a 4-mo daily treatment of 3-mo-old 5XFAD mice with murine recombinant 3K3A-APC (100 µg/kg/d i.p.) prevents development of parenchymal and cerebrovascular amyloid-β (Aβ) deposits by 40-50%, which is mediated through NFκB-dependent transcriptional inhibition of BACE1, resulting in blockade of Aβ generation in neurons overexpressing human Aβ-precursor protein. Consistent with reduced Aβ deposition, 3K3A-APC normalized hippocampus-dependent behavioral deficits and cerebral blood flow responses, improved cerebrovascular integrity, and diminished neuroinflammatory responses. Our data suggest that 3K3A-APC holds potential as an effective anti-Aβ prevention therapy for early-stage AD.
Collapse
Affiliation(s)
- Divna Lazic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Abhay P Sagare
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Angeliki M Nikolakopoulou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John H Griffin
- The Scripps Research Institute, La Jolla, CA.,Department of Medicine, University of California, San Diego, San Diego, CA
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA .,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
10
|
Lyden P, Pryor KE, Coffey CS, Cudkowicz M, Conwit R, Jadhav A, Sawyer RN, Claassen J, Adeoye O, Song S, Hannon P, Rost NS, Hinduja A, Torbey M, Lee JM, Benesch C, Rippee M, Rymer M, Froehler MT, Haley EC, Johnson M, Yankey J, Magee K, Qidwai J, Levy H, Haacke EM, Fawaz M, Davis TP, Toga AW, Griffin JH, Zlokovic BV. Final Results of the RHAPSODY Trial: A Multi-Center, Phase 2 Trial Using a Continual Reassessment Method to Determine the Safety and Tolerability of 3K3A-APC, A Recombinant Variant of Human Activated Protein C, in Combination with Tissue Plasminogen Activator, Mechanical Thrombectomy or both in Moderate to Severe Acute Ischemic Stroke. Ann Neurol 2019; 85:125-136. [PMID: 30450637 PMCID: PMC6342508 DOI: 10.1002/ana.25383] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Agonism of protease-activated receptor (PAR) 1 by activated protein C (APC) provides neuro- and vasculoprotection in experimental neuroinjury models. The pleiotropic PAR1 agonist, 3K3A-APC, reduces neurological injury and promotes vascular integrity; 3K3A-APC proved safe in human volunteers. We performed a randomized, controlled, blinded trial to determine the maximally tolerated dose (MTD) of 3K3A-APC in ischemic stroke patients. METHODS The NeuroNEXT trial, RHAPSODY, used a novel continual reassessment method to determine the MTD using tiers of 120, 240, 360, and 540 μg/kg of 3K3A-APC. After intravenous tissue plasminogen activator, intra-arterial mechanical thrombectomy, or both, patients were randomized to 1 of the 4 doses or placebo. Vasculoprotection was assessed as microbleed and intracranial hemorrhage (ICH) rates. RESULTS Between January 2015 and July 2017, we treated 110 patients. Demographics resembled a typical stroke population. The MTD was the highest-dose 3K3A-APC tested, 540 μg/kg, with an estimated toxicity rate of 7%. There was no difference in prespecified ICH rates. In exploratory analyses, 3K3A-APC reduced ICH rates compared to placebo from 86.5% to 67.4% in the combined treatment arms (p = 0.046) and total hemorrhage volume from an average of 2.1 ± 5.8 ml in placebo to 0.8 ± 2.1 ml in the combined treatment arms (p = 0.066). INTERPRETATION RHAPSODY is the first trial of a neuroprotectant for acute ischemic stroke in a trial design allowing thrombectomy, thrombolysis, or both. The MTD was 540 μg/kg for the PAR1 active cytoprotectant, 3K3A-APC. A trend toward lower hemorrhage rate in an exploratory analysis requires confirmation. CLINICAL TRIAL REGISTRATION Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT02222714. ANN NEUROL 2019;85:125-136.
Collapse
Affiliation(s)
| | | | | | - Merit Cudkowicz
- Massachusetts General Hospital, Neurological Clinical Research Institute, Boston
| | - Robin Conwit
- National Institutes of Health, National Institute of Neurological Disorders and Stroke
| | | | | | - Jan Claassen
- Neurological Institute, Columbia University, New York, NY
| | - Opeolu Adeoye
- Department of Emergency Medicine, University of Cincinnati, Cincinnati
| | - Shlee Song
- Cedars-Sinai Medical Center, Los Angeles
| | | | - Natalia S. Rost
- Massachusetts General Hospital, Neurological Clinical Research Institute, Boston
| | | | - Michel Torbey
- Ohio State University Medical Center, Columbus, Ohio
| | | | | | | | | | | | | | - Mark Johnson
- University of Texas, Southwestern Medical Center, Dallas
| | | | | | | | | | | | | | - Thomas P. Davis
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, AZ
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Institute of Neuroimaging and Informatics, Keck School of Medicine, University of Southern California Los Angeles
| | | | - Berislav V. Zlokovic
- Zilkha Neurogenic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California Los Angeles
| |
Collapse
|
11
|
Lapchak PA, Boitano PD, Bombien R, Cook DJ, Doyan S, Lara JM, Schubert DR. CNB-001, a pleiotropic drug is efficacious in embolized agyrencephalic New Zealand white rabbits and ischemic gyrencephalic cynomolgus monkeys. Exp Neurol 2018; 313:98-108. [PMID: 30521790 DOI: 10.1016/j.expneurol.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 01/10/2023]
Abstract
Ischemic stroke is an acute neurodegenerative disease that is extremely devastating to patients, their families and society. Stroke is inadequately treated even with endovascular procedures and reperfusion therapy. Using an extensive translational screening process, we have developed a pleiotropic cytoprotective agent with the potential to positively impact a large population of brain ischemia patients and revolutionize the process used for the development of new drugs to treat complex brain disorders. In this unique translational study article, we document that the novel curcumin-based compound, CNB-001, when administered as a single intravenous dose, has significant efficacy to attenuate clinically relevant behavioral deficits following ischemic events in agyrencephalic rabbits when administered 1 h post-embolization and reduces infarct growth in gyrencephalic non-human primates, when administered 5 min after initiation of middle cerebral artery occlusion. CNB-001 is safe and does not increase morbidity or mortality in either research species. Mechanistically, CNB-001 inhibits human 5- and 15-lipoxygenase in vitro, and can attenuate ischemia-induced inflammatory markers, and oxidative stress markers, while potentially promoting synaptic plasticity mediated by enhanced brain-derived neurotrophic factor (BDNF).
Collapse
Affiliation(s)
- Paul A Lapchak
- Neurocore LLC, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | | | | - Douglas J Cook
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | | | | | - David R Schubert
- Cellular Neurobiology Laboratories, The Salk Institute, La Jolla, CA, USA
| |
Collapse
|
12
|
Gaidhani N, Uteshev VV. Treatment duration affects cytoprotective efficacy of positive allosteric modulation of α7 nAChRs after focal ischemia in rats. Pharmacol Res 2018; 136:121-132. [PMID: 30205140 PMCID: PMC6218269 DOI: 10.1016/j.phrs.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 12/30/2022]
Abstract
To minimize irreversible brain injury after acute ischemic stroke (AIS), the time to treatment (i.e., treatment delay) should be minimized. However, thus far, all cytoprotective clinical trials have failed. Analysis of literature identified short treatment durations (≤72 h) as a common motif among completed cytoprotective clinical trials. Here, we argue that short cytoprotective regimens even if given early after AIS may only slow down the evolution of ischemic brain injury and fail to deliver sustained long-term solutions leading to relapses that may be misinterpreted for conceptual failure of cytoprotection. In this randomized blinded study, we used young adult male rats subjected to transient 90 min suture middle cerebral artery occlusion (MCAO) and treated with acute vs. sub-chronic regimens of PNU120596, a prototypical positive allosteric modulator of α7 nicotinic acetylcholine receptors with anti-inflammatory cytoprotective properties to test the hypothesis that insufficient treatment durations may reduce therapeutic benefits of otherwise efficacious cytoprotectants after AIS. A single acute treatment 90 min after MCAO significantly reduced brain injury and neurological deficits 24 h later, but these effects vanished 72 h after MCAO. These relapses were avoided by utilizing sub-chronic treatments. Thus, extending treatment duration augments therapeutic efficacy of PNU120596 after MCAO. Furthermore, sub-chronic treatments could offset the negative effects of prolonged treatment delays in cases where the acute treatment window after MCAO was left unexploited. We conclude that a combination of short treatment delays and prolonged treatment durations may be required to maximize therapeutic effects of PNU120596, reduce relapses and ensure sustained therapeutic efficacy after AIS. Similar concepts may hold for other cytoprotectants including those that failed in clinical trials.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
13
|
Intravenous xenogeneic human cardiosphere-derived cell extracellular vesicles (exosomes) improves behavioral function in small-clot embolized rabbits. Exp Neurol 2018; 307:109-117. [DOI: 10.1016/j.expneurol.2018.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
|
14
|
Milani D, Cross JL, Anderton RS, Blacker DJ, Knuckey NW, Meloni BP. Delayed 2-h post-stroke administration of R18 and NA-1 (TAT-NR2B9c) peptides after permanent and/or transient middle cerebral artery occlusion in the rat. Brain Res Bull 2017; 135:62-68. [DOI: 10.1016/j.brainresbull.2017.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/17/2017] [Accepted: 09/25/2017] [Indexed: 01/05/2023]
|
15
|
Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology 2017; 134:293-301. [PMID: 28923278 DOI: 10.1016/j.neuropharm.2017.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
In the management of acute ischemic stroke, vessel recanalization correlates with functional status, mortality, cost, and other outcome measures. Thrombolysis with intravenous tissue plasminogen activator has many limitations that restrict its applicability, but recent advances in the development of mechanical thrombectomy devices as well as improved systems of stroke care have resulted in greater likelihood of vessel revascularization. Nonetheless, there remains substantial discrepancy between rates of recanalization and rates of favorable outcome. The poor neurological recovery among some stroke patients despite successful recanalization confirms the need for adjuvant pharmacological therapy for neuroprotection and/or neurorestoration. Prior clinical trials of such drugs may have failed due to the inability of the agent to access the ischemic tissue beyond the occluded artery. A protocol that couples revascularization with concurrent delivery of a neuroprotectant drug offers the potential to enhance the benefit of thrombolysis. Analogs of activated protein C (APC) exert pleiotropic anti-inflammatory, anti-apoptotic, antithrombotic, cytoprotective, and neuroregenerative effects in ischemic stroke and thus appear to be promising candidates for this novel approach. A multicenter, prospective, double-blinded, dose-escalation Phase 2 randomized clinical trial has enrolled 110 patients to assess the safety, pharmacokinetics, and efficacy of human recombinant 3K3A-APC following endovascular thrombolysis. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
|
16
|
Marinescu M, Sun L, Fatar M, Neubauer A, Schad L, van Ryn J, Lehmann L, Veltkamp R. Cerebral Microbleeds in Murine Amyloid Angiopathy: Natural Course and Anticoagulant Effects. Stroke 2017; 48:2248-2254. [PMID: 28706123 DOI: 10.1161/strokeaha.117.017994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/10/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral microbleeds (CMBs) predispose patients to intracerebral hemorrhage. Preclinical models to examine the effects of antithrombotic treatments on the development of clinically overt intracerebral hemorrhage are needed. We examined the natural course of CMB development and the effects of long-term anticoagulation with warfarin or dabigatran on cerebral micro- and macrohemorrhage in mice overexpressing the APP23 (amyloid precursor protein). METHODS Repeated susceptibility-weighted magnetic resonance imaging was performed in APP23 mice at the age of 18 and 21 months, respectively. After establishing stable long-term anticoagulation effects of warfarin and dabigatran on number and total volume of CMBs, the outcome parameters were compared with nonanticoagulated control. RESULTS CMBs were equally located in lobar and deep brain regions, and number and total volume of CMBs increased over time. Anticoagulation with either warfarin or dabigatran did not increase CMBs in APP23 significantly. Mice treated with warfarin numerically had a higher mortality (nonanticoagulated: 31%; dabigatran: 35% versus warfarin: 55%; P=0.21). In postmortem brains of prematurely dying animals warfarin caused significantly more frequently large intracerebral hemorrhage than control and dabigatran. CONCLUSIONS Anticoagulation with warfarin or dabigatran for 3 to 4 months does not promote the formation of CMBs in aged APP23 mice. Nevertheless, warfarin but not dabigatran is associated with a higher risk of extensive intracerebral hemorrhage, suggesting that this model may allow preclinical safety evaluation of antithrombotic therapies.
Collapse
Affiliation(s)
- Marilena Marinescu
- From the Division of Brain Sciences, Imperial College London, United Kingdom (M.M., R.V.); Departments of Neurology (M.M., L.S., R.V.) and Cardiology (L.L.), University of Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim (M.F.), Computer Assisted Clinical Medicine (A.N., L.S.), University Heidelberg, Mannheim, Germany; and Department of Cardiometabolic Research, Boehringer Ingelheim, Biberach, Germany (J.v.R.)
| | - Li Sun
- From the Division of Brain Sciences, Imperial College London, United Kingdom (M.M., R.V.); Departments of Neurology (M.M., L.S., R.V.) and Cardiology (L.L.), University of Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim (M.F.), Computer Assisted Clinical Medicine (A.N., L.S.), University Heidelberg, Mannheim, Germany; and Department of Cardiometabolic Research, Boehringer Ingelheim, Biberach, Germany (J.v.R.)
| | - Marc Fatar
- From the Division of Brain Sciences, Imperial College London, United Kingdom (M.M., R.V.); Departments of Neurology (M.M., L.S., R.V.) and Cardiology (L.L.), University of Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim (M.F.), Computer Assisted Clinical Medicine (A.N., L.S.), University Heidelberg, Mannheim, Germany; and Department of Cardiometabolic Research, Boehringer Ingelheim, Biberach, Germany (J.v.R.)
| | - Andreas Neubauer
- From the Division of Brain Sciences, Imperial College London, United Kingdom (M.M., R.V.); Departments of Neurology (M.M., L.S., R.V.) and Cardiology (L.L.), University of Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim (M.F.), Computer Assisted Clinical Medicine (A.N., L.S.), University Heidelberg, Mannheim, Germany; and Department of Cardiometabolic Research, Boehringer Ingelheim, Biberach, Germany (J.v.R.)
| | - Lothar Schad
- From the Division of Brain Sciences, Imperial College London, United Kingdom (M.M., R.V.); Departments of Neurology (M.M., L.S., R.V.) and Cardiology (L.L.), University of Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim (M.F.), Computer Assisted Clinical Medicine (A.N., L.S.), University Heidelberg, Mannheim, Germany; and Department of Cardiometabolic Research, Boehringer Ingelheim, Biberach, Germany (J.v.R.)
| | - Joanne van Ryn
- From the Division of Brain Sciences, Imperial College London, United Kingdom (M.M., R.V.); Departments of Neurology (M.M., L.S., R.V.) and Cardiology (L.L.), University of Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim (M.F.), Computer Assisted Clinical Medicine (A.N., L.S.), University Heidelberg, Mannheim, Germany; and Department of Cardiometabolic Research, Boehringer Ingelheim, Biberach, Germany (J.v.R.)
| | - Lorenz Lehmann
- From the Division of Brain Sciences, Imperial College London, United Kingdom (M.M., R.V.); Departments of Neurology (M.M., L.S., R.V.) and Cardiology (L.L.), University of Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim (M.F.), Computer Assisted Clinical Medicine (A.N., L.S.), University Heidelberg, Mannheim, Germany; and Department of Cardiometabolic Research, Boehringer Ingelheim, Biberach, Germany (J.v.R.)
| | - Roland Veltkamp
- From the Division of Brain Sciences, Imperial College London, United Kingdom (M.M., R.V.); Departments of Neurology (M.M., L.S., R.V.) and Cardiology (L.L.), University of Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim (M.F.), Computer Assisted Clinical Medicine (A.N., L.S.), University Heidelberg, Mannheim, Germany; and Department of Cardiometabolic Research, Boehringer Ingelheim, Biberach, Germany (J.v.R.).
| |
Collapse
|
17
|
Lapchak PA, Lara JM, Boitano PD. Cytoprotective Drug-Tissue Plasminogen Activator Protease Interaction Assays: Screening of Two Novel Cytoprotective Chromones. Transl Stroke Res 2017; 8:10.1007/s12975-017-0533-7. [PMID: 28405804 DOI: 10.1007/s12975-017-0533-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Tissue plasminogen activator (tPA) is currently used in combination with endovascular procedures to enhance recanalization and cerebral reperfusion and is also currently administered as standard-of-care thrombolytic therapy to patients within 3-4.5 h of an ischemic stroke. Since tPA is not neuroprotective or cytoprotective, adjuvant therapy with a neuroprotective or an optimized cytoprotective compound is required to provide the best care to stroke victims to maximally promote clinical recovery. In this article, we describe the use of a sensitive standardized protease assay with CH3SO2-D-hexahydrotyrosine-Gly-Arg-p-nitroanilide•AcOH, a chromogenic protease substrate that is cleaved to 4-nitroaniline (p-nitroaniline) and measured spectrophotometrically at 405 nm (OD405 nm), and how the assay can be used as an effective screening assay to study drug-tPA interactions. While we focus on two compounds of interest in our drug development pipeline, the assay is broadly applicable to all small molecule neuroprotective or cytoprotective compounds currently being discovered and developed worldwide. In this present study, we found that the specific tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1; 0.25 μM), significantly (p < 0.0001) inhibited 4-nitroaniline release, by 97.74% during the 10-min duration of the assay, which is indicative of tPA protease inhibition. In addition, two lead chromone cytoprotective candidates, 2-(3',4',5'-trihydroxyphenyl)chromen-4-one (3',4',5'-trihydroxyflavone) (CSMC-19) and 3-hydroxy-2-[3-hydroxy-4-(pyrrolidin-1-yl)phenyl]benzo[h]chromen-4-one (CSMC-140), also significantly (p < 0.05) reduced 4-nitroaniline accumulation, but to a lesser extent. The reduction was 68 and 45%, respectively, at 10 μM, and extrapolated IC50 values were 4.37 and >10 μM for CSMC-19 and CSMC-140, respectively. Using bonafide 4-nitroaniline, we then demonstrated that the reduction of 4-nitroaniline detection was not due to drug-4-nitroaniline quenching of signal detection at OD405 nm. In conclusion, the results suggest that high concentrations of both cytoprotectives reduced 4-nitroaniline production in vitro, but the inhibition only occurs with concentrations 104-1025-fold that of EC50 values in an efficacy assay. Thus, CSMC-19 and CSMC-140 should be further developed and evaluated in embolic stroke models in the absence or presence of a thrombolytic. If necessary, they could be administered once effective tPA thrombolysis has been confirmed to avoid the possibility that the chromone will reduce the efficacy of tPA in patients. Stroke investigator developing new cytoprotective small molecules should consider adding this sensitive assay to their development and screening repertoire to assess possible drug-tPA interactions in vitro as a de-risking step.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Suite 8318, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Suite 8318, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| | - Jacqueline M Lara
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Suite 8318, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Paul D Boitano
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Suite 8318, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| |
Collapse
|
18
|
Data Standardization and Quality Management. Transl Stroke Res 2017; 9:4-8. [PMID: 28283966 DOI: 10.1007/s12975-017-0531-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Important questions regarding the conduct of scientific research and data transparency have been raised in various scientific forums over the last 10 years. It is becoming clear, that in spite of published RIGOR guidelines, that improvement in the transparency of scientific research is required to focus on the discovery and drug development process so that a treatment can be provided to stroke patients. We have the unique privilege of conducting research using animal models of a disease so that we can address the development of a new therapy, and we should do this with great care and vigilance. This document identifies valuable resources for researchers to become Good Laboratory Practices compliant and increase and improve data transparency and provides guidelines for accurate data management to continue to propel the translational stroke research field forward while recognizing that there is a shortage of research funds worldwide. While data audits are being considered worldwide by funding agencies and they are used extensively by industry, they are still quite controversial for basic researchers. Due to the special exploratory nature of basic and translational science research, the current challenging funding environment, and independent and individualized laboratory activities, it is debatable if current individualized non-standardized data management and monitoring represents the best approach. Thus, herein, we propose steps to prepare research study data in an acceptable form for archival purposes so that standards for translational research data can be comparable to those that are accepted and adhered to by the clinical community. If all translational research laboratories follow and institute the guidelines while conducting translational research, data from all sources may be more comparable and reliable.
Collapse
|
19
|
Stroke Cytoprotection: Can Repeating History with New Expectations Really Be the Path to Success in Stroke Research? Transl Stroke Res 2017; 8:104-106. [DOI: 10.1007/s12975-017-0528-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 01/05/2023]
|
20
|
Lapchak PA, Zhang JH. The High Cost of Stroke and Stroke Cytoprotection Research. Transl Stroke Res 2016; 8:307-317. [PMID: 28039575 DOI: 10.1007/s12975-016-0518-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Acute ischemic stroke is inadequately treated in the USA and worldwide due to a lengthy history of neuroprotective drug failures in clinical trials. The majority of victims must endure life-long disabilities that not only affect their livelihood, but also have an enormous societal economic impact. The rapid development of a neuroprotective or cytoprotective compound would allow future stroke victims to receive a treatment to reduce disabilities and further promote recovery of function. This opinion article reviews in detail the enormous costs associated with developing a small molecule to treat stroke, as well as providing a timely overview of the cell-death time-course and relationship to the ischemic cascade. Distinct temporal patterns of cell-death of neurovascular unit components provide opportunities to intervene and optimize new cytoprotective strategies. However, adequate research funding is mandatory to allow stroke researchers to develop and test their novel therapeutic approach to treat stroke victims.
Collapse
Affiliation(s)
- Paul A Lapchak
- Director of Translational Research, Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion, Suite 8305, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA.
| | - John H Zhang
- Director, Center for Neuroscience Research, Loma Linda University School of Medicine, 11175 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|