1
|
Xiao Y, Liu Z, Wan X. Oxygen extraction fraction change in M1-M6 brain regions of patients with unilateral or bilateral middle cerebral artery occlusion. J Cereb Blood Flow Metab 2025; 45:319-327. [PMID: 39161251 PMCID: PMC11572168 DOI: 10.1177/0271678x241276386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) can be measured using arterial spin labeling (ASL) and quantitative susceptibility mapping (QSM) sequences, respectively. ASL and QSM sequences were performed on 13 healthy participants and 46 patients with unilateral or bilateral Middle cerebral artery (MCA) occlusion. M1-M3 and M4-M6 correspond to anterior, lateral, and posterior MCA territories within the insular ribbon and centrum semiovale, respectively. In patients with unilateral MCA occlusion, significant decreases in CBF were observed in the lesions in M1, M3, M5 and M6 regions, as well as in the contralateral M3 and M5 regions. The OEF of the lesion in the M1-M4 and M6 regions, and the contralateral M1-M3 regions were significantly higher. Additionally, the cerebral metabolic rate of oxygen (CMRO2) in the lesions of the M3 and M6 regions, and the contralateral M3 region, were significantly lower compared to the corresponding regions of healthy participants. For patients with bilateral MCA occlusion, the CMRO2 in the left M5 region and the right M3 and M6 regions were significantly lower than that in the corresponding regions of healthy participants. In conclusion, abnormal hemodynamics occur in the contralateral hemisphere of patients with unilateral MCA occlusion.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University; Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang city, China
| | - Zhenghua Liu
- The Department of Radiology, The Dongguan Maternal and Child Health Care Hospital, Guangdong, China
| | - Xinghua Wan
- The Department of Radiology, The People’s Hospital of Nanchang County, Nanchang city, China
| |
Collapse
|
2
|
Bing Y, Józsa TI, Payne SJ. Parameter quantification for oxygen transport in the human brain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108433. [PMID: 39362064 DOI: 10.1016/j.cmpb.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Oxygen is carried to the brain by blood flow through generations of vessels across a wide range of length scales. This multi-scale nature of blood flow and oxygen transport poses challenges on investigating the mechanisms underlying both healthy and pathological states through imaging techniques alone. Recently, multi-scale models describing whole brain perfusion and oxygen transport have been developed. Such models rely on effective parameters that represent the microscopic properties. While parameters of the perfusion models have been characterised, those for oxygen transport are still lacking. In this study, we set to quantify the parameters associated with oxygen transport and their uncertainties. METHODS Effective parameter values of a continuum-based porous multi-scale, multi-compartment oxygen transport model are systematically estimated. In particular, geometric parameters that capture the microvascular topologies are obtained through statistically accurate capillary networks. Maximum consumption rates of oxygen are optimised to uniquely define the oxygen distribution over depth. Simulations are then carried out within a one-dimensional tissue column and a three-dimensional patient-specific brain mesh using the finite element method. RESULTS Effective values of the geometric parameters, vessel volume fraction and surface area to volume ratio, are found to be 1.42% and 627 [mm2/mm3], respectively. These values compare well with those acquired from human and monkey vascular samples. Simulation results of the one-dimensional tissue column show qualitative agreement with experimental measurements of tissue oxygen partial pressure in rats. Differences between the oxygenation level in the tissue column and the brain mesh are observed, which highlights the importance of anatomical accuracy. Finally, one-at-a-time sensitivity analysis reveals that the oxygen model is not sensitive to most of its parameters; however, perturbations in oxygen solubilities and plasma to whole blood oxygen concentration ratio have a considerable impact on the tissue oxygenation. CONCLUSIONS The findings of this study demonstrate the validity of using a porous continuum approach to model organ-scale oxygen transport and draw attention to the significance of anatomy and parameters associated with inter-compartment diffusion.
Collapse
Affiliation(s)
- Yun Bing
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Tamás I Józsa
- Centre for Computational Engineering Sciences, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK.
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Perera Molligoda Arachchige AS, Meuli S, Centini FR, Stomeo N, Catapano F, Politi LS. Evaluating the role of 7-Tesla magnetic resonance imaging in neurosurgery: Trends in literature since clinical approval. World J Radiol 2024; 16:274-293. [PMID: 39086607 PMCID: PMC11287432 DOI: 10.4329/wjr.v16.i7.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND After approval for clinical use in 2017, early investigations of ultra-high-field abdominal magnetic resonance imaging (MRI) have demonstrated its feasibility as well as diagnostic capabilities in neuroimaging. However, there are no to few systematic reviews covering the entirety of its neurosurgical applications as well as the trends in the literature with regard to the aforementioned application. AIM To assess the impact of 7-Tesla MRI (7T MRI) on neurosurgery, focusing on its applications in diagnosis, treatment planning, and postoperative assessment, and to systematically analyze and identify patterns and trends in the existing literature related to the utilization of 7T MRI in neurosurgical contexts. METHODS A systematic search of PubMed was conducted for studies published between January 1, 2017, and December 31, 2023, using MeSH terms related to 7T MRI and neurosurgery. The inclusion criteria were: Studies involving patients of all ages, meta-analyses, systematic reviews, and original research. The exclusion criteria were: Pre-prints, studies with insufficient data (e.g., case reports and letters), non-English publications, and studies involving animal subjects. Data synthesis involved standardized extraction forms, and a narrative synthesis was performed. RESULTS We identified 219 records from PubMed within our defined period, with no duplicates or exclusions before screening. After screening, 125 articles were excluded for not meeting inclusion criteria, leaving 94 reports. Of these, 2 were irrelevant to neurosurgery and 7 were animal studies, resulting in 85 studies included in our systematic review. Data were categorized by neurosurgical procedures and diseases treated using 7T MRI. We also analyzed publications by country and the number of 7T MRI facilities per country was also presented. Experimental studies were classified into comparison and non-comparison studies based on whether 7T MRI was compared to lower field strengths. CONCLUSION 7T MRI holds great potential in improving the characterization and understanding of various neurological and psychiatric conditions that may be neurosurgically treated. These include epilepsy, pituitary adenoma, Parkinson's disease, cerebrovascular diseases, trigeminal neuralgia, traumatic head injury, multiple sclerosis, glioma, and psychiatric disorders. Superiority of 7T MRI over lower field strengths was demonstrated in terms of image quality, lesion detection, and tissue characterization. Findings suggest the need for accelerated global distribution of 7T magnetic resonance systems and increased training for radiologists to ensure safe and effective integration into routine clinical practice.
Collapse
Affiliation(s)
| | - Sarah Meuli
- Faculty of Medicine, Humanitas University, Pieve Emanuele, Milan 20072, Italy
| | | | - Niccolò Stomeo
- Department of Anaesthesiology and Intensive Care, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
| | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| |
Collapse
|
4
|
Wehrli FW. Recent Advances in MR Imaging-based Quantification of Brain Oxygen Metabolism. Magn Reson Med Sci 2024; 23:377-403. [PMID: 38866481 PMCID: PMC11234951 DOI: 10.2463/mrms.rev.2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
The metabolic rate of oxygen (MRO2) is fundamental to tissue metabolism. Determination of MRO2 demands knowledge of the arterio-venous difference in hemoglobin-bound oxygen concentration, typically expressed as oxygen extraction fraction (OEF), and blood flow rate (BFR). MRI is uniquely suited for measurement of both these quantities, yielding MRO2 in absolute physiologic units of µmol O2 min-1/100 g tissue. Two approaches are discussed, both relying on hemoglobin magnetism. Emphasis will be on cerebral oxygen metabolism expressed in terms of the cerebral MRO2 (CMRO2), but translation of the relevant technologies to other organs, including kidney and placenta will be touched upon as well. The first class of methods exploits the blood's bulk magnetic susceptibility, which can be derived from field maps. The second is based on measurement of blood water T2, which is modulated by diffusion and exchange in the local-induced fields within and surrounding erythrocytes. Some whole-organ methods achieve temporal resolution adequate to permit time-series studies of brain energetics, for instance, during sleep in the scanner with concurrent electroencephalogram (EEG) sleep stage monitoring. Conversely, trading temporal for spatial resolution has led to techniques for spatially resolved approaches based on quantitative blood oxygen level dependent (BOLD) or calibrated BOLD models, allowing regional assessment of vascular-metabolic parameters, both also exploiting deoxyhemoglobin paramagnetism like their whole-organ counterparts.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, Perelman School of Medicine, University Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Aging Biomarker Consortium, Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian XL, Pu J, Hong H, Wang M, Chen HZ, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J, Ju Z, Liu GH, Pei G, Li J, Zhang C. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2023; 2:lnad033. [PMID: 40040784 PMCID: PMC11879419 DOI: 10.1093/lifemedi/lnad033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 03/06/2025]
Abstract
Aging of the vasculature, which is integral to the functioning of literally all human organs, serves as a fundamental physiological basis for age-related alterations as well as a shared etiological mechanism for various chronic diseases prevalent in the elderly population. China, home to the world's largest aging population, faces an escalating challenge in addressing the prevention and management of these age-related conditions. To meet this challenge, the Aging Biomarker Consortium of China has developed an expert consensus on biomarkers of vascular aging (VA) by synthesizing literature and insights from scientists and clinicians. This consensus provides a comprehensive assessment of biomarkers associated with VA and presents a systemic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the expert panel recommends the most clinically relevant VA biomarkers. For the functional domain, biomarkers reflecting vascular stiffness and endothelial function are highlighted. The structural dimension encompasses metrics for vascular structure, microvascular structure, and distribution. Additionally, proinflammatory factors are emphasized as biomarkers with the humoral dimension. The aim of this expert consensus is to establish a foundation for assessing the extent of VA and conducting research related to VA, with the ultimate goal of improving the vascular health of the elderly in China and globally.
Collapse
Affiliation(s)
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shimin Sun
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena 07743, Germany
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun-Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai 200127, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhen Liang
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Gullapalli P, Fossati N, Stamenkovic D, Haque M, Cattano D. Tale of Two Cities: narrative review of oxygen. F1000Res 2023; 12:246. [PMID: 37224313 PMCID: PMC10189297 DOI: 10.12688/f1000research.130592.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
The human brain contributes 2% of the body weight yet receives 15% of cardiac output and demands a constant supply of oxygen (O 2) and nutrients to meet its metabolic needs. Cerebral autoregulation is responsible for maintaining a constant cerebral blood flow that provides the supply of oxygen and maintains the energy storage capacity. We selected oxygen administration-related studies published between 1975-2021 that included meta-analysis, original research, commentaries, editorial, and review articles. In the present narrative review, several important aspects of the oxygen effects on brain tissues and cerebral autoregulation are discussed, as well the role of exogenous O 2 administration in patients with chronic ischemic cerebrovascular disease: We aimed to revisit the utility of O 2 administration in pathophysiological situations whether or not being advantageous. Indeed, a compelling clinical and experimental body of evidence questions the utility of routine oxygen administration in acute and post-recovery brain ischemia, as evident by studies in neurophysiology imaging. While O 2 is still part of common clinical practice, it remains unclear whether its routine use is safe.
Collapse
Affiliation(s)
- Pranathi Gullapalli
- Department of Anesthesiology, McGovern Medical School UTHealth, Hosuton, USA
| | - Nicoletta Fossati
- Department of Anaesthesia, St George’s Hospital and Medical School, London, UK
| | | | - Muhammad Haque
- Department of Neurology, McGovern Medical School UTHealth, Houston, USA
| | - Davide Cattano
- Department of Anesthesiology, McGovern Medical School UTHealth, Hosuton, USA
| |
Collapse
|
7
|
Meng Y, Li CX, Zhang X. Quantitative Evaluation of Oxygen Extraction Fraction Changes in the Monkey Brain during Acute Stroke by Using Quantitative Susceptibility Mapping. Life (Basel) 2023; 13:1008. [PMID: 37109537 PMCID: PMC10146121 DOI: 10.3390/life13041008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The oxygen extraction fraction (OEF) indicates the brain's oxygen consumption and can be estimated by using the quantitative susceptibility mapping (QSM) MRI technique. Recent studies have suggested that OEF alteration following stroke is associated with the viability of at-risk tissue. In the present study, the temporal evolution of OEF in the monkey brain during acute stroke was investigated using QSM. METHODS Ischemic stroke was induced in adult rhesus monkeys (n = 8) with permanent middle cerebral artery occlusion (pMCAO) by using an interventional approach. Diffusion-, T2-, and T2*-weighted images were conducted on day 0, day 2, and day 4 post-stroke using a clinical 3T scanner. Progressive changes in magnetic susceptibility and OEF, along with their correlations with the transverse relaxation rates and diffusion indices, were examined. RESULTS The magnetic susceptibility and OEF in injured gray matter of the brain significantly increased during the hyperacute phase, and then decreased significantly on day 2 and day 4. Moreover, the temporal changes of OEF in gray matter were moderately correlated with mean diffusivity (MD) (r = 0.52; p = 0.046) from day 0 to day 4. Magnetic susceptibility in white matter progressively increased (from negative values to near zero) during acute stroke, and significant increases were seen on day 2 (p = 0.08) and day 4 (p = 0.003) when white matter was significantly degenerated. However, significant reduction of OEF in white matter was not seen until day 4 post-stroke. CONCLUSION The preliminary results demonstrate that QSM-derived OEF is a robust approach to examine the progressive changes of gray matter in the ischemic brain from the hyperacute phase to the subacute phase of stroke. The changes of OEF in gray matter were more prominent than those in white matter following stroke insult. The findings suggest that QSM-derived OEF may provide complementary information for understanding the neuropathology of the brain tissue following stroke and predicting stroke outcomes.
Collapse
Affiliation(s)
- Yuguang Meng
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chun-Xia Li
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Xiaodong Zhang
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
8
|
Takahashi T, Uwano I, Akamatsu Y, Chida K, Kobayashi M, Yoshida K, Fujiwara S, Kubo Y, Sasaki M, Ogasawara K. Prediction of cerebral hyperperfusion following carotid endarterectomy using intravoxel incoherent motion magnetic resonance imaging. J Stroke Cerebrovasc Dis 2023; 32:106909. [PMID: 36442280 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES One of the risk factors for cerebral hyperperfusion following carotid endarterectomy (CEA) is a chronic reduction in cerebral perfusion pressure due to internal carotid artery (ICA) stenosis, which is clinically detected as increased cerebral blood volume (CBV). The perfusion fraction (f) is one of the intra-voxel incoherent motion (IVIM) parameters obtained using magnetic resonance (MR) imaging that theoretically reflects CBV. The present study aimed to determine whether preoperative IVIM-f on MR imaging predicts development of cerebral hyperperfusion following CEA. MATERIALS AND METHODS Sixty-eight patients with unilateral ICA stenosis (≥ 70%) underwent preoperative diffusion-weighted 3-T MR imaging, and IVIM-f maps were generated from these data. Quantitative brain perfusion single-photon emission computed tomography (SPECT) was performed before and immediately after CEA. Regions-of-interest (ROIs) were automatically placed in the bilateral middle cerebral artery territories in all images using a three-dimensional stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on IVIM-f maps. RESULTS Nine patients (13%) exhibited postoperative hyperperfusion (cerebral blood flow increases of ≥ 100% compared with preoperative values in the ROIs on brain perfusion SPECT). Only high IVIM-f ratios were significantly associated with the occurrence of postoperative hyperperfusion (95% confidence interval, 253.8-6774.2; p = 0.0031) on logistic regression analysis. The sensitivity, specificity, and positive and negative predictive values of the IVIM-f ratio to predict the occurrence of postoperative hyperperfusion were 100%, 81%, 45%, and 100%, respectively. CONCLUSIONS Preoperative IVIM-f on MR imaging can predict development of cerebral hyperperfusion following CEA.
Collapse
Affiliation(s)
- Tatsuhiko Takahashi
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Ikuko Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Yosuke Akamatsu
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Kohei Chida
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Masakazu Kobayashi
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Kenji Yoshida
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Shunrou Fujiwara
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Yoshitaka Kubo
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| |
Collapse
|
9
|
Harada T, Kudo K, Fujima N, Yoshikawa M, Ikebe Y, Sato R, Shirai T, Bito Y, Uwano I, Miyata M. Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. Radiographics 2022; 42:1161-1176. [PMID: 35522577 DOI: 10.1148/rg.210054] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quantitative susceptibility mapping (QSM), one of the advanced MRI techniques for evaluating magnetic susceptibility, offers precise quantitative measurements of spatial distributions of magnetic susceptibility. Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and is a substance-specific value. Recently, QSM has been widely used to estimate various levels of substances in the brain, including iron, hemosiderin, and deoxyhemoglobin (paramagnetism), as well as calcification (diamagnetism). By visualizing iron distribution in the brain, it is possible to identify anatomic structures that are not evident on conventional images and to evaluate various neurodegenerative diseases. It has been challenging to apply QSM in areas outside the brain because of motion artifacts from respiration and heartbeats, as well as the presence of fat, which has a different frequency to the proton. In this review, the authors provide a brief overview of the theoretical background and analyze methods of converting MRI phase images to QSM. Moreover, we provide an overview of the current clinical applications of QSM. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Taisuke Harada
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Kohsuke Kudo
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Noriyuki Fujima
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Masato Yoshikawa
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Yohei Ikebe
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Ryota Sato
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Toru Shirai
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Yoshitaka Bito
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Ikuko Uwano
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Mari Miyata
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| |
Collapse
|
10
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Bartnik-Olson BL, Blood AB, Terry MH, Hanson SFL, Day C, Kido D, Kim P. Quantitative susceptibility mapping as a measure of cerebral oxygenation in neonatal piglets. J Cereb Blood Flow Metab 2022; 42:891-900. [PMID: 34878947 PMCID: PMC9254037 DOI: 10.1177/0271678x211065199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022]
Abstract
Prominence of cerebral veins using susceptibility weighted magnetic resonance imaging (SWI) has been used as a qualitative indicator of cerebral venous oxygenation (CvO2). Quantitative susceptibility mapping (QSM) adds more precision to the assessment of CvO2, but has not been applied to neonatal hypoxic ischemic injury (HII). We proposed to study QSM measures of venous susceptibility and their correlation with direct measures of brain oxygenation and cerebral blood flow (CBF) in the neonatal piglet. The association of QSM intravascular cerebral venous susceptibility, with brain tissue O2 tension, CBF, cortical tissue oxyhemoglobin saturation, and the partial pressure of oxygen in arterial blood measurement during various oxygenation states was determined by linear regression. Compared to normoxia, venous susceptibility in the straight sinus increased 56.8 ± 25.4% during hypoxia, while decreasing during hyperoxia (23.5 ± 32.9%) and hypercapnia (23.3 ± 73.1%), which was highly correlated to all other measures of oxygenation (p < 0.0001) but did not correlate to CBF (p = 0.82). These findings demonstrate a strong relationship between venous susceptibility and brain tissue O2 tension. Our results suggest that QSM-derived venous susceptibility is sensitive to cerebral oxygenation status across various oxygenation states.
Collapse
Affiliation(s)
| | - Arlin B Blood
- Department of Pediatrics, Loma Linda University School of
Medicine, Center for Perinatal Biology, Loma Linda, CA, USA
| | - Michael H Terry
- Department of Pulmonary & Critical Care, Loma Linda
University Medical Center, Loma Linda, CA, USA
| | - Shawn FL Hanson
- Center for Perinatal Biology, Loma Linda University School of
Medicine, Loma Linda, CA, USA
| | - Christopher Day
- Department of Pediatrics, Office of Graduate Medical Education,
Loma Linda, CA, USA
| | - Daniel Kido
- Department of Radiology, Loma Linda University Medical Center,
Loma Linda, CA, USA
| | - Paggie Kim
- Department of Radiology, Loma Linda University Medical Center,
Loma Linda, CA, USA
| |
Collapse
|
12
|
Yamaguchi A, Kudo K, Sato R, Kawata Y, Udo N, Matsushima M, Yabe I, Sasaki M, Harada M, Matsukawa N, Shirai T, Ochi H, Bito Y. Efficacy of Quantitative Susceptibility Mapping with Brain Surface Correction and Vein Removal for Detecting Increase Magnetic Susceptibility in Patients with Alzheimer's Disease. Magn Reson Med Sci 2022; 22:87-94. [PMID: 35264494 PMCID: PMC9849412 DOI: 10.2463/mrms.mp.2021-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Studies on quantitative susceptibility mapping (QSM) have reported an increase in magnetic susceptibilities in patients with Alzheimer's disease (AD). Despite the pathological importance of the brain surface areas, they are sometimes excluded in QSM analysis. This study aimed to reveal the efficacy of QSM analysis with brain surface correction (BSC) and/or vein removal (VR) procedures. METHODS Thirty-seven AD patients and 37 age- and sex-matched, cognitively normal (CN) subjects were included. A 3D-gradient echo sequence at 3T MRI was used to obtain QSM. QSM images were created with regularization enabled sophisticated harmonic artifact reduction for phase data (RESHARP) and constrained RESHARP with BSC and/or VR. We conducted ROI analysis between AD patients and CN subjects who did or did not undergo BSC and/or VR using a t-test, to compare the susceptibility values after gray matter weighting. RESULTS The susceptibility values in RESHARP without BSC were significantly larger in AD patients than in CN subjects in one region (precentral gyrus, 8.1 ± 2.9 vs. 6.5 ± 2.1 ppb) without VR and one region with VR (precentral gyrus, 7.5 ± 2.8 vs. 5.9 ± 2.0 ppb). Three regions in RESHARP with BSC had significantly larger susceptibilities without VR (precentral gyrus, 7.1 ± 2.0 vs. 5.9 ± 2.0 ppb; superior medial frontal gyrus, 5.7 ± 2.6 vs. 4.2 ± 3.1 ppb; putamen, 47,8 ± 16.5 vs. 40.0 ± 15.9 ppb). In contrast, six regions showed significantly larger susceptibilities with VR in AD patients than in CN subjects (precentral gyrus, 6.4 ± 1.9 vs. 4.9 ± 2.7 ppb; superior medial frontal gyrus, 5.3 ± 2.7 vs. 3.7 ± 3.3 ppb; orbitofrontal cortex, -2.1 ± 2.7 vs. -3.6 ± 3.2 ppb; parahippocampal gyrus, 0.1 ± 3.6 vs. -1.7 ± 3.7 ppb; putamen, 45.0 ± 14.9 vs. 37.6 ± 14.6 ppb; inferior temporal gyrus, -3.4 ± 1.5 vs. -4.4 ± 1.5 ppb). CONCLUSION RESHARP with BSC and VR showed more regions of increased susceptibility in AD patients than in CN subjects. This study highlights the efficacy of this method in facilitating the diagnosis of AD.
Collapse
Affiliation(s)
- Akinori Yamaguchi
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan,Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan,Corresponding author: Faculty of Medicine, Hokkaido University, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan. Phone: +81-11-706-7779, Fax: +81-11-706-7408, E-mail:
| | - Ryota Sato
- FUJIFILM Healthcare Corporation, Tokyo, Japan
| | | | - Niki Udo
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Masaaki Matsushima
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Morioka, Iwate, Japan
| | - Masafumi Harada
- Department of Radiology, Tokushima University Graduate School of Medicine, Tokushima, Tokushima, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Toru Shirai
- FUJIFILM Healthcare Corporation, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Uchida Y, Kan H, Inoue H, Oomura M, Shibata H, Kano Y, Kuno T, Usami T, Takada K, Yamada K, Kudo K, Matsukawa N. Penumbra Detection With Oxygen Extraction Fraction Using Magnetic Susceptibility in Patients With Acute Ischemic Stroke. Front Neurol 2022; 13:752450. [PMID: 35222239 PMCID: PMC8873150 DOI: 10.3389/fneur.2022.752450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background The oxygen extraction fraction (OEF) has been applied to identify ischemic penumbral tissue, but is difficult to use in an urgent care setting. This study aimed to investigate whether an OEF map generated via magnetic resonance quantitative susceptibility mapping (QSM) could help identify the ischemic penumbra in patients with acute ischemic stroke. Materials and Methods This prospective imaging study included 21 patients with large anterior circulation vessel occlusion who were admitted <24 h after stroke onset and 21 age-matched healthy controls. We identified the ischemic penumbra as the region with a Tmax of >6 s during dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) and calculated the perfusion-core mismatch ratio between the ischemic penumbra and infarct core volumes. The OEF values were measured based on magnetic susceptibility differences between the venous structures and brain tissues using rapid QSM acquisition. Volumes with increased OEF values were compared to the ischemic penumbra volumes using an anatomical template. Results Eleven patients had a perfusion-core mismatch ratio of ≥1.8, and reperfusion therapy was recommended. In these patients, the volumes with increased OEF values of >51.5%, which was defined using the anterior circulation territory OEF values from the 21 healthy controls, were positively correlated with the ischemic penumbra volumes (r = 0.636, 95% CI: 0.059 to 0.895, P = 0.035) and inversely correlated with the 30-day change in the National Institutes of Health Stroke Scale scores (r = −0.624, 95% CI: −0.891 to −0.039, P = 0.041). Conclusion Tissue volumes with increased OEF values could predict ischemic penumbra volumes based on DSC-MRI, highlighting the potential of the QSM-derived OEF map as a penumbra biomarker to guide treatment selection in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Neurology, Nagoya City University, Nagoya, Japan
- Department of Neurology, Toyokawa City Hospital, Aichi, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University, Nagoya, Japan
| | - Hiroyasu Inoue
- Department of Neurology, Nagoya City University, Nagoya, Japan
| | - Masahiro Oomura
- Department of Neurology, Nagoya City University, Nagoya, Japan
| | - Haruto Shibata
- Department of Neurology, Nagoya City East Medical Center, Nagoya, Japan
| | - Yuya Kano
- Department of Neurology, Nagoya City East Medical Center, Nagoya, Japan
| | - Tomoyuki Kuno
- Department of Neurology, Toyokawa City Hospital, Aichi, Japan
| | - Toshihiko Usami
- Department of Neurology, Toyokawa City Hospital, Aichi, Japan
| | - Koji Takada
- Department of Neurology, Toyokawa City Hospital, Aichi, Japan
| | - Kentaro Yamada
- Department of Neurology, Nagoya City East Medical Center, Nagoya, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University, Hokkaido, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Hokkaido, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University, Nagoya, Japan
- *Correspondence: Noriyuki Matsukawa
| |
Collapse
|
14
|
Lundberg A, Lind E, Olsson H, Helms G, Knutsson L, Wirestam R. Comparison of MRI methods for measuring whole‐brain oxygen extraction fraction under different geometric conditions at 7T. J Neuroimaging 2022; 32:442-458. [PMID: 35128747 PMCID: PMC9305937 DOI: 10.1111/jon.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Anna Lundberg
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Emelie Lind
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Hampus Olsson
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Gunther Helms
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics Lund University Lund Sweden
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland United States
| | - Ronnie Wirestam
- Department of Medical Radiation Physics Lund University Lund Sweden
| |
Collapse
|
15
|
Reduced magnetic resonance angiography signal intensity in the middle cerebral artery ipsilateral to severe carotid stenosis may be a practical index of high oxygen extraction fraction. Eur Radiol 2021; 32:2023-2029. [PMID: 34642810 PMCID: PMC8831255 DOI: 10.1007/s00330-021-08272-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022]
Abstract
Objectives Angiographic “slow flow” in the middle cerebral artery (MCA), caused by carotid stenosis, may be associated with high oxygen extraction fraction (OEF). If the MCA slow flow is associated with a reduced relative signal intensity (rSI) of the MCA on MR angiography, the reduced rSI may be associated with a high OEF. We investigated whether the MCA slow flow ipsilateral to carotid stenosis was associated with a high OEF and aimed to create a practical index to estimate the high OEF. Methods We included patients who underwent digital subtraction angiography (DSA) and MRA between 2015 and 2019 to evaluate carotid stenosis. MCA slow flow by image count using DSA, MCA rSI, minimal luminal diameter (MLD) of the carotid artery, carotid artery stenosis rate (CASr), and whole-brain OEF (wb-OEF) was evaluated. When MCA slow flow was associated with a high wb-OEF, the determinants of MCA slow flow were identified, and their association with high wb-OEF was evaluated. Results One hundred and twenty-seven patients met our inclusion criteria. Angiographic MCA slow flow was associated with high wb-OEF. We identified MCA rSI and MLD as determinants of angiographic MCA slow flow. The upper limits of MCA rSI and MLD for angiographic MCA slow flow were 0.89 and 1.06 mm, respectively. The wb-OEF was higher in patients with an MCA rSI ≤ 0.89 and ipsilateral MLD ≤ 1.06 mm than patients without this combination. Conclusions The combination of reduced MCA rSI and ipsilateral narrow MLD is a straightforward index of high wb-OEF. Key Points • The whole-brain OEF in patients with angiographic slow flow in the MCA ipsilateral to high-grade carotid stenosis was higher than in patients without it. • Independent determinants of MCA slow flow were MCA relative signal intensity (rSI) on MRA or minimal luminal diameter (MLD) of the carotid stenosis. • The wb-OEF was higher in patients with an MCA rSI ≤ 0.89 and ipsilateral MLD ≤ 1.06 mm than patients without this combination. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08272-3.
Collapse
|
16
|
Lu X, Luo Y, Fawaz M, Zhu C, Chai C, Wu G, Wang H, Liu J, Zou Y, Gong Y, Haacke EM, Xia S. Dynamic Changes of Asymmetric Cortical Veins Relate to Neurologic Prognosis in Acute Ischemic Stroke. Radiology 2021; 301:672-681. [PMID: 34581624 DOI: 10.1148/radiol.2021210201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Cerebral oxygenation is closely related to neural function in acute ischemic stroke (AIS) and can be measured noninvasively from asymmetrically prominent cortical veins (APCVs) using quantitative susceptibility mapping (QSM). Purpose To quantify venous oxygen saturation (SvO2) using brain MRI with QSM in patients with AIS, to analyze its change at 2-week follow-up, and to assess the influence of SvO2 in clinical prognosis. Materials and Methods Between 2016 and 2020, consecutive patients with AIS who underwent brain MRI within 24 hours from symptom onset and 2 weeks after treatment were retrospectively enrolled. The SvO2 of APCVs was quantified using QSM. The independent sample t test was used to compare the SvO2 between patients with and patients without APCVs. The paired sample t test was used to assess the dynamic change in SvO2. Pearson and Spearman correlation analysis was used to explore the relationship among dynamic change in SvO2 and hypoperfusion, National Institutes of Health Stroke Scale (NIHSS) score change, and 90-day modified Rankin Scale (mRS) score. The independent sample t test was used to compare the dynamic change in SvO2 between different clinical prognoses and outcome subgroups. Results APCVs were detected in 39 of 73 patients (mean age, 70 years ± 10 [standard deviation]; 49 men) at admission and disappeared in 35 patients at 2-week follow-up MRI. The mean SvO2 increased from 35.0% ± 5.8 to 64.5% ± 10.0 (P < .001) in 39 patients. For the 35 patients with APCVs that disappeared, the dynamic change in SvO2 negatively correlated with change in NIHSS score (r = -0.37, R2 = 0.19, P = .03) and 90-day mRS score (r = -0.54, R2 = 0.27, P = .001), and the dynamic change in SvO2 in the subgroup with good 90-day outcomes (n = 19) was greater than that in the subgroup with poor 90-day outcomes (n = 16) (mean, 34.5% ± 5.8 vs 29.7% ± 6.3; 95% CI: 0.6, 8.9; P = .03). Conclusion Improved oxygen saturation of asymmetric cortical veins detected using brain MRI with quantitative susceptibility mapping corresponded with better acute ischemic stroke outcomes for patients with asymmetrically prominent cortical veins that disappeared at 2-week follow-up MRI. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Xiudi Lu
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Yu Luo
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Miller Fawaz
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Chengcheng Zhu
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Chao Chai
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Gemuer Wu
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Huiying Wang
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Jihua Liu
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Ying Zou
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Yan Gong
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - E Mark Haacke
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Shuang Xia
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| |
Collapse
|
17
|
Wu D, Zhou Y, Cho J, Shen N, Li S, Qin Y, Zhang G, Yan S, Xie Y, Zhang S, Zhu W, Wang Y. The Spatiotemporal Evolution of MRI-Derived Oxygen Extraction Fraction and Perfusion in Ischemic Stroke. Front Neurosci 2021; 15:716031. [PMID: 34483830 PMCID: PMC8415351 DOI: 10.3389/fnins.2021.716031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose This study aimed to assess the spatiotemporal evolution of oxygen extraction fraction (OEF) in ischemic stroke with a newly developed cluster analysis of time evolution (CAT) for a combined quantitative susceptibility mapping and quantitative blood oxygen level-dependent model (QSM + qBOLD, QQ). Method One hundred and fifteen patients in different ischemic stroke phases were retrospectively collected for measurement of OEF of the infarcted area defined on diffusion-weighted imaging (DWI). Clinical severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). Of the 115 patients, 11 underwent two longitudinal MRI scans, namely, three-dimensional (3D) multi-echo gradient recalled echo (mGRE) and 3D pseudo-continuous arterial spin labeling (pCASL), to evaluate the reversal region (RR) of the initial diffusion lesion (IDL) that did not overlap with the final infarct (FI). The temporal evolution of OEF and the cerebral blood flow (CBF) in the IDL, the RR, and the FI were assessed. Results Compared to the contralateral mirror area, the OEF of the infarcted region was decreased regardless of stroke phases (p < 0.05) and showed a declining tendency from the acute to the chronic phase (p = 0.022). Five of the 11 patients with longitudinal scans showed reversal of the IDL. Relative oxygen extraction fraction (rOEF, compared to the contralateral mirror area) of the RR increased from the first to the second MRI (p = 0.044). CBF was about 1.5-fold higher in the IDL than in the contralateral mirror area in the first MRI. Two patients showed penumbra according to the enlarged FI volume. The rOEF of the penumbra fluctuated around 1.0 at earlier scan times and then decreased, while the CBF decreased continuously. Conclusion The spatiotemporal evolution of OEF and perfusion in ischemic lesions is heterogeneous, and the CAT-based QQ method is feasible to capture cerebral oxygen metabolic information.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Wei Z, Xu J, Chen L, Hirschler L, Barbier EL, Li T, Wong PC, Lu H. Brain metabolism in tau and amyloid mouse models of Alzheimer's disease: An MRI study. NMR IN BIOMEDICINE 2021; 34:e4568. [PMID: 34050996 PMCID: PMC9574887 DOI: 10.1002/nbm.4568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment and dementia in elderly individuals. According to the current biomarker framework for "unbiased descriptive classification", biomarkers of neurodegeneration, "N", constitute a critical component in the tri-category "A/T/N" system. Current biomarkers of neurodegeneration suffer from potential drawbacks such as requiring invasive lumbar puncture, involving ionizing radiation, or representing a late, irreversible marker. Recent human studies have suggested that reduced brain oxygen metabolism may be a new functional marker of neurodegeneration in AD, but the heterogeneity and the presence of mixed pathology in human patients did not allow a full understanding of the role of oxygen extraction and metabolism in AD. In this report, global brain oxygen metabolism and related physiological parameters were studied in two AD mouse models with relatively pure pathology, using advanced MRI techniques including T2 -relaxation-under-spin-tagging (TRUST) and phase contrast (PC) MRI. Additionally, regional cerebral blood flow (CBF) was determined with pseudocontinuous arterial spin labeling. Reduced global oxygen extraction fraction (by -18.7%, p = 0.008), unit-mass cerebral metabolic rate of oxygen (CMRO2 ) (by -17.4%, p = 0.04) and total CMRO2 (by -30.8%, p < 0.001) were observed in Tau4RΔK mice-referred to as the tau AD model-which manifested pronounced neurodegeneration, as measured by diminished brain volume (by -15.2%, p < 0.001). Global and regional CBF in these mice were not different from those of wild-type mice (p > 0.05), suggesting normal vascular function. By contrast, in B6;SJL-Tg [APPSWE]2576Kha (APP) mice-referred to as the amyloid AD model-no brain volume reduction, as well as relatively intact brain oxygen extraction and metabolism, were found (p > 0.05). Consistent with the imaging data, behavioral measures of walking distance were impaired in Tau4RΔK mice (p = 0.004), but not in APP mice (p = 0.88). Collectively, these findings support the hypothesis that noninvasive MRI measurement of brain oxygen metabolism may be a promising biomarker of neurodegeneration in AD.
Collapse
Affiliation(s)
- Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China
| | - Lydiane Hirschler
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuel L. Barbier
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Tong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip C. Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Probst J, Rohner M, Zahn M, Piccirelli M, Pangalu A, Luft A, Deistung A, Klohs J, Wegener S. Quantitative susceptibility mapping in ischemic stroke patients after successful recanalization. Sci Rep 2021; 11:16038. [PMID: 34362957 PMCID: PMC8346586 DOI: 10.1038/s41598-021-95265-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is a novel processing method for gradient-echo magnetic resonance imaging (MRI). Higher magnetic susceptibility in cortical veins have been observed on susceptibility maps in the ischemic hemisphere of stroke patients, indicating an increased oxygen extraction fraction (OEF). Our goal was to investigate susceptibility in veins of stroke patients after successful recanalization in order to analyze the value of QSM in predicting tissue prognosis and clinical outcome. We analyzed MR images of 23 patients with stroke due to unilateral middle cerebral artery (MCA)-M1/M2 occlusion acquired 24–72 h after successful thrombectomy. The susceptibilities of veins were obtained from QSM and compared between the stroke territory, the ipsilateral non-ischemic MCA territory and the contralateral MCA territory. As outcome variables, early infarct size and functional disability (modified Rankin Scale, mRS) after 3–5 months was used. The median susceptibility value of cortical veins in the ischemic core was 41% lower compared to the ipsilateral non-ischemic MCA territory and 38% lower than on the contralateral MCA territory. Strikingly, in none of the patients prominent vessels with high susceptibility signal were found after recanalization. Venous susceptibility values within the infarct did not correlate with infarct volume or functional disability after 3–5 months. Low venous susceptibility within the infarct core after successful recanalization of the occluded vessel likely indicates poor oxygen extraction arising from tissue damage. We did not identify peri-infarct tissue with increased susceptibility values as potential surrogate of former penumbral areas. We found no correlation of QSM parameters with infarct size or outcome.
Collapse
Affiliation(s)
- Jasmin Probst
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marco Rohner
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Malin Zahn
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Athina Pangalu
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Luft
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.,Cereneo Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle, Germany
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| |
Collapse
|
20
|
Ebrahimi T, Tafakhori A, Hashemi H, Ali Oghabian M. An interictal measurement of cerebral oxygen extraction fraction in MRI-negative refractory epilepsy using quantitative susceptibility mapping. Phys Med 2021; 85:87-97. [PMID: 33984822 DOI: 10.1016/j.ejmp.2021.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Oxygen extraction fraction (OEF) can be a factor to identify brain tissue's disability in epileptic patients. This study aimed to assess the OEF's level measurement in refractory epileptic patients (REPs) using a quantitative susceptibility mapping (QSM) method and to determine whether the OEF parameters change. METHODS QSM-OEF maps of 26 REPs and 16 healthy subjects were acquired using 3T MRI with a 64-channel coil. Eighteen regions-of-interest (ROIs) were chosen around the cortex in one appropriate slice of the brain and the mean QSM-OEF for each ROI was obtained. The correlations of QSM-OEF among different clinical characteristics of the disease, as well as between the patients and normal subjects, were also investigated. RESULTS QSM-OEF was shown to be significantly higher in REPs (44.9 ± 5.8) than that in HS (41.9 ± 6.2) (p < 0.05). Mean QSM-OEF was statistically lower in the ipsilateral side (44.5 ± 6.6) compared to the contralateral side (46.4 ± 6.8) (P < 0.01). QSM-OEF was illustrated to have a strong positive correlation with the attack duration (r = 0.6), and a moderate negative correlation with the attack frequency (r = -0.3). Using an optimized support vector machine algorithm, we could predict the disease in subjects having abnormal OEF values in the brain-selected-ROIs with sensitivity, specificity, AUC, and the precision of 0.96, 1, 0.98, and 1, respectively. CONCLUSIONS The results of this study revealed that QSM-OEF of the REPs' brain is higher than that of HS, which indicates that QSM-OEF is associated with disease activity.
Collapse
Affiliation(s)
- Tayyebeh Ebrahimi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroimaging and Analysis, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Tafakhori
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Hashemi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Oghabian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroimaging and Analysis, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
21
|
Chai C, Wang H, Chu Z, Li J, Qian T, Mark Haacke E, Xia S, Shen W. Reduced regional cerebral venous oxygen saturation is a risk factor for the cognitive impairment in hemodialysis patients: a quantitative susceptibility mapping study. Brain Imaging Behav 2021; 14:1339-1349. [PMID: 30511117 DOI: 10.1007/s11682-018-9999-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to noninvasively evaluate the changes of regional cerebral venous oxygen saturation (rSvO2) in hemodialysis patients using quantitative susceptibility mapping (QSM) and investigate the relationship with clinical risk factors and neuropsychological testing. Fifty four (54) hemodialysis patients and 54 age, gender and education matched healthy controls (HCs) were recruited in this prospective study. QSM data were reconstructed from the original phase data of susceptibility weighted imaging to measure the susceptibility of cerebral regional major veins in all subjects and calculate their rSvO2. The differences in rSvO2 between hemodialysis patients and HCs were investigated using analysis of covariance adjusting for age and gender as covariates. Stepwise multiple regression and correlation analysis were performed between the cerebral rSvO2 and clinical factors including neuropsychological testing. The SvO2 of the bilateral cortical, thalamostriate, septal, cerebral internal and basal veins in hemodialysis patients was significantly lower than that in HCs (p < 0.001, Bonferroni corrected). The cerebral rSvO2 in all these veins was reduced by 1.67% to 2.30%. The hematocrit, iron, glucose, pre-and post-dialysis diastolic blood pressure (DBP) were independent predictive factors for the cerebral rSvO2 (all P < 0.05). The Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA) scores were both lower in patients than those in HCs (both P < 0.05). The SvO2 of the left cerebral internal vein correlated with MoCA scores (r = 0.492; P = 0.02, FDR corrected). In conclusion, our study indicated that the cerebral rSvO2 was reduced in hemodialysis patients, which was the risk factor for neurocognitive impairment. The hematocrit, iron, glucose, pre-and post-dialysis DBP were independent risk factors for the cerebral rSvO2.
Collapse
Affiliation(s)
- Chao Chai
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Huiying Wang
- School of Graduates, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhiqiang Chu
- Department of Hemodialysis, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jinping Li
- Department of Hemodialysis, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Tianyi Qian
- MR collaboration, Siemens Healthcare, Northeast Asia, Beijing, 100102, China
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, 48202, USA
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
22
|
Dimov AV, Christoforidis GA, Saadat N, Liu MM, Jeong YI, Roth S, Niekrasz M, Carroll TJ. QSM in canine model of acute cerebral ischemia: A pilot study. Magn Reson Med 2021; 85:1602-1610. [PMID: 33034078 DOI: 10.1002/mrm.28498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/28/2020] [Accepted: 08/05/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE In the present study, we investigated the potential of QSM to assess the physiological state of cortical tissue in the middle cerebral artery occlusion canine model of a cerebral ischemia. METHODS Experiments were performed in 8 anesthetized canines. Gradient echo, perfusion, and DWI data of brains at normal and ischemic states were acquired. In the postprocessed susceptibility and quantitative cerebral blood flow maps, changes in values within the middle cerebral artery-fed cortical territories were quantified both on the ischemic and normal contralateral hemisphere side. RESULTS QSM values in critically ischemic tissue were significantly different from contralateral values-namely, susceptibility increase was observed in the cases in which cerebral perfusion was maintained above the threshold of neuronal death. Furthermore, the data indicates presence of a significant correlation between the changes in susceptibility values, cerebral perfusion, and the infarct volume and pial collateral scores. Additionally, our data suggests that difference in cortical susceptibility is prospectively indicative of the infarct growth rate. CONCLUSION In an experimental permanent middle cerebral artery occlusion model, QSM was shown to correlate with the functional parameters characterizing viability of ischemic tissue, thus warranting further research on its ability to provide complementary information during acute stroke MRI examinations in humans.
Collapse
Affiliation(s)
- Alexey V Dimov
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | | | - Niloufar Saadat
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Mira M Liu
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Yong I Jeong
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois, College of Medicine, Chicago, Illinois, USA
| | - Marek Niekrasz
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Timothy J Carroll
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Ozturk BO, Monte B, Koundal S, Dai F, Benveniste H, Lee H. Disparate volumetric fluid shifts across cerebral tissue compartments with two different anesthetics. Fluids Barriers CNS 2021; 18:1. [PMID: 33407650 PMCID: PMC7788828 DOI: 10.1186/s12987-020-00236-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background Large differences in glymphatic system transport—similar in magnitude to those of the sleep/wake cycle—have been observed during anesthesia with dexmedetomidine supplemented with low dose isoflurane (DEXM-I) in comparison to isoflurane (ISO). However, the biophysical and bioenergetic tissue status underlying glymphatic transport differences between anesthetics remains undefined. To further understand biophysical characteristics underlying these differences we investigated volume status across cerebral tissue compartments, water diffusivity, and T2* values in rats anesthetized with DEXM-I in comparison to ISO. Methods Using a crossover study design, a group of 12 Sprague Dawley female rats underwent repetitive magnetic resonance imaging (MRI) under ISO and DEXM-I. Physiological parameters were continuously measured. MRI included a proton density weighted (PDW) scan to investigate cerebrospinal fluid (CSF) and parenchymal volumetric changes, a multigradient echo scan (MGE) to calculate T2* maps as a measure of ‘bioenergetics’, and a diffusion scan to quantify the apparent diffusion coefficient (ADC). Results The heart rate was lower with DEXM-I in comparison to ISO, but all other physiological variables were similar across scans and groups. The PDW images revealed a 1% parenchymal volume increase with ISO compared to DEXM-I comprising multiple focal tissue areas scattered across the forebrain. In contrast, with DEXM-I the CSF compartment was enlarged by ~ 6% in comparison to ISO at the level of the basal cisterns and peri-arterial conduits which are main CSF influx routes for glymphatic transport. The T2* maps showed brain-wide increases in T2* in ISO compared to DEXM-I rats. Diffusion-weighted images yielded no significant differences in ADCs across the two anesthesia groups. Conclusions We demonstrated CSF volume expansion with DEXM-I (in comparison to ISO) and parenchymal (GM) expansion with ISO (in comparison to DEXM-I), which may explain the differences in glymphatic transport. The T2* changes in ISO are suggestive of an increased bioenergetic state associated with excess cellular firing/bursting when compared to DEXM-I.
Collapse
Affiliation(s)
- Burhan O Ozturk
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Brittany Monte
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA. .,Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA.
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| |
Collapse
|
24
|
Zhang S, Cho J, Nguyen TD, Spincemaille P, Gupta A, Zhu W, Wang Y. Initial Experience of Challenge-Free MRI-Based Oxygen Extraction Fraction Mapping of Ischemic Stroke at Various Stages: Comparison With Perfusion and Diffusion Mapping. Front Neurosci 2020; 14:535441. [PMID: 33041755 PMCID: PMC7525031 DOI: 10.3389/fnins.2020.535441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
MRI-based oxygen extraction fraction imaging has a great potential benefit in the selection of clinical strategies for ischemic stroke patients. This study aimed to evaluate the performance of a challenge-free oxygen extraction fraction (OEF) mapping in a cohort of acute and subacute ischemic stroke patients. Consecutive ischemic stroke patients (a total of 30 with 5 in the acute stage, 19 in the early subacute stage, and 6 in the late subacute stage) were recruited. All subjects underwent MRI including multi-echo gradient echo (mGRE), diffusion weighted imaging (DWI), and 3D-arterial spin labeling (ASL). OEF maps were generated from mGRE phase + magnitude data, which were processed using quantitative susceptibility mapping (QSM) + quantitative blood oxygen level-dependent (qBOLD) imaging with cluster analysis of time evolution. Cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) maps were reconstructed from 3D-ASL and DWI, respectively. Further, cerebral metabolic rate of oxygen (CMRO2) was calculated as the product of CBF and OEF. OEF, CMRO2, CBF, and ADC values in the ischemic cores (absolute values) and their contrasts to the contralateral regions (relative values) were evaluated. One-way analysis of variance (ANOVA) was used to compare OEF, CMRO2, CBF, and ADC values and their relative values among different stroke stages. The OEF value of infarct core showed a trend of decrease from acute, to early subacute, and to late subacute stages of ischemic stroke. Significant differences among the three stroke stages were only observed in the absolute OEF (F = 6.046, p = 0.005) and relative OEF (F = 5.699, p = 0.009) values of the ischemic core, but not in other measurements (absolute and relative CMRO2, CBF, ADC values, all values of p > 0.05). In conclusion, the challenge-free QSM + qBOLD-generated OEF mapping can be performed on stroke patients. It can provide more information on tissue viability that was not available with CBF and ADC and, thus, may help to better manage ischemic stroke patients.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
25
|
Fan AP, An H, Moradi F, Rosenberg J, Ishii Y, Nariai T, Okazawa H, Zaharchuk G. Quantification of brain oxygen extraction and metabolism with [ 15O]-gas PET: A technical review in the era of PET/MRI. Neuroimage 2020; 220:117136. [PMID: 32634594 PMCID: PMC7592419 DOI: 10.1016/j.neuroimage.2020.117136] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2) are key cerebral physiological parameters to identify at-risk cerebrovascular patients and understand brain health and function. PET imaging with [15O]-oxygen tracers, either through continuous or bolus inhalation, provides non-invasive assessment of OEF and CMRO2. Numerous tracer delivery, PET acquisition, and kinetic modeling approaches have been adopted to map brain oxygenation. The purpose of this technical review is to critically evaluate different methods for [15O]-gas PET and its impact on the accuracy and reproducibility of OEF and CMRO2 measurements. We perform a meta-analysis of brain oxygenation PET studies in healthy volunteers and compare between continuous and bolus inhalation techniques. We also describe OEF metrics that have been used to detect hemodynamic impairment in cerebrovascular disease. For these patients, advanced techniques to accelerate the PET scans and potential synthesis with MRI to avoid arterial blood sampling would facilitate broader use of [15O]-oxygen PET for brain physiological assessment.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Biomedical Engineering and Department of Neurology, University of California Davis, Davis, CA, USA.
| | - Hongyu An
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Farshad Moradi
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Yosuke Ishii
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
26
|
Ma Y, Mazerolle EL, Cho J, Sun H, Wang Y, Pike GB. Quantification of brain oxygen extraction fraction using QSM and a hyperoxic challenge. Magn Reson Med 2020; 84:3271-3285. [DOI: 10.1002/mrm.28390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yuhan Ma
- Department of Biomedical Engineering and McConnell Brain Imaging Centre McGill University Montréal Quebec Canada
| | - Erin L. Mazerolle
- Department of Radiology and Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
| | - Junghun Cho
- Department of Biomedical Engineering Cornell University Ithaca New York USA
| | - Hongfu Sun
- Department of Radiology and Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
- School of Information Technology and Electrical Engineering University of Queensland Brisbane Australia
| | - Yi Wang
- Department of Biomedical Engineering Cornell University Ithaca New York USA
- Department of Radiology Weill Cornell Medical College New York New York USA
| | - G. Bruce Pike
- Department of Biomedical Engineering and McConnell Brain Imaging Centre McGill University Montréal Quebec Canada
- Department of Radiology and Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
| |
Collapse
|
27
|
Fujimoto K, Uwano I, Sasaki M, Oshida S, Tsutsui S, Yanagihara W, Fujiwara S, Kobayashi M, Kubo Y, Yoshida K, Terasaki K, Ogasawara K. Acetazolamide-Loaded Dynamic 7T MR Quantitative Susceptibility Mapping in Major Cerebral Artery Steno-Occlusive Disease: Comparison with PET. AJNR Am J Neuroradiol 2020; 41:785-791. [PMID: 32299799 DOI: 10.3174/ajnr.a6508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/01/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Dynamic changes in cerebrovascular reactivity after acetazolamide administration vary markedly among patients with major cerebral arterial steno-occlusive disease. MR quantitative susceptibility mapping can dynamically quantify the cerebral magnetic susceptibility. The purpose of this study was to determine whether dynamic changes in susceptibility after administration of acetazolamide on 7T quantitative susceptibility mapping are associated with pre-existing states of CBV and the cerebral metabolic rate of oxygen in the cerebral hemispheres with major cerebral arterial steno-occlusive disease. MATERIALS AND METHODS Sixty-five patients underwent 7T MR imaging at baseline and at 5, 10, 15, and 20 minutes after acetazolamide administration. Differences between the susceptibility of venous structures and surrounding brain tissue were calculated in the quantitative susceptibility mapping images. Susceptibility differences at 5, 10, 15, and 20 minutes after acetazolamide administration relative to baseline were calculated in 97 cerebral hemispheres with major cerebral arterial steno-occlusive disease. CBV and the cerebral metabolic rate of oxygen were also calculated using 15O-gas PET in the resting state. RESULTS Dynamic changes of susceptibility after acetazolamide administration were classified into 3 patterns: abnormally increasing 5 or 10 minutes after acetazolamide administration; abnormally decreasing within 20 minutes after acetazolamide administration; and remaining unchanged after acetazolamide administration. CBV was significantly greater in the first pattern than in the latter 2. The cerebral metabolic rate of oxygen differed significantly in descending order from the first to middle to last pattern. CONCLUSIONS Dynamic changes of susceptibility after acetazolamide administration on 7T MR quantitative susceptibility mapping are associated with pre-existing states of CBV and the cerebral metabolic rate of oxygen in major cerebral arterial steno-occlusive disease.
Collapse
Affiliation(s)
- K Fujimoto
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.)
| | - I Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., M.S.)
| | - M Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences (I.U., M.S.)
| | - S Oshida
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.)
| | - S Tsutsui
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.)
| | - W Yanagihara
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.)
| | - S Fujiwara
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.)
| | - M Kobayashi
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.)
| | - Y Kubo
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.)
| | - K Yoshida
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.)
| | - K Terasaki
- Cyclotron Research Center (K.T.), Iwate Medical University School of Medicine, Morioka, Japan
| | - K Ogasawara
- From the Department of Neurosurgery (K.F., S.O., S.T., W.Y., S.F., M.K., Y.K., K.Y., K.O.),
| |
Collapse
|
28
|
Fan AP, Khalil AA, Fiebach JB, Zaharchuk G, Villringer A, Villringer K, Gauthier CJ. Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke. J Cereb Blood Flow Metab 2020; 40:539-551. [PMID: 30732551 PMCID: PMC7026852 DOI: 10.1177/0271678x19827944] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent clinical trials of new revascularization therapies in acute ischemic stroke have highlighted the importance of physiological imaging to identify optimal treatments for patients. Oxygen extraction fraction (OEF) is a hallmark of at-risk tissue in stroke, and can be quantified from the susceptibility effect of deoxyhemoglobin molecules in venous blood on MRI phase scans. We measured OEF within cerebral veins using advanced quantitative susceptibility mapping (QSM) MRI reconstructions in 20 acute stroke patients. Absolute OEF was elevated in the affected (29.3 ± 3.4%) versus the contralateral hemisphere (25.5 ± 3.1%) of patients with large diffusion-perfusion lesion mismatch (P = 0.032). In these patients, OEF negatively correlated with relative CBF measured by dynamic susceptibility contrast MRI (P = 0.004), suggesting compensation for reduced flow. Patients with perfusion-diffusion match or no hypo-perfusion showed less OEF difference between hemispheres. Nine patients received longitudinal assessment and showed OEF ratio (affected to contralateral) of 1.2 ± 0.1 at baseline that normalized (decreased) to 1.0 ± 0.1 at follow-up three days later (P = 0.03). Our feasibility study demonstrates that QSM MRI can non-invasively quantify OEF in stroke patients, relates to perfusion status, and is sensitive to OEF changes over time. Clinical trial registration: Longitudinal MRI examinations of patients with brain ischemia and blood brain barrier permeability; clinicaltrials.org :NCT02077582.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ahmed A Khalil
- Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Berlin School of Mind and Brain, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, Canada.,Montreal Heart Institute, Montreal, Canada
| |
Collapse
|
29
|
Sato R, Shirai T, Soutome Y, Bito Y, Ochi H. Quantitative susceptibility mapping of prostate with separate calculations for water and fat regions for reducing shading artifacts. Magn Reson Imaging 2020; 66:22-29. [DOI: 10.1016/j.mri.2019.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
|
30
|
Hara S, Tanaka Y, Ueda Y, Abe D, Hayashi S, Inaji M, Maehara T, Ishii K, Nariai T. Detection of hemodynamic impairment on 15O gas PET using visual assessment of arterial spin-labeling MR imaging in patients with moyamoya disease. J Clin Neurosci 2019; 72:258-263. [PMID: 31843438 DOI: 10.1016/j.jocn.2019.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/25/2018] [Accepted: 11/19/2019] [Indexed: 12/24/2022]
Abstract
It is unclear whether the visual assessment of noninvasive arterial spin labeling magnetic resonance imaging (ASL) can identify instances of hemodynamic compromise including an elevated oxygen extraction fraction (OEF) measured by 15O-gas positron emission tomography (PET). Here we evaluated the relationship between a four-point visual assessment system referred to as 'ASL scores' using ASL with two postlabeling delays (PLDs; 1525 ms and 2525 ms) and some quantitative hemodynamic parameters measured by PET. We retrospectively evaluated the cases of 18 Japanese patients with moyamoya disease who underwent ASL and PET. We compared the patients' regional ASL scores on two ASL images to the regional values of PET parameters, and we observed a significant trend in accord with the presumed clinical severity among all PET parameters and ASL scores (p < .003). The ASL score of the long PLD (2525 ms) showed the highest specificity (98.5%) for elevated OEF. Our results suggest that hemodynamic impairment (including elevated OEF) in patients with moyamoya disease may be grossly assessed by a visual assessment of noninvasive ASL images, which can be easily obtained in clinical settings.
Collapse
Affiliation(s)
- Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yasuhiro Ueda
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisu Abe
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shihori Hayashi
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan; Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan; Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan; Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
31
|
Miyata M, Kakeda S, Kudo K, Iwata S, Tanaka Y, Wang Y, Korogi Y. Evaluation of oxygen extraction fraction in systemic lupus erythematosus patients using quantitative susceptibility mapping. J Cereb Blood Flow Metab 2019; 39:1648-1658. [PMID: 29547080 PMCID: PMC6681530 DOI: 10.1177/0271678x18764829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purposes of this study are to assess the oxygen extraction fraction (OEF) changes on MRI-based quantitative susceptibility mapping (QSM) in systemic lupus erythematosus (SLE) patients and to determine whether QSM-OEF is associated with disease activity in SLE. We enrolled 42 SLE patients and 20 healthy subjects (HS) who had no pathologies on conventional brain MRI. Disease activity was assessed using SLE Disease Activity Index (SLEDAI). For the measurement of QSM-OEF, QSM data were analysed using the Perfusion Mismatch Analyzer software program. Spearman's or Pearson's correlation coefficients were calculated, and independent predictors were identified through a multiple linear regression analysis. QSM-OEF was significantly higher in SLE than that in HS (51.3 ± 10.1 vs. 40.5 ± 3.7, p < 0.001). QSM-OEF was positively correlated with SLEDAI and the presence of neuropsychiatric symptom (NPS) scores (ρ = 0.663, p < 0.001 and ρ = 0.340, p = 0.028). At multiple linear regression analysis, SLEDAI and NPS were independently associated with QSM-OEF (standardized β = 0.426, p = 0.016 and standardized β = 6.148, p = 0.029). In the SLE patients, QSM-OEF is associated with disease activity, which might predict an increased risk of stroke in SLE.
Collapse
Affiliation(s)
- Mari Miyata
- 1 Department of Radiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- 1 Department of Radiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kohsuke Kudo
- 2 Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Shigeru Iwata
- 3 Department of the First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiya Tanaka
- 3 Department of the First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yi Wang
- 4 Departments of Biomedical Engineering and Radiology, Cornell University, MedImageMetric LLC, New York, NY, USA
| | - Yukunori Korogi
- 1 Department of Radiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
32
|
Jang J, Oh SH, Nam Y, Lee K, Choi HS, Jung SL, Ahn KJ, Park KN, Kim BS. Prognostic value of phase information of 2D T2*-weighted gradient echo brain imaging in cardiac arrest survivors: A preliminary study. Resuscitation 2019; 140:142-149. [PMID: 31153942 DOI: 10.1016/j.resuscitation.2019.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Predicting neurological outcomes after cardiac arrest is important to guide therapeutic decisions. We assessed the prognostic value of phase information of 2D T2*-weighted gradient echo imaging (T2*WI) of the brain in CA survivors. METHODS This study included cardiac arrest survivors who had undergone MRI for prognostication. After application of homodyne filtering to T2*WI phase images, the contrast of three venous structures was assessed as normal (score 0) or abnormal (score 1): the superior sagittal sinus, the cortical veins, and the thalamostriate veins. The scores were summarized into a gradient-recalled echo (GRE) summary score. The prognostic performances of T2*WI, diffusion-weighted imaging (DWI), electroencephalography and serum biomarkers were evaluated using receiver operating characteristic (ROC) curves. RESULTS Of the 39 enrolled patients, 12 (31%) had good outcomes and 27 (69%) had poor outcomes. ROC curve analysis showed that T2*WI had good prognostic performance; the area under the curve (AUC) of the GRE summary score (0.980, 95% confidence interval CI 0.950-1.000) was comparable to those of conventional outcome predictors, including DWI patterns (0.949, 95% CI 0.889-1.000). The AUC increased when the summary GRE score was added to DWI patterns (0.991, 95% CI 0.973-1.000), although the difference was not statistically significant (P=0.117). Most subjects with isoelectric electroencephalography (5/6) showed abnormally high phase contrast in the cerebral veins. CONCLUSIONS Filtered phase images of T2*WI showed good prognostic value and can reveal various features of the cerebral metabolic consequences of cardiac arrest, such as decreased neuronal activity and brain death-like patterns.
Collapse
Affiliation(s)
- Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hoon Oh
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Yoonho Nam
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kijeong Lee
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Seok Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - So-Lyung Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kook-Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu Nam Park
- Department of Emergency Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum-Soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
33
|
Eker OF, Ameli R, Makris N, Jurkovic T, Montigon O, Barbier EL, Cho TH, Nighoghossian N, Berthezène Y. MRI Assessment of Oxygen Metabolism and Hemodynamic Status in Symptomatic Intracranial Atherosclerotic Stenosis: A Pilot Study. J Neuroimaging 2019; 29:467-475. [DOI: 10.1111/jon.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022] Open
Affiliation(s)
- Omer F. Eker
- Department of NeuroradiologyHospices Civils de Lyon Bron France
- CREATIS CNRS UMR 5220, INSERM U1044 Villeurbanne cedex France
| | - Roxana Ameli
- Department of NeuroradiologyHospices Civils de Lyon Bron France
| | - Nikolaos Makris
- CREATIS CNRS UMR 5220, INSERM U1044 Villeurbanne cedex France
| | - Thomas Jurkovic
- Department of NeuroradiologyHospices Civils de Lyon Bron France
| | - Olivier Montigon
- INSERM U1216Grenoble Institut des Neurosciences La Tronche France
| | - Emmanuel L. Barbier
- INSERM U1216Grenoble Institut des Neurosciences La Tronche France
- Université Grenoble Alpes Saint‐Martin‐d'Hères France
| | - Tae Hee Cho
- CREATIS CNRS UMR 5220, INSERM U1044 Villeurbanne cedex France
| | | | - Yves Berthezène
- Department of NeuroradiologyHospices Civils de Lyon Bron France
- CREATIS CNRS UMR 5220, INSERM U1044 Villeurbanne cedex France
- Department of Vascular Neurology, Hospices Civils de LyonHôpital Pierre Wertheimer Bron France
| |
Collapse
|
34
|
Lin F, Prince MR, Spincemaille P, Wang Y. Patents on Quantitative Susceptibility Mapping (QSM) of Tissue Magnetism. Recent Pat Biotechnol 2019; 13:90-113. [PMID: 30556508 DOI: 10.2174/1872208313666181217112745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) depicts biodistributions of tissue magnetic susceptibility sources, including endogenous iron and calcifications, as well as exogenous paramagnetic contrast agents and probes. When comparing QSM with simple susceptibility weighted MRI, QSM eliminates blooming artifacts and shows reproducible tissue susceptibility maps independent of field strength and scanner manufacturer over a broad range of image acquisition parameters. For patient care, QSM promises to inform diagnosis, guide surgery, gauge medication, and monitor drug delivery. The Bayesian framework using MRI phase data and structural prior knowledge has made QSM sufficiently robust and accurate for routine clinical practice. OBJECTIVE To address the lack of a summary of US patents that is valuable for QSM product development and dissemination into the MRI community. METHOD We searched the USPTO Full-Text and Image Database for patents relevant to QSM technology innovation. We analyzed the claims of each patent to characterize the main invented method and we investigated data on clinical utility. RESULTS We identified 17 QSM patents; 13 were implemented clinically, covering various aspects of QSM technology, including the Bayesian framework, background field removal, numerical optimization solver, zero filling, and zero-TE phase. CONCLUSION Our patent search identified patents that enable QSM technology for imaging the brain and other tissues. QSM can be applied to study a wide range of diseases including neurological diseases, liver iron disorders, tissue ischemia, and osteoporosis. MRI manufacturers can develop QSM products for more seamless integration into existing MRI scanners to improve medical care.
Collapse
Affiliation(s)
- Feng Lin
- School of Law, City University of Hong Kong, Hong Kong, China
| | - Martin R Prince
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
35
|
Leatherday C, Dehkharghani S, Nahab F, Allen JW, Wu J, Hu R, Qiu D. Cerebral MR oximetry during acetazolamide augmentation: Beyond cerebrovascular reactivity in hemodynamic failure. J Magn Reson Imaging 2018; 50:175-182. [PMID: 30390367 DOI: 10.1002/jmri.26546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxygen extraction fraction (OEF) elevation predicts increased ischemic stroke incidence among patients with carotid steno-occlusive disease, and can be estimated from quantitative susceptibility mapping (QSM) MRI. PURPOSE To explore QSM oximetry during acetazolamide (ACZ) challenge, hypothesizing that detectable OEF alterations will reflect hemodynamic compromise in unilateral cerebrovascular disease (CVD) patients. STUDY TYPE Retrospective. SUBJECTS Fourteen unilateral CVD patients, and 24 healthy controls (HC). FIELD STRENGTH/SEQUENCE Multiecho gradient echo (GRE) and T1 -weighted images at 3T. ASSESSMENT We constructed QSM images and R2* maps from multiecho GRE images. QSM-OEF maps were generated from the susceptibility difference between venous blood and background brain tissue. Intrasubject diseased/contralateral hemisphere OEF ratios in the middle cerebral artery (MCA) territories were calculated. Intravascular susceptibility in the straight sinus (SS) and MCA was also measured. STATISTICAL TESTS The result significance was determined using t-tests and Pearson's correlation. RESULTS Mean and standard deviation for the patient diseased/contralateral OEF ratios were 1.15 ± 0.14 at baseline and 1.23 ± 0.17 post-ACZ. Disease group R2* ratios were 0.95 ± 0.05 at baseline and 1.03 ± 0.08 post-ACZ. Left/right OEF and R2* ratios for the HC group were 0.98 ± 0.06 and 0.99 ± 0.038, respectively. Susceptibility (ppb) in the SS and MCA in patients was 162.63 ± 35.4 and -22.33 ± 13.70, respectively, at baseline, 124.56 ± 37.43 and -19.27 ± 23.14 post-ACZ. The HC group SS and MCA susceptibility was 146.10 ± 24.79 and -19.59 ± 12.37, respectively. Patient group OEF ratios were greater than 1.0 before and after ACZ challenge (P < 0.01 and < 0.001, respectively, one-sample t-test), and were greater than HC ratios (P < 0.001 unpaired t-test). OEF and R2* ratios increased from baseline to post-ACZ (P = 0.024, 0.004, respectively, paired t-test). Detectable blood oxygenation change was confirmed by finding SS susceptibility decreased from baseline to post-ACZ (P < 0.001, paired t-test), while MCA susceptibility did not change significantly (P = 0.67, paired t-test). DATA CONCLUSION These results suggest QSM is sensitive to dynamic OEF modulation during hemodynamic augmentation. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:175-182.
Collapse
Affiliation(s)
| | | | - Fadi Nahab
- Neurology, Emory University, Atlanta, Georgia, USA
| | - Jason W Allen
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA.,Neurology, Emory University, Atlanta, Georgia, USA
| | - Junjie Wu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Ranliang Hu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Deqiang Qiu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Derdeyn CP. Hemodynamics and oxygen extraction in chronic large artery steno-occlusive disease: Clinical applications for predicting stroke risk. J Cereb Blood Flow Metab 2018; 38:1584-1597. [PMID: 28925313 PMCID: PMC6125965 DOI: 10.1177/0271678x17732884] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depending on the adequacy of collateral sources of blood flow, arterial stenosis or occlusion may lead to reduced perfusion pressure and ultimately reduced blood flow in the distal territory supplied by that vessel. There are two well-defined compensatory mechanisms to reduced pressure or flow - autoregulatory vasodilation and increased oxygen extraction fraction. Other changes, such as metabolic downregulation, are likely. The positive identification of autoregulatory vasodilation and increased oxygen extraction fraction in humans is an established risk factor for future ischemic stroke in some disease states such as atherosclerotic carotid stenosis and occlusion. The mechanisms by which ischemic stroke may occur are not clear, and may include an increased vulnerability to embolic events. The use of hemodynamic assessment to identify patients with occlusive vasculopathy at an increased risk for stroke is very appealing for several different patient populations, such as those with symptomatic intracranial atherosclerotic disease, moyamoya phenomenon, complete internal carotid artery occlusion, and asymptomatic cervical carotid artery stenosis. While there is very good data for stroke risk prediction in some of these groups, no intervention based on these tools has been proven effective yet. In this manuscript, we will review these topics above and identify areas for future research.
Collapse
Affiliation(s)
- Colin P Derdeyn
- Departments of Radiology and Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
37
|
Vaas M, Deistung A, Reichenbach JR, Keller A, Kipar A, Klohs J. Vascular and Tissue Changes of Magnetic Susceptibility in the Mouse Brain After Transient Cerebral Ischemia. Transl Stroke Res 2017; 9:426-435. [PMID: 29177950 PMCID: PMC6061250 DOI: 10.1007/s12975-017-0591-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 12/04/2022]
Abstract
Quantitative susceptibility mapping (QSM) has been recently introduced as a novel MRI post-processing technique of gradient recalled echo (GRE) data. QSM is useful in depicting both brain anatomy and for detecting abnormalities. Its utility in the context of ischemic stroke has, however, not been extensively characterized so far. In this study, we explored the potential of QSM to characterize vascular and tissue changes in the transient middle cerebral artery occlusion (tMCAO) mouse model of cerebral ischemia. We acquired GRE data of mice brains at different time points after tMCAO, from which we computed QSM and MR frequency maps, and compared these maps with diffusion imaging and multi-slice multi-echo imaging data acquired in the same animals. Prominent vessels with increased magnetic susceptibility were visible surrounding the lesion on both frequency and magnetic susceptibility maps at all time points (mostly visible at > 12 h after reperfusion). Immunohistochemistry revealed the presence of compressed capillaries and dilated larger vessels, suggesting that the appearance of prominent vessels after reestablishment of reperfusion may serve compensatory purposes. In addition, on both contrast maps, tissue regions of decreased magnetic susceptibility were observed at 24 and 48 h after reperfusion that were distinctly different from the lesions seen on maps of the apparent diffusion coefficient and T2 relaxation time constant. Since QSM can be extracted as an add-on from GRE data and thus requires no additional acquisition time in the course of acute stroke MRI examination, it may provide unique and complementary information during the course of acute stroke MRI examinations.
Collapse
Affiliation(s)
- Markus Vaas
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, 07743, Jena, Germany.,Section of Experimental Neurology, Department of Neurology, Essen University Hospital, 45147, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, 07743, Jena, Germany.,Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Annika Keller
- Division of Neurosurgery, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, University of Zurich, 8057, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland. .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Nomura JI, Uwano I, Sasaki M, Kudo K, Yamashita F, Ito K, Fujiwara S, Kobayashi M, Ogasawara K. Preoperative Cerebral Oxygen Extraction Fraction Imaging Generated from 7T MR Quantitative Susceptibility Mapping Predicts Development of Cerebral Hyperperfusion following Carotid Endarterectomy. AJNR Am J Neuroradiol 2017; 38:2327-2333. [PMID: 28982786 DOI: 10.3174/ajnr.a5390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/18/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed to determine whether preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping could identify patients at risk for cerebral hyperperfusion following carotid endarterectomy. MATERIALS AND METHODS Seventy-seven patients with unilateral internal carotid artery stenosis (≥70%) underwent preoperative 3D T2*-weighted imaging using a multiple dipole-inversion algorithm with a 7T MR imager. Quantitative susceptibility mapping images were then obtained, and oxygen extraction fraction maps were generated. Quantitative brain perfusion single-photon emission CT was also performed before and immediately after carotid endarterectomy. ROIs were automatically placed in the bilateral middle cerebral artery territories in all images using a 3D stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on quantitative susceptibility mapping-oxygen extraction fraction images. RESULTS Ten patients (13%) showed post-carotid endarterectomy hyperperfusion (cerebral blood flow increases of ≥100% compared with preoperative values in the ROIs on brain perfusion SPECT). Multivariate analysis showed that a high quantitative susceptibility mapping-oxygen extraction fraction ratio was significantly associated with the development of post-carotid endarterectomy hyperperfusion (95% confidence interval, 33.5-249.7; P = .002). Sensitivity, specificity, and positive- and negative-predictive values of the quantitative susceptibility mapping-oxygen extraction fraction ratio for the prediction of the development of post-carotid endarterectomy hyperperfusion were 90%, 84%, 45%, and 98%, respectively. CONCLUSIONS Preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping identifies patients at risk for cerebral hyperperfusion following carotid endarterectomy.
Collapse
Affiliation(s)
- J-I Nomura
- From the Department of Neurosurgery (J.-i.N., S.F., M.K., K.O.)
| | - I Uwano
- Division of Ultrahigh Field MRI (I.U., M.S., F.Y., K.I), Institute for Biomedical Sciences, Iwate Medical University School of Medicine, Morioka, Japan
| | - M Sasaki
- Division of Ultrahigh Field MRI (I.U., M.S., F.Y., K.I), Institute for Biomedical Sciences, Iwate Medical University School of Medicine, Morioka, Japan
| | - K Kudo
- Department of Diagnostic and Interventional Radiology (K.K.), Hokkaido University School of Medicine, Sappro, Japan
| | - F Yamashita
- Division of Ultrahigh Field MRI (I.U., M.S., F.Y., K.I), Institute for Biomedical Sciences, Iwate Medical University School of Medicine, Morioka, Japan
| | - K Ito
- Division of Ultrahigh Field MRI (I.U., M.S., F.Y., K.I), Institute for Biomedical Sciences, Iwate Medical University School of Medicine, Morioka, Japan
| | - S Fujiwara
- From the Department of Neurosurgery (J.-i.N., S.F., M.K., K.O.)
| | - M Kobayashi
- From the Department of Neurosurgery (J.-i.N., S.F., M.K., K.O.)
| | - K Ogasawara
- From the Department of Neurosurgery (J.-i.N., S.F., M.K., K.O.)
| |
Collapse
|