1
|
van der Plas MC, Koemans EA, Schipper MR, Voigt S, Rasing I, van der Zwet RGJ, Kaushik K, van Dort R, Schriemer S, van Harten TW, van Zwet E, van Etten ES, van Osch MJP, Terwindt GM, van Walderveen M, Wermer MJH. One-Year Radiologic Progression in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Neurology 2025; 104:e213546. [PMID: 40198864 PMCID: PMC11995281 DOI: 10.1212/wnl.0000000000213546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Knowledge on the short-term progression of cerebral amyloid angiopathy (CAA) is important for clinical practice and the design of clinical treatment trials. We investigated the 1-year progression of CAA-related MRI markers in sporadic (sCAA) and Dutch-type hereditary (D-CAA). METHODS Participants were included from 2 prospective cohort studies. 3T-MRI was performed at baseline and after 1 year. We assessed macrobleeds, cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), convexity subarachnoid hemorrhages (cSAHs), white matter hyperintensities (WMH), enlarged centrum semiovale perivascular spaces (CSO-EPVS), and visually stimulated blood oxygenation level-dependent (BOLD) fMRI parameters. Progression was defined as increase in number of macrobleeds or CMBs, new focus or extension of cSS, increase in CSO-EPVS category, or volume increase of >10% of WMH. Multivariable regression analyses were performed to determine factors associated with progression and the association between events related to parenchymal injury (cSAH, macrobleeds) and radiologic progression. RESULTS We included 98 participants (47% women): 55 with sCAA (mean age 70 years), 28 with symptomatic D-CAA (mean age 59 years), and 15 with presymptomatic D-CAA (mean age 45 years). Progression of >1 MRI markers was seen in all 83 (100%) participants with sCAA and symptomatic D-CAA and in 9 (60%) with presymptomatic D-CAA. The number of CMBs showed the largest progression in sCAA (98%; median increase 24) and symptomatic D-CAA (100%; median increase 58). WMH volume (>10% increase in 70%; mean increase 1.2 mL) was most progressive in presymptomatic D-CAA. A decrease in the upslope of the visually evoked BOLD response was observed for most patients. Symptomatic D-CAA status was associated with more overall progression (adjusted odds ratio [aOR] 9.7; 95% CI 1.7-54.2), CMB (adjusted relative risk [aRR] 2.47; 95% CI 1.5-4.1), and WMH volume progression (β 2.52; 95% CI 0.3-4.8). Baseline CMB count (aRR 1.002; 95% CI 1.001-1.002) was associated with CMB progression and cSS presence at baseline (aOR 8.16; 95% CI 2.6-25.4) with cSS progression. cSS progression was also associated with cSAH and macrobleeds (aOR 21,029; 95% CI 2.042-216.537). DISCUSSION CAA is a radiologically progressive disease even in the short-term. After 1 year, all symptomatic and most of the presymptomatic participants showed progression of at least 1 MRI-marker. CMBs and WMH volume (in symptomatic CAA) and WMH volume (in presymptomatic CAA) are the most promising markers to track short-term progression in future trials.
Collapse
Affiliation(s)
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Manon R Schipper
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Rosemarie van Dort
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Sanne Schriemer
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Thijs W van Harten
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Erik van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands; and
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Marieke J H Wermer
- Department of Neurology, University Medical Center Groningen, the Netherlands
| |
Collapse
|
2
|
Men X, Li H, Guo Z, Qin B, Ruan H, Cai R, Zhang B, Wu A, Wei L, Dai Y, Li H, Lu Z. Occurrence, Risk Factors, and Prognosis of Acute Cerebral Microinfarcts in CADASIL. Ann Clin Transl Neurol 2025. [PMID: 40223500 DOI: 10.1002/acn3.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic cerebral small vessel disease in adults. This study investigates the occurrence, risk factors, and prognosis of acute cerebral microinfarcts (ACMIs) in patients with CADASIL. METHODS A total of 60 patients with genetically confirmed or pathologically verified CADASIL were enrolled in the study. ACMIs were identified as hyperintense lesions on diffusion-weighted imaging (DWI) with a diameter of less than 5 mm. The evolution of ACMIs was determined by brain MRI scans at 1 year of follow-up. Functional outcomes, cognitive performance, and quality of life after ACMIs were evaluated at months 6, 12, and 24, respectively. RESULTS ACMIs were observed in 12 out of 60 patients (20%) with CADASIL and predominantly located in the white matter. Patients with CADASIL had a significantly higher risk of ACMIs when they had a patent foramen ovale (PFO) (OR, 16.429). On follow-up MRI scans at month 12, the majority of ACMIs vanished. Patients with ACMIs had worse functional outcomes, as indicated by higher mRS scores and lower MoCA scores at months 12 and 24 compared with those without ACMIs. Additionally, patients with ACMIs had significantly worse EQ-5D-3L scores at all follow-up points compared with patients without ACMIs. CONCLUSIONS ACMIs were not rare in patients with CADASIL. PFO could independently predict the risk of ACMIs in CADASIL. Furthermore, the majority of ACMIs can disappear at 1 year of follow-up. The findings indicate that ACMIs, influenced by PFO, are prevalent in CADASIL and associated with a decline in quality of life and functional outcomes over time.
Collapse
Affiliation(s)
- Xuejiao Men
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhuoxin Guo
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bin Qin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ruipeng Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Aimin Wu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yongqiang Dai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Haiyan Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Theodorou A, Athanasaki A, Melanis K, Pachi I, Sterpi A, Koropouli E, Bakola E, Chondrogianni M, Stefanou MI, Vasilopoulos E, Kouzoupis A, Paraskevas GP, Tsivgoulis G, Tzavellas E. Cognitive Impairment in Cerebral Amyloid Angiopathy: A Single-Center Prospective Cohort Study. J Clin Med 2024; 13:7427. [PMID: 39685885 DOI: 10.3390/jcm13237427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Cognitive impairment represents a core and prodromal clinical feature of cerebral amyloid angiopathy (CAA). We sought to assess specific cognitive domains which are mainly affected among patients with CAA and to investigate probable associations with neuroimaging markers and Cerebrospinal Fluid (CSF) biomarkers. Methods: Thirty-five patients fulfilling the Boston Criteria v1.5 or v2.0 for the diagnosis of probable/possible CAA were enrolled in this prospective cohort study. Brain Magnetic Resonance Imaging and CSF biomarker data were collected. Every eligible participant underwent a comprehensive neurocognitive assessment. Spearman's rank correlation tests were used to identify possible relationships between the Addenbrooke's Cognitive Examination-Revised (ACE-R) sub-scores and other neurocognitive test scores and the CSF biomarker and neuroimaging parameters among CAA patients. Moreover, linear regression analyses were used to investigate the effects of CSF biomarkers on the ACE-R total score and Mini-Mental State Examination (MMSE) score, based on the outcomes of univariate analyses. Results: Cognitive impairment was detected in 80% of patients, and 60% had a coexistent Alzheimer's disease (AD) pathology based on CSF biomarker profiles. Notable correlations were identified between increased levels of total tau (t-tau) and phosphorylated tau (p-tau) and diminished performance in terms of overall cognitive function, especially memory. In contrast, neuroimaging indicators, including lobar cerebral microbleeds and superficial siderosis, had no significant associations with cognitive scores. Among the CAA patients, those without AD had superior neurocognitive test performance, with significant differences observed in their ACE-R total scores and memory sub-scores. Conclusions: The significance of tauopathy in cognitive impairment associated with CAA may be greater than previously imagined, underscoring the necessity for additional exploration of the non-hemorrhagic facets of the disease and new neuroimaging markers.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Athanasia Athanasaki
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Melanis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ioanna Pachi
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Angeliki Sterpi
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Eleftheria Koropouli
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Eleni Bakola
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Chondrogianni
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Neurology & Stroke, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Anastasios Kouzoupis
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios P Paraskevas
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elias Tzavellas
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
4
|
Gibson AW, Elser H, Rosso M, Cornblath EJ, Fonkeu Y, Prasad S, Rothstein A, Nasrallah IM, Wolk DA, Guo MH. Ischemic stroke associated with amyloid-related imaging abnormalities in a patient treated with lecanemab. Alzheimers Dement 2024; 20:8192-8197. [PMID: 39215494 PMCID: PMC11567816 DOI: 10.1002/alz.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Anti-amyloid antibody therapies such as lecanemab are increasingly being used to treat Alzheimer's disease (AD). These therapies are associated with a high rate of amyloid-related imaging abnormalities (ARIA). METHODS We review the case history of a patient who developed ARIA associated with lecanemab treatment. RESULTS In addition to microhemorrhages and cerebral edema that are recognized features of ARIA, the patient developed several ischemic strokes. The patient also experienced frequent electrographic seizures without overt clinical seizures. The patient demonstrated clinical and radiographic improvement after steroid treatment. DISCUSSION Our case suggests that ischemic strokes may be a feature of ARIA and highlights the importance of having a high clinical suspicion for seizures in ARIA. As anti-amyloid therapies are likely going to be increasingly used to treat AD, it is important to appreciate the spectrum of clinical and radiographic findings that can result as side effects from this class of therapies. HIGHLIGHTS We report a patient who developed severe amyloid-related imaging abnormalities (ARIA) after treatment with lecanemab. Our report suggests that ischemic strokes may be a novel imaging feature of ARIA. Our report highlights the need for high clinical suspicion for seizures in ARIA.
Collapse
Affiliation(s)
- Alec W. Gibson
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Holly Elser
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michela Rosso
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Eli J. Cornblath
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yombe Fonkeu
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sashank Prasad
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aaron Rothstein
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ilya M. Nasrallah
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael H. Guo
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Schiavolin S, Camarda G, Mazzucchelli A, Mariniello A, Marinoni G, Storti B, Canavero I, Bersano A, Leonardi M. Cognitive and psychological characteristics in patients with Cerebral Amyloid Angiopathy: a literature review. Neurol Sci 2024; 45:3031-3049. [PMID: 38388894 DOI: 10.1007/s10072-024-07399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
AIM To review the current data on cognitive and psychological characteristics of patients with CAA and on the instruments used for their evaluation. METHODS A systematic search was performed in Embase, Scopus and PubMed with terms related to "cerebral amyloid angiopathy", "neuropsychological measures" and "patient-reported outcome measures" from January 2001 to December 2021. RESULTS Out of 2851 records, 18 articles were selected. The cognitive evaluation was present in all of which, while the psychological one only in five articles. The MMSE (Mini Mental State Examination), TMT (Trail Making Test), fluency test, verbal learning test, digit span, digit symbol and Rey figure tests were the most used cognitive tests, while executive function, memory, processing speed, visuospatial function, attention and language were the most frequent impaired cognitive functions. Depression was the most considered psychological factor usually measured with BDI (Beck Depression Inventory) and GDS (Geriatric Depression Scale). CONCLUSIONS The results of this study might be used in clinical practice as a guide to choose cognitive and psychological instruments and integrate them in the clinical evaluation. The results might also be used in the research field for studies investigating the impact of cognitive and psychological variables on the disease course and for consensus studies aimed at define a standardized evaluation of these aspects.
Collapse
Affiliation(s)
- Silvia Schiavolin
- SC Neurologia, Salute Pubblica E Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Giorgia Camarda
- SC Neurologia, Salute Pubblica E Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy.
| | - Alessia Mazzucchelli
- SC Neurologia, Salute Pubblica E Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Arianna Mariniello
- SC Neurologia, Salute Pubblica E Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Giulia Marinoni
- SC Malattie Cerebrovascolari, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Benedetta Storti
- SC Malattie Cerebrovascolari, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Canavero
- SC Malattie Cerebrovascolari, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Bersano
- SC Malattie Cerebrovascolari, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matilde Leonardi
- SC Neurologia, Salute Pubblica E Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| |
Collapse
|
6
|
Costa AS, Albrecht M, Reich A, Nikoubashman O, Schulz JB, Reetz K, Pinho J. Non-hemorrhagic imaging markers of cerebral amyloid angiopathy in memory clinic patients. Alzheimers Dement 2024; 20:4792-4802. [PMID: 38865440 PMCID: PMC11247708 DOI: 10.1002/alz.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION The Boston criteria v2.0 for cerebral amyloid angiopathy (CAA) incorporated non-hemorrhagic imaging markers. Their prevalence and significance in patients with cognitive impairment remain uncertain. METHODS We studied 622 memory clinic patients with available magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) biomarkers. Two raters assessed non-hemorrhagic markers, and we explored their association with clinical characteristics through multivariate analyses. RESULTS Most patients had mild cognitive impairment; median age was 71 years and 50% were female. Using the v2.0 criteria, possible or probable CAA increased from 75 to 383 patients. Sixty-eight percent of the sample had non-hemorrhagic CAA markers, which were independently associated with age (odds ratio [OR] = 1.04, 95% confidence interval [CI] = 1.01-1.07), female sex (OR = 1.68, 95% CI = 1.11-2.54), and hemorrhagic CAA markers (OR = 2.11, 95% CI = 1.02-4.35). DISCUSSION Two-thirds of patients from a memory clinic cohort had non-hemorrhagic CAA markers, increasing the number of patients meeting the v2.0 CAA criteria. Longitudinal approaches should explore the implications of these markers, particularly the hemorrhagic risk in this population. HIGHLIGHTS The updated Boston criteria for cerebral amyloid angiopathy (CAA) now include non-hemorrhagic markers. The prevalence of non-hemorrhagic CAA markers in memory clinic patients is unknown. Two-thirds of patients in our memory clinic presented non-hemorrhagic CAA markers. The presence of these markers was associated with age, female sex, and hemorrhagic CAA markers. The hemorrhagic risk of patients presenting these type of markers remains unclear.
Collapse
Affiliation(s)
- Ana Sofia Costa
- Department of NeurologyUniversity Hospital RWTH AachenAachenGermany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM‐11)Juelich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - Milena Albrecht
- Department of NeurologyUniversity Hospital RWTH AachenAachenGermany
| | - Arno Reich
- Department of NeurologyUniversity Hospital RWTH AachenAachenGermany
| | - Omid Nikoubashman
- Department of Diagnostic and Interventional NeuroradiologyUniversity Hospital RWTH AachenAachenGermany
| | - Jörg B. Schulz
- Department of NeurologyUniversity Hospital RWTH AachenAachenGermany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM‐11)Juelich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - Kathrin Reetz
- Department of NeurologyUniversity Hospital RWTH AachenAachenGermany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM‐11)Juelich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - João Pinho
- Department of NeurologyUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
7
|
Aranha MR, Montal V, van den Brink H, Pegueroles J, Carmona‐Iragui M, Videla L, Maure Blesa L, Benejam B, Arranz J, Valldeneu S, Barroeta I, Fernández S, Ribas L, Alcolea D, González‐Ortiz S, Bargalló N, Biessels GJ, Blesa R, Lleó A, Coutinho AM, Leite CC, Bejanin A, Fortea J. Cortical microinfarcts in adults with Down syndrome assessed with 3T-MRI. Alzheimers Dement 2024; 20:3906-3917. [PMID: 38644660 PMCID: PMC11180852 DOI: 10.1002/alz.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Cortical microinfarcts (CMI) were attributed to cerebrovascular disease and cerebral amyloid angiopathy (CAA). CAA is frequent in Down syndrome (DS) while hypertension is rare, yet no studies have assessed CMI in DS. METHODS We included 195 adults with DS, 63 with symptomatic sporadic Alzheimer's disease (AD), and 106 controls with 3T magnetic resonance imaging. We assessed CMI prevalence in each group and CMI association with age, AD clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition in DS. RESULTS CMI prevalence was 11.8% in DS, 4.7% in controls, and 17.5% in sporadic AD. In DS, CMI increased in prevalence with age and the AD clinical continuum, was clustered in the parietal lobes, and was associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. DISCUSSION In DS, CMI are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic CAA phenotype. HIGHLIGHTS This is the first study to assess cortical microinfarcts (assessed with 3T magnetic resonance imaging) in adults with Down syndrome (DS). We studied the prevalence of cortical microinfarcts in DS and its relationship with age, the Alzheimer's disease (AD) clinical continuum, vascular risk factors, vascular neuroimaging findings, amyloid/tau/neurodegeneration biomarkers, and cognition. The prevalence of cortical microinfarcts was 11.8% in DS and increased with age and along the AD clinical continuum. Cortical microinfarcts were clustered in the parietal lobes, and were associated with lacunes and cortico-subcortical infarcts, but not hemorrhagic lesions. In DS, cortical microinfarcts are posteriorly distributed and related to ischemic but not hemorrhagic findings suggesting they might be associated with a specific ischemic phenotype of cerebral amyloid angiopathy.
Collapse
|
8
|
Ii Y, Ishikawa H, Nishigaki A, Utsunomiya T, Nakamura N, Hirata Y, Matsuyama H, Kajikawa H, Matsuura K, Matsuda K, Shinohara M, Kishi S, Kogue R, Umino M, Maeda M, Tomimoto H, Shindo A. Superficial small cerebellar infarcts in cerebral amyloid angiopathy on 3 T MRI: A preliminary study. J Neurol Sci 2024; 459:122975. [PMID: 38527411 DOI: 10.1016/j.jns.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Strictly superficial cerebellar microbleeds and cerebellar superficial siderosis have been considered markers of advanced cerebral amyloid angiopathy (CAA), but there are few studies on cerebellar ischemic lesions in CAA. We investigated the presence of superficial small cerebellar infarct (SCI) ≤15 mm and its relation to magnetic resonance imaging (MRI) markers in patients with probable CAA. METHODS Eighty patients with probable CAA were retrospectively evaluated. The presence of superficial SCIs was examined, along with cerebellar microbleeds and cerebellar superficial siderosis, using 3-T MRI. Lobar cerebral microbleeds, cortical superficial siderosis (cSS), enlargement of the perivascular space in the centrum semiovale, and white matter hyperintensity were assessed and the total CAA-small vessel disease (SVD) score was calculated. RESULTS Nine of the 80 patients (11.3%) had a total of 16 superficial SCIs. By tentatively defining SCI <4 mm as cerebellar microinfarcts, 8 out of 16 (50%) superficial SCIs corresponded to cerebellar microinfarcts. The total CAA-SVD score was significantly higher in patients with superficial SCIs (p = 0.01). The prevalence of cSS (p = 0.018), cortical cerebral microinfarct (p = 0.034), and superficial cerebellar microbleeds (p = 0.006) was significantly higher in patients with superficial SCIs. The number of superficial cerebellar microbleeds was also significantly higher in patients with superficial SCIs (p = 0.001). CONCLUSIONS Our results suggest that in patients with CAA, superficial SCIs (including microinfarcts) on MRI may indicate more severe, advanced-stage CAA. These preliminary findings should be verified by larger prospective studies in the future.
Collapse
Affiliation(s)
- Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akisato Nishigaki
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Takaya Utsunomiya
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Naoko Nakamura
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yoshinori Hirata
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Kajikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Kana Matsuda
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Shinohara
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
9
|
Macoir J. Language Impairment in Vascular Dementia: A Clinical Review. J Geriatr Psychiatry Neurol 2024; 37:87-95. [PMID: 37551643 PMCID: PMC10802085 DOI: 10.1177/08919887231195225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Vascular cognitive impairment (VCI) encompasses a wide range of conditions, including cognitive impairment associated with stroke or vascular brain injury, mild vascular cognitive impairment, and vascular dementia (VD). Knowledge of language impairment associated with VD is far less extensive than that of Alzheimer's disease. Although not prevalent in VD, impairment in language skills has been reported. A better understanding of the neurolinguistic features associated with the different presentations of VD could facilitate medical diagnosis. In this article, we report data on language impairment in VD, with particular attention to their primary or secondary functional origin. To better appreciate this functional origin, we also outline the main characteristics of impairment in other cognitive functions. Key elements that should be considered in the speech-language assessment of individuals with possible or proven VD are also highlighted.
Collapse
Affiliation(s)
- Joël Macoir
- Département de réadaptation, Faculté de médecine, Université Laval, Québec, QC, Canada
- Centre de Recherche CERVO – Brain Research Centre, Québec, QC, Canada
| |
Collapse
|
10
|
Huang J, Biessels GJ, de Leeuw FE, Ii Y, Skoog I, Mok V, Chen C, Hilal S. Cerebral microinfarcts revisited: Detection, causes, and clinical relevance. Int J Stroke 2024; 19:7-15. [PMID: 37470314 DOI: 10.1177/17474930231187979] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Cerebral microinfarcts (CMIs) are small ischemic lesions invisible to the naked eye at brain autopsy, while the larger ones (0.5-4 mm in diameter) have been visualized in-vivo on magnetic resonance imaging (MRI). CMIs can be detected on diffusion-weighted imaging (DWI) as incidental small DWI-positive lesions (ISDPLs) and on structural MRI for those confined to the cortex and in the chronic phase. ISDPLs may evolve into old cortical-CMIs, white matter hyperintensities or disappear depending on their location and size. Novel techniques in neuropathology and neuroimaging facilitate the detection of CMIs, which promotes understanding of these lesions. CMIs have heterogeneous causes, involving both cerebral small- and large-vessel disease as well as heart diseases such as atrial fibrillation and congestive heart failure. The underlying mechanisms incorporate vascular remodeling, inflammation, blood-brain barrier leakage, penetrating venule congestion, cerebral hypoperfusion, and microembolism. CMIs lead to clinical outcomes, including cognitive decline, a higher risk of stroke and mortality, and accelerated neurobehavioral disturbances. It has been suggested that CMIs can impair brain function and connectivity beyond the microinfarct core and are also associated with perilesional and global cortical atrophy. This review aims to summarize recent progress in studies involving both cortical-CMIs and ISDPLs since 2017, including their detection, etiology, risk factors, MRI correlates, and clinical consequences.
Collapse
Affiliation(s)
- Jiannan Huang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, Tsu, Japan
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology and Centre for Ageing and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Mölndal, Sweden
| | - Vincent Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
11
|
Theodorou A, Palaiodimou L, Papagiannopoulou G, Kargiotis O, Psychogios K, Safouris A, Bakola E, Chondrogianni M, Kotsali-Peteinelli V, Melanis K, Tsibonakis A, Andreadou E, Vasilopoulou S, Lachanis S, Velonakis G, Tzavellas E, Tzartos JS, Voumvourakis K, Paraskevas GP, Tsivgoulis G. Clinical Characteristics, Neuroimaging Markers, and Outcomes in Patients with Cerebral Amyloid Angiopathy: A Prospective Cohort Study. J Clin Med 2023; 12:5591. [PMID: 37685658 PMCID: PMC10488273 DOI: 10.3390/jcm12175591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Background and purpose: Sporadic cerebral amyloid angiopathy (CAA) is a small vessel disease, resulting from progressive amyloid-β deposition in the media/adventitia of cortical and leptomeningeal arterioles. We sought to assess the prevalence of baseline characteristics, clinical and radiological findings, as well as outcomes among patients with CAA, in the largest study to date conducted in Greece. Methods: Sixty-eight patients fulfilling the Boston Criteria v1.5 for probable/possible CAA were enrolled and followed for at least twelve months. Magnetic Resonance Imaging was used to assess specific neuroimaging markers. Data regarding cerebrospinal fluid biomarker profile and Apolipoprotein-E genotype were collected. Multiple logistic regression analyses were performed to identify predictors of clinical phenotypes. Cox-proportional hazard regression models were used to calculate associations with the risk of recurrent intracerebral hemorrhage (ICH). Results: Focal neurological deficits (75%), cognitive decline (57%), and transient focal neurological episodes (TFNEs; 21%) were the most common clinical manifestations. Hemorrhagic lesions, including lobar cerebral microbleeds (CMBs; 93%), cortical superficial siderosis (cSS; 48%), and lobar ICH (43%) were the most prevalent neuroimaging findings. cSS was independently associated with the likelihood of TFNEs at presentation (OR: 4.504, 95%CI:1.258-19.088), while multiple (>10) lobar CMBs were independently associated with cognitive decline at presentation (OR:5.418, 95%CI:1.316-28.497). cSS emerged as the only risk factor of recurrent ICH (HR:4.238, 95%CI:1.509-11.900) during a median follow-up of 20 months. Conclusions: cSS was independently associated with TFNEs at presentation and ICH recurrence at follow-up, while a higher burden of lobar CMBs with cognitive decline at baseline. These findings highlight the prognostic value of neuroimaging markers, which may influence clinical decision-making.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Lina Palaiodimou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgia Papagiannopoulou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Odysseas Kargiotis
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Klearchos Psychogios
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Apostolos Safouris
- Stroke Unit, Metropolitan Hospital, 18547 Piraeus, Greece; (O.K.); (K.P.); (A.S.)
| | - Eleni Bakola
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Maria Chondrogianni
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Vasiliki Kotsali-Peteinelli
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Konstantinos Melanis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Athanasios Tsibonakis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Elissavet Andreadou
- First Department of Neurology, “Eginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.V.)
| | - Sofia Vasilopoulou
- First Department of Neurology, “Eginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.V.)
| | - Stefanos Lachanis
- Iatropolis Magnetic Resonance Diagnostic Centre, 15231 Athens, Greece;
| | - Georgios Velonakis
- Second Department of Radiology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Elias Tzavellas
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - John S. Tzartos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Konstantinos Voumvourakis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgios P. Paraskevas
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.T.); (L.P.); (G.P.); (E.B.); (M.C.); (V.K.-P.); (K.M.); (A.T.); (J.S.T.); (K.V.); (G.P.P.)
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
12
|
Horn MJ, Gokcal E, Becker JA, Das AS, Schwab K, Zanon Zotin MC, Goldstein JN, Rosand J, Viswanathan A, Polimeni JR, Duering M, Greenberg SM, Gurol ME. Peak width of skeletonized mean diffusivity and cognitive performance in cerebral amyloid angiopathy. Front Neurosci 2023; 17:1141007. [PMID: 37077322 PMCID: PMC10106761 DOI: 10.3389/fnins.2023.1141007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Background Cerebral Amyloid Angiopathy (CAA) is a cerebral small vessel disease that can lead to microstructural disruption of white matter (WM), which can be measured by the Peak Width of Skeletonized Mean Diffusivity (PSMD). We hypothesized that PSMD measures would be increased in patients with CAA compared to healthy controls (HC), and increased PSMD is associated with lower cognitive scores in patients with CAA. Methods Eighty-one probable CAA patients without cognitive impairment who were diagnosed with Boston criteria and 23 HCs were included. All subjects underwent an advanced brain MRI with high-resolution diffusion-weighted imaging (DWI). PSMD scores were quantified from a probabilistic skeleton of the WM tracts in the mean diffusivity (MD) image using a combination of fractional anisotropy (FA) and the FSL Tract-Based Spatial Statistics (TBSS) algorithm (www.psmd-marker.com). Within CAA cohort, standardized z-scores of processing speed, executive functioning and memory were obtained. Results The mean of age and sex were similar between CAA patients (69.6 ± 7.3, 59.3% male) and HCs (70.6 ± 8.5, 56.5% male) (p = 0.581 and p = 0.814). PSMD was higher in the CAA group [(4.13 ± 0.94) × 10-4 mm2/s] compared to HCs [(3.28 ± 0.51) × 10-4 mm2/s] (p < 0.001). In a linear regression model corrected for relevant variables, diagnosis of CAA was independently associated with increased PSMD compared to HCs (ß = 0.45, 95% CI 0.13-0.76, p = 0.006). Within CAA cohort, higher PSMD was associated with lower scores in processing speed (p < 0.001), executive functioning (p = 0.004), and memory (0.047). Finally, PSMD outperformed all other MRI markers of CAA by explaining most of the variance in models predicting lower scores in each cognitive domain. Discussion Peak Width of Skeletonized Mean Diffusivity is increased in CAA, and it is associated with worse cognitive scores supporting the view that disruption of white matter has a significant role in cognitive impairment in CAA. As a robust marker, PSMD can be used in clinical trials or practice.
Collapse
Affiliation(s)
- Mitchell J. Horn
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Elif Gokcal
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - J. Alex Becker
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Alvin S. Das
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Kristin Schwab
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Maria Clara Zanon Zotin
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, Center for Imaging Sciences and Medical Physics, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Joshua N. Goldstein
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan Rosand
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Anand Viswanathan
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Marco Duering
- Medical Image Analysis Center (MIAC), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Steven M. Greenberg
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - M. Edip Gurol
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
13
|
Jang H, Chun MY, Kim HJ, Na DL, Seo SW. The effects of imaging markers on clinical trajectory in cerebral amyloid angiopathy: a longitudinal study in a memory clinic. Alzheimers Res Ther 2023; 15:14. [PMID: 36635759 PMCID: PMC9835259 DOI: 10.1186/s13195-023-01161-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND We investigated the relevance of various imaging markers for the clinical trajectory of cerebral amyloid angiopathy (CAA) patients in a memory clinic. METHODS A total of 226 patients with probable CAA were included in this study with a mean follow-up period of 3.5 ± 2.7 years. Although all had more than one follow-up visit, 173 underwent follow-up Mini-Mental Status Examination (MMSE) and Clinical Dementia Rating Sum of Boxes (CDR-SB) ranging from 2 to 15 time points. Among 226, 122 patients underwent amyloid-β (Aβ) PET imaging. The prevalence of intracerebral hemorrhage (ICH) and its imaging predictors was investigated. The effects of CAA imaging markers and Aβ PET positivity on longitudinal cognition based on the MMSE and CDR-SB were evaluated using mixed effects models. RESULTS During the follow-up, 10 (4.4%) patients developed ICH: cortical superficial siderosis (cSS; hazard ratio [HR], 6.45) and previous lobar ICH (HR, 4.9), but lobar cerebral microbleeds (CMBs) were not predictors of ICH development. The presence of CMIs (p = 0.045) and Aβ positivity (p = 0.002) were associated with worse MMSE trajectory in CAA patients. Regarding CDR-SB trajectory, only Aβ positivity was marginally associated with worse longitudinal change (p = 0.050). CONCLUSION The results of the present study indicated that various imaging markers in CAA patients have different clinical relevance and predictive values for further clinical courses.
Collapse
Affiliation(s)
- Hyemin Jang
- grid.414964.a0000 0001 0640 5613Samsung Alzheimer’s Convergence Research Center, Samsung Medical Center, Seoul, South Korea ,grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, South Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Min Young Chun
- grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Hee Jin Kim
- grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Duk L. Na
- grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,Happymind Clinic, Seoul, South Korea
| | - Sang Won Seo
- grid.414964.a0000 0001 0640 5613Samsung Alzheimer’s Convergence Research Center, Samsung Medical Center, Seoul, South Korea ,grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, South Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
14
|
Kumral E, Çetin FE, Özdemir HN, Cankaya S, Schäbitz WR, Yulug B. Exploring Cognitive Impairment in Patients With Bilateral Capsular Genu Lesions. J Neuropsychiatry Clin Neurosci 2022; 34:261-267. [PMID: 35040661 DOI: 10.1176/appi.neuropsych.21030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors investigated for presence of cognitive impairment after occurrence of bilateral lesions of the genu of the internal capsule (GIC). Clinical and neuropsychological features of unilateral GIC lesions have previously been studied, but the cognitive profile of bilateral lesions of the GIC has not been fully explored. METHODS An investigation was conducted of neurocognitive deficits and computerized tomography MRI findings among 4,200 stroke patients with bilateral GIC involvement who were admitted to the hospital between January 2010 and October 2018. RESULTS Eight patients with bilateral lesions of the capsular genu were identified and their data analyzed. Overall, behavioral and cognitive dysfunction were characterized by impairment of frontal, memory, and executive functions. Attention and abstraction were present among all eight patients (100%); apathy, abulia, and executive dysfunctions, among seven (87.5%); global mental dysfunction and planning deficits, among six (75.0%); short-term verbal memory deficits and language dysfunctions, among five (62.5%); long-term verbal memory deficits, among four (50.0%); and spatial memory deficits, reading, writing, counting dysfunctions, and anarthria, among two (25.0%). Four of the patients (50.0%) without a history of cognitive disorder showed severe mental deterioration compatible with the clinical picture of dementia. A clinical picture of dementia was still present in these patients 6 months after stroke. CONCLUSIONS Bilateral lesions of the capsular genu appearing either simultaneously or at different times were significantly associated with executive dysfunctions.
Collapse
Affiliation(s)
- Emre Kumral
- Department of Neurology, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Department of Neurology, Acıbadem Hastanesi, Bursa, Turkey (Çetin); Department of Neurology and Neuroscience, Medical School, Alaaddin Keykubat University, Alanya, Turkey (Cankaya, Yulug); and Department of Neurology, Evangelisches Klinikum Bethel, University of Bielefeld, Bielefeld, Germany (Schäbitz)
| | - Fatma Ece Çetin
- Department of Neurology, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Department of Neurology, Acıbadem Hastanesi, Bursa, Turkey (Çetin); Department of Neurology and Neuroscience, Medical School, Alaaddin Keykubat University, Alanya, Turkey (Cankaya, Yulug); and Department of Neurology, Evangelisches Klinikum Bethel, University of Bielefeld, Bielefeld, Germany (Schäbitz)
| | - Hüseyin Nezih Özdemir
- Department of Neurology, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Department of Neurology, Acıbadem Hastanesi, Bursa, Turkey (Çetin); Department of Neurology and Neuroscience, Medical School, Alaaddin Keykubat University, Alanya, Turkey (Cankaya, Yulug); and Department of Neurology, Evangelisches Klinikum Bethel, University of Bielefeld, Bielefeld, Germany (Schäbitz)
| | - Seyda Cankaya
- Department of Neurology, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Department of Neurology, Acıbadem Hastanesi, Bursa, Turkey (Çetin); Department of Neurology and Neuroscience, Medical School, Alaaddin Keykubat University, Alanya, Turkey (Cankaya, Yulug); and Department of Neurology, Evangelisches Klinikum Bethel, University of Bielefeld, Bielefeld, Germany (Schäbitz)
| | - Wolf-Rüdiger Schäbitz
- Department of Neurology, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Department of Neurology, Acıbadem Hastanesi, Bursa, Turkey (Çetin); Department of Neurology and Neuroscience, Medical School, Alaaddin Keykubat University, Alanya, Turkey (Cankaya, Yulug); and Department of Neurology, Evangelisches Klinikum Bethel, University of Bielefeld, Bielefeld, Germany (Schäbitz)
| | - Burak Yulug
- Department of Neurology, Medical School Hospital, Ege University, İzmir, Turkey (Kumral, Özdemir); Department of Neurology, Acıbadem Hastanesi, Bursa, Turkey (Çetin); Department of Neurology and Neuroscience, Medical School, Alaaddin Keykubat University, Alanya, Turkey (Cankaya, Yulug); and Department of Neurology, Evangelisches Klinikum Bethel, University of Bielefeld, Bielefeld, Germany (Schäbitz)
| |
Collapse
|
15
|
Malhotra K, Theodorou A, Katsanos AH, Zompola C, Shoamanesh A, Boviatsis E, Paraskevas GP, Spilioti M, Cordonnier C, Werring DJ, Alexandrov AV, Tsivgoulis G. Prevalence of Clinical and Neuroimaging Markers in Cerebral Amyloid Angiopathy: A Systematic Review and Meta-Analysis. Stroke 2022; 53:1944-1953. [PMID: 35264008 DOI: 10.1161/strokeaha.121.035836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Limited data exist regarding the prevalence of clinical and neuroimaging manifestations among patients diagnosed with cerebral amyloid angiopathy (CAA). We sought to determine the prevalence of clinical phenotypes and radiological markers in patients with CAA. METHODS Systematic review and meta-analysis of studies including patients with CAA was conducted to primarily assess the prevalence of clinical phenotypes and neuroimaging markers as available in the included studies. Sensitivity analyses were performed based on the (1) retrospective or prospective study design and (2) probable or unspecified CAA status. We pooled the prevalence rates using random-effects models and assessed the heterogeneity using the Cochran Q and I2 statistics. RESULTS We identified 12 prospective and 34 retrospective studies including 7159 patients with CAA. The pooled prevalence rates were cerebral microbleeds (52% [95% CI, 43%-60%]; I2=93%), cortical superficial siderosis (49% [95% CI, 38%-59%]; I2=95%), dementia or mild cognitive impairment (50% [95% CI, 35%-65%]; I2=97%), intracerebral hemorrhage (ICH; 44% [95% CI, 27%-61%]; I2=98%), transient focal neurological episodes (48%; 10 studies [95% CI, 29%-67%]; I2=97%), lacunar infarcts (30% [95% CI, 25%-36%]; I2=78%), high grades of perivascular spaces located in centrum semiovale (56% [95% CI, 44%-67%]; I2=88%) and basal ganglia (21% [95% CI, 2%-51%]; I2=98%), and white matter hyperintensities with moderate or severe Fazekas score (53% [95% CI, 40%-65%]; I2=91%). The only neuroimaging marker that was associated with higher odds of recurrent ICH was cortical superficial siderosis (odds ratio, 1.57 [95% CI, 1.01-2.46]; I2=47%). Sensitivity analyses demonstrated a higher prevalence of ICH (53% versus 16%; P=0.03) and transient focal neurological episodes (57% versus 17%; P=0.03) among retrospective studies compared with prospective studies. No difference was documented between the prevalence rates based on the CAA status. CONCLUSIONS Approximately one-half of hospital-based cohort of CAA patients was observed to have cerebral microbleeds, cortical superficial siderosis, mild cognitive impairment, dementia, ICH, or transient focal neurological episodes. Cortical superficial siderosis was the only neuroimaging marker that was associated with higher odds of ICH recurrence. Future population-based studies among well-defined CAA cohorts are warranted to corroborate our findings.
Collapse
Affiliation(s)
- Konark Malhotra
- Department of Neurology, Allegheny Health Network, Pittsburgh, PA (K.M.)
| | - Aikaterini Theodorou
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.)
| | - Aristeidis H Katsanos
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.).,Department of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada (A.H.K., A.S.)
| | - Christina Zompola
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.)
| | - Ashkan Shoamanesh
- Department of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada (A.H.K., A.S.)
| | - Efstathios Boviatsis
- Department of Neurosurgery, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (E.B.)
| | - George P Paraskevas
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.)
| | - Martha Spilioti
- First Department of Neurology, AHEPA General Hospital, Aristotle University of Thessaloniki, Greece (M.S.)
| | - Charlotte Cordonnier
- University Lille, Inserm, CHU Lille, U1172, LilNCog, Lille Neuroscience and Cognition, France (C.C.)
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom (D.J.W.)
| | - Andrei V Alexandrov
- Department of Neurology, University of Tennessee Health Science Center, Memphis (A.V.A., G.T.)
| | - Georgios Tsivgoulis
- Second Department of Neurology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Greece. (A.T., A.H.K., C.Z., G.P.P., G.T.).,Department of Neurology, University of Tennessee Health Science Center, Memphis (A.V.A., G.T.)
| |
Collapse
|
16
|
Elkind MSV. From the Heart to the Brain: Building Bridges to a Better Future. Stroke 2022; 53:1037-1042. [PMID: 35012329 PMCID: PMC8885844 DOI: 10.1161/strokeaha.121.036763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This Presidential Address was delivered at the International Stroke Conference in March 2021, during the coronavirus pandemic. Dr Elkind, the President of the American Heart Association (AHA) at the time, is a vascular neurologist with a research focus on stroke epidemiology. This address interweaves personal reflections on a career in clinical neurology, stroke research, and public health with a discussion of the role of the AHA in improving cardiovascular health at multiple levels. Throughout its history, the AHA has had leaders representing many different areas of cardiovascular science and medicine, including stroke. More recently, its focus has expanded from a traditional emphasis on cardiovascular events illness and events, like heart disease and stroke, to an appreciation of the role of the vascular system in brain health, healthy aging, cognitive decline, and dementia. During the pandemic, as the bidirectional effects of the coronavirus on cardiovascular disease has been elucidated, the benefits of a broad and multidisciplinary approach to cardiovascular disease and public health have become more apparent than ever. In addition, with growing awareness of the disproportionate effects of the pandemic on communities of color in the United States and globally, the AHA has redoubled its focus on addressing the social determinants of health, including structural racism. Central to these efforts is the construction of bridges between the generation of scientific knowledge and action for the public good. Our success will depend on the combination of basic, translational, clinical and population research with programs of public and professional education, advocacy, and social action.
Collapse
Affiliation(s)
- Mitchell S. V. Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Ferro DA, Kuijf HJ, Hilal S, van Veluw SJ, van Veldhuizen D, Venketasubramanian N, Tan BY, Biessels GJ, Chen C. Association Between Cerebral Cortical Microinfarcts and Perilesional Cortical Atrophy on 3T MRI. Neurology 2021; 98:e612-e622. [PMID: 34862322 DOI: 10.1212/wnl.0000000000013140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral cortical microinfarcts (CMIs) are a novel MRI-marker of cerebrovascular disease (CeVD) that predicts accelerated cognitive decline. Presence of CMIs is known to be associated with global cortical atrophy, although the mechanism linking the two is unclear. Our primary objective was to examine the relation between CMIs and cortical atrophy and establish possible perilesional atrophy surrounding CMIs. Our secondary objective was to examine the role of cortical atrophy in CMI-associated cognitive impairment. METHODS Patients were recruited from two Singapore memory clinics between December 2010 and September 2013 and included if they received the diagnosis no objective cognitive impairment, cognitive impairment (with or without a history of stroke) or Alzheimer's or vascular dementia. Cortical thickness, chronic cortical microinfarcts and MRI-markers of CeVD were assessed on 3T MRI. Patients underwent cognitive testing. Cortical thickness was compared globally between patients with and without CMIs, regionally within individual patients with CMIs comparing brain regions with CMIs to the corresponding contralateral region without CMIs and locally within individuals patients in a 50 mm radius of CMIs. Global cortical thickness was analyzed as mediator in the relation between CMI and cognitive performance. RESULTS Of the 238 patients (mean age 72.5 SD 9.1 years) enrolled, 75 had ≥1 CMIs. Patient with CMIs had a 2.1% lower global cortical thickness (B=-.049 mm, 95% CI [.091; -.007] p=.022) compared to patients without CMIs, after correction for age, sex, education and intracranial volume. In patients with CMIs, cortical thickness in brain regions with CMIs was 2.2 % lower than in contralateral regions without CMIs (B=-.048 mm [-.071; -.026] p<.001). In a 20 mm radius area surrounding the CMI-core, cortical thickness was lower than in the area 20-50 mm from the CMI-core (Mean difference -.06 mm 95% CI [-.10; -.02] p=.002). Global cortical thickness was a significant mediator in the relationship between CMI presence and cognitive performance as measure with the Mini-Mental State Examination (B=-.12 [-.22; -.01] p=.025). DISCUSSION We found cortical atrophy surrounding CMIs, suggesting a perilesional effect in a cortical area many times larger than the CMI-core. Our findings support the notion that CMIs affect brain structure beyond the actual lesion site.
Collapse
Affiliation(s)
- Doeschka A Ferro
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saima Hilal
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore
| | - Susanne J van Veluw
- Department of Neurology, J.P.K. Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
18
|
Zwartbol MHT, Rissanen I, Ghaznawi R, de Bresser J, Kuijf HJ, Blom K, Witkamp TD, Koek HL, Biessels GJ, Hendrikse J, Geerlings MI. Cortical cerebral microinfarcts on 7T MRI: Risk factors, neuroimaging correlates and cognitive functioning - The Medea-7T study. J Cereb Blood Flow Metab 2021; 41:3127-3138. [PMID: 34187229 PMCID: PMC8543666 DOI: 10.1177/0271678x211025447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
We determined the occurrence and association of cortical cerebral microinfarcts (CMIs) at 7 T MRI with risk factors, neuroimaging markers of small and large vessel disease, and cognitive functioning. Within the Medea-7T study, a diverse cohort of older persons with normal cognition, patients with vascular disease, and memory clinic patients, we included 386 participants (68 ± 9 years) with available 7 T and 1.5 T/3T brain MRI, and risk factor and neuropsychological data. CMIs were found in 10% of participants and were associated with older age (RR = 1.79 per +10 years, 95%CI 1.28-2.50), history of stroke or TIA (RR = 4.03, 95%CI 2.18-7.43), cortical infarcts (RR = 5.28, 95%CI 2.91-9.55), lacunes (RR = 5.66, 95%CI 2.85-11.27), cerebellar infarcts (RR = 2.73, 95%CI 1.27-5.84) and decreased cerebral blood flow (RR = 1.35 per -100 ml/min, 95%CI 1.00-1.83), after adjustment for age and sex. Furthermore, participants with >2 CMIs had 0.5 SD (95%CI 0.05-0.91) lower global cognitive performance, compared to participants without CMIs. Our results indicate that CMIs on 7 T MRI are observed in vascular and memory clinic patients with similar frequency, and are associated with older age, history of stroke or TIA, other brain infarcts, and poorer global cognitive functioning.
Collapse
Affiliation(s)
- Maarten HT Zwartbol
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Ina Rissanen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rashid Ghaznawi
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kim Blom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Theo D Witkamp
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
19
|
Kumral E, Bayam FE, Arslan H, Orman M. Associations Between Neuroanatomic Patterns of Cerebral Infarctions and Vascular Dementia. J Neuropsychiatry Clin Neurosci 2021; 33:49-56. [PMID: 32718274 DOI: 10.1176/appi.neuropsych.19120356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A history of multiple cerebral infarctions is generally regarded as an important risk factor for vascular dementia. The authors examined the risk of vascular dementia in patients with multiple acute ischemic lesions. METHODS The authors conducted a hospital-based prospective study of 11,200 patients with first-time stroke who underwent 1.5 or 3-T MRI and a global cognitive assessment. Univariate and multivariate logistic regression analyses estimated the risk of dementia associated with multiple lesions versus a single lesion. RESULTS Having multiple lesions, compared with having a single lesion, was significantly associated with dementia in patients with stroke (odds ratio=5.83, 95% CI=5.08, 6.70; p<0.001). The apoliproprotein ε4 allele was more frequent in patients with multiple lesions than in those with a single lesion (odds ratio=1.70, 95% CI=1.39, 2.07; p<0.001). Severe leukoaraiosis (odds ratio=15.77, 95% CI=8.38, 29.68; p<0.001) and microbleedings (odds ratio=1.31, 95% CI=1.06, 1.63; p<0.01) were strong confounders for dementia in the multivariate analysis. Multiple logistic regression analysis showed that multiple lesions in one hemisphere versus a single lesion (odds ratio=2.14, 95% CI=1.83, 2.51; p<0.001), involvement of strategic regions (odds ratio=4.73, 95% CI=4.07, 5.49; p<0.001), and stroke lesion volume (odds ratio=1.31, 95% CI=1.03, 1.66; p=0.03) were significantly associated with dementia. There was a preponderance of lesions on the left side in patients with dementia (odds ratio=2.56, 95% CI=2.11, 3.11; p<0.001). CONCLUSIONS Multiple spontaneous anterior or posterior circulation lesions after stroke increase a patient's risk of developing dementia. Recognition of multiple ischemic lesions after stroke may allow targeted rapid therapeutic interventions to prevent subsequent cognitive deterioration.
Collapse
Affiliation(s)
- Emre Kumral
- Department of Neurology (Kumral, Ece Bayam, Arslan) and Department of Neuropsychology (Arslan), Ege University Medical School Hospital, Izmir, Turkey; and Department of Administration and Statistics, Ege University, Izmir, Turkey (Orman)
| | - Fatma Ece Bayam
- Department of Neurology (Kumral, Ece Bayam, Arslan) and Department of Neuropsychology (Arslan), Ege University Medical School Hospital, Izmir, Turkey; and Department of Administration and Statistics, Ege University, Izmir, Turkey (Orman)
| | - Hasan Arslan
- Department of Neurology (Kumral, Ece Bayam, Arslan) and Department of Neuropsychology (Arslan), Ege University Medical School Hospital, Izmir, Turkey; and Department of Administration and Statistics, Ege University, Izmir, Turkey (Orman)
| | - Mehmet Orman
- Department of Neurology (Kumral, Ece Bayam, Arslan) and Department of Neuropsychology (Arslan), Ege University Medical School Hospital, Izmir, Turkey; and Department of Administration and Statistics, Ege University, Izmir, Turkey (Orman)
| |
Collapse
|
20
|
Subotic A, McCreary CR, Saad F, Nguyen A, Alvarez-Veronesi A, Zwiers AM, Charlton A, Beaudin AE, Ismail Z, Pike GB, Smith EE. Cortical Thickness and Its Association with Clinical Cognitive and Neuroimaging Markers in Cerebral Amyloid Angiopathy. J Alzheimers Dis 2021; 81:1663-1671. [PMID: 33998545 PMCID: PMC8293635 DOI: 10.3233/jad-210138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) contributes to brain neurodegeneration and cognitive decline, but the relationship between these two processes is incompletely understood. OBJECTIVE The purpose of this study is to examine cortical thickness and its association with cognition and neurodegenerative biomarkers in CAA. METHODS Data were collected from the Functional Assessment of Vascular Reactivity study and the Calgary Normative Study. In total, 48 participants with probable CAA, 72 cognitively normal healthy controls, and 24 participants with mild dementia due to AD were included. Participants underwent an MRI scan, after which global and regional cortical thickness measurements were obtained using FreeSurfer. General linear models, adjusted for age and sex, were used to compare cortical thickness globally and in an AD signature region. RESULTS Global cortical thickness was lower in CAA compared to healthy controls (mean difference (MD) -0.047 mm, 95% confidence interval (CI) -0.088, -0.005, p = 0.03), and lower in AD compared to CAA (MD -0.104 mm, 95% CI -0.165, -0.043, p = 0.001). In the AD signature region, cortical thickness was lower in CAA compared to healthy controls (MD -0.07 mm, 95% CI -0.13 to -0.01, p = 0.02). Within the CAA group, lower cortical thickness was associated with lower memory scores (R2 = 0.10; p = 0.05) and higher white matter hyperintensity volume (R2 = 0.09, p = 0.04). CONCLUSION CAA contributes to neurodegeneration in the form of lower cortical thickness, and this could contribute to cognitive decline. Regional overlap with an AD cortical atrophy signature region suggests that co-existing AD pathology may contribute to lower cortical thickness observed in CAA.
Collapse
Affiliation(s)
- Arsenije Subotic
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Cheryl R McCreary
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Feryal Saad
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Amanda Nguyen
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Ana Alvarez-Veronesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Angela M Zwiers
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Anna Charlton
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Andrew E Beaudin
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Eric E Smith
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Kozberg MG, Perosa V, Gurol ME, van Veluw SJ. A practical approach to the management of cerebral amyloid angiopathy. Int J Stroke 2021; 16:356-369. [PMID: 33252026 PMCID: PMC9097498 DOI: 10.1177/1747493020974464] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral amyloid angiopathy is a common small vessel disease in the elderly involving vascular amyloid-β deposition. Cerebral amyloid angiopathy is one of the leading causes of intracerebral hemorrhage and a significant contributor to age-related cognitive decline. The awareness of a diagnosis of cerebral amyloid angiopathy is important in clinical practice as it impacts decisions to use lifelong anticoagulation or nonpharmacological alternatives to anticoagulation such as left atrial appendage closure in patients who have concurrent atrial fibrillation, another common condition in older adults. This review summarizes the latest literature regarding the management of patients with sporadic cerebral amyloid angiopathy, including diagnostic criteria, imaging biomarkers for cerebral amyloid angiopathy severity, and management strategies to decrease intracerebral hemorrhage risk. In a minority of patients, the presence of cerebral amyloid angiopathy triggers an autoimmune inflammatory reaction, referred to as cerebral amyloid angiopathy-related inflammation, which is often responsive to immunosuppressive treatment in the acute phase. Diagnosis and management of cerebral amyloid angiopathy-related inflammation will be presented separately. While there are currently no effective therapeutics available to cure or halt the progression of cerebral amyloid angiopathy, we discuss emerging avenues for potential future interventions.
Collapse
Affiliation(s)
- Mariel G Kozberg
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| | - Valentina Perosa
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - M Edip Gurol
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, 2348Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Hemorrhagic Stroke Research Program, J. Philip Kistler Stroke Research Center, Department of Neurology, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA,USA
| |
Collapse
|
22
|
Gokcal E, Horn MJ, van Veluw SJ, Frau-Pascual A, Das AS, Pasi M, Fotiadis P, Warren AD, Schwab K, Rosand J, Viswanathan A, Polimeni JR, Greenberg SM, Gurol ME. Lacunes, Microinfarcts, and Vascular Dysfunction in Cerebral Amyloid Angiopathy. Neurology 2021; 96:e1646-e1654. [PMID: 33536272 PMCID: PMC8032369 DOI: 10.1212/wnl.0000000000011631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To analyze the relationship of lacunes with cortical cerebral microinfarcts (CMIs), to assess their association with vascular dysfunction, and to evaluate their effect on the risk of incident intracerebral hemorrhage (ICH) in cerebral amyloid angiopathy (CAA). METHODS The count and topography of lacunes (deep/lobar), CMIs, and white matter hyperintensity (WMH) volume were retrospectively analyzed in a prospectively enrolled CAA cohort that underwent high-resolution research MRIs. The relationship of lacunes with CMIs and other CAA-related markers including time to peak (TTP) of blood oxygen level-dependent signal, an established measure of vascular dysfunction, was evaluated in multivariate models. Adjusted Cox regression models were used to investigate the relationship between lacunes and incident ICH. RESULTS The cohort consisted of 122 patients with probable CAA without dementia (mean age, 69.4 ± 7.6 years). Lacunes were present in 31 patients (25.4%); all but one were located in lobar regions. Cortical CMIs were more common in patients with lacunes compared to patients without lacunes (51.6% vs 20.9%, p = 0.002). TTP was not associated with either lacunes or CMIs (both p > 0.2) but longer TTP response independently correlated with higher WMH volume (p = 0.001). Lacunes were associated with increased ICH risk in univariate and multivariate Cox regression models (p = 0.048 and p = 0.026, respectively). CONCLUSIONS Our findings show a high prevalence of lobar lacunes, frequently coexisting with CMIs in CAA, suggesting that these 2 lesion types may be part of a common spectrum of CAA-related infarcts. Lacunes were not related to vascular dysfunction but predicted incident ICH, favoring severe focal vessel involvement rather than global ischemia as their mechanism.
Collapse
Affiliation(s)
- Elif Gokcal
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Mitchell J Horn
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Susanne J van Veluw
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Aina Frau-Pascual
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Alvin S Das
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Marco Pasi
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Panagiotis Fotiadis
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Andrew D Warren
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Kristin Schwab
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Jonathan Rosand
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Anand Viswanathan
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Jonathan R Polimeni
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - Steven M Greenberg
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France
| | - M Edip Gurol
- From the J. Philip Kistler Hemorrhagic Stroke Research Program, Department of Neurology (E.G., M.J.H., S.J.v.V., M.P., P.F., A.D.W., K.S., J.R., A.V., S.M.G., M.E.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.F.-P., J.R.P.), Charlestown; Department of Neurology (A.S.D.), Massachusetts General Hospital, Boston; and Department of Neurology, Stroke Unit (M.P.), Univ-Lille, Inserm U1171, CHU Lille, France.
| |
Collapse
|
23
|
Raposo N, Zanon Zotin MC, Schoemaker D, Xiong L, Fotiadis P, Charidimou A, Pasi M, Boulouis G, Schwab K, Schirmer MD, Etherton MR, Gurol ME, Greenberg SM, Duering M, Viswanathan A. Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy. AJNR Am J Neuroradiol 2021; 42:875-881. [PMID: 33664113 DOI: 10.3174/ajnr.a7042] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions. MATERIALS AND METHODS We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models. RESULTS Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment. CONCLUSIONS Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.
Collapse
Affiliation(s)
- N Raposo
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts .,Department of Neurology (N.R.), Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (N.R.), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale, Toulouse, UPS, France
| | - M C Zanon Zotin
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Center for Imaging Sciences and Medical Physics (M.C.Z.Z.). Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - D Schoemaker
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - L Xiong
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - P Fotiadis
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - A Charidimou
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - M Pasi
- Department of Neurology (M.P.), Centre Hospitalier Universitaire de Lille, Lille, France
| | - G Boulouis
- Department of Neuroradiology (G.B.), Centre Hospitalier Sainte-Anne, Université Paris-Descartes, Paris, France
| | - K Schwab
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - M D Schirmer
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Computer Science and Artificial Intelligence Lab (M.D.S.), Massachusetts Institute of Technology, Boston, Massachusetts.,Department of Population Health Sciences (M.D.S.), German Center for Neurodegenerative Diseases, Bonn, Germany
| | - M R Etherton
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - M E Gurol
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - S M Greenberg
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - M Duering
- Medical Image Analysis Center and Quantitative Biomedical Imaging Group (M.D.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - A Viswanathan
- From the Stroke Research Center (N.R., M.C.Z.Z., D.S., L.X., P.F., A.C., K.S., M.D.S., M.R.E., M.E.G., S.M.G., A.V.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Charidimou A, Perosa V, Frosch MP, Scherlek AA, Greenberg SM, van Veluw SJ. Neuropathological correlates of cortical superficial siderosis in cerebral amyloid angiopathy. Brain 2021; 143:3343-3351. [PMID: 32935842 DOI: 10.1093/brain/awaa266] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
Cortical superficial siderosis is an established haemorrhagic neuroimaging marker of cerebral amyloid angiopathy. In fact, cortical superficial siderosis is emerging as a strong independent risk factor for future lobar intracerebral haemorrhage. However, the underlying neuropathological correlates and pathophysiological mechanisms of cortical superficial siderosis remain elusive. Here we use an in vivo MRI, ex vivo MRI, histopathology approach to assess the neuropathological correlates and vascular pathology underlying cortical superficial siderosis. Fourteen autopsy cases with cerebral amyloid angiopathy (mean age at death 73 years, nine males) and three controls (mean age at death 91 years, one male) were included in the study. Intact formalin-fixed cerebral hemispheres were scanned on a 3 T MRI scanner. Cortical superficial siderosis was assessed on ex vivo gradient echo and turbo spin echo MRI sequences and compared to findings on available in vivo MRI. Subsequently, 11 representative areas in four cases with available in vivo MRI scans were sampled for histopathological verification of MRI-defined cortical superficial siderosis. In addition, samples were taken from predefined standard areas of the brain, blinded to MRI findings. Serial sections were stained for haematoxylin and eosin and Perls' Prussian blue, and immunohistochemistry was performed against amyloid-β and GFAP. Cortical superficial siderosis was present on ex vivo MRI in 8/14 cases (57%) and 0/3 controls (P = 0.072). Histopathologically, cortical superficial siderosis corresponded to iron-positive haemosiderin deposits in the subarachnoid space and superficial cortical layers, indicative of chronic bleeding events originating from the leptomeningeal vessels. Increased severity of cortical superficial siderosis was associated with upregulation of reactive astrocytes. Next, cortical superficial siderosis was assessed on a total of 65 Perls'-stained sections from MRI-targeted and untargeted sampling combined in cerebral amyloid angiopathy cases. Moderate-to-severe cortical superficial siderosis was associated with concentric splitting of the vessel wall (an advanced form of cerebral amyloid angiopathy-related vascular damage) in leptomeningeal vessels (P < 0.0001), but reduced cerebral amyloid angiopathy severity in cortical vessels (P = 0.048). In terms of secondary tissue injury, moderate-to-severe cortical superficial siderosis was associated with the presence of microinfarcts (P = 0.025), though not microbleeds (P = 0.973). Collectively, these data suggest that cortical superficial siderosis on MRI corresponds to iron-positive deposits in the superficial cortical layers, representing the chronic manifestation of bleeding episodes from leptomeningeal vessels. Cortical superficial siderosis appears to be the result of predominantly advanced cerebral amyloid angiopathy of the leptomeningeal vessels and may trigger secondary ischaemic injury in affected areas.
Collapse
Affiliation(s)
- Andreas Charidimou
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Boston Medical Center, Boston University, Boston, MA, USA
| | - Valentina Perosa
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew P Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashley A Scherlek
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - Steven M Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
25
|
Ii Y, Ishikawa H, Shindo A, Matsuyama H, Matsuura K, Matsuda K, Yoshimaru K, Satoh M, Kogue R, Umino M, Maeda M, Tomimoto H. Association between cortical microinfarcts and total small vessel disease burden in cerebral amyloid angiopathy on 3-Tesla magnetic resonance imaging. Eur J Neurol 2020; 28:794-799. [PMID: 33098163 DOI: 10.1111/ene.14610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Cortical microinfarcts (CMIs) are frequently found in the brains of patients with advanced cerebral amyloid angiopathy (CAA) at autopsy. The small vessel disease (SVD) score for CAA (i.e., the CAA-SVD score) has been proposed to evaluate the severity of CAA-associated vasculopathic changes by a combination of magnetic resonance imaging (MRI) markers. The aim of this study was to examine the association between total CAA-SVD score and features of CMIs on in vivo 3-Tesla MRI. METHODS Eighty patients with probable CAA were retrospectively analyzed. Lobar cerebral microbleeds, cortical superficial siderosis, enlargement of perivascular space in the centrum semiovale and white matter hyperintensity were collectively assessed, and the total CAA-SVD score was calculated. The presence of CMI was also examined. RESULTS Of the 80 patients, 13 (16.25%) had CMIs. CMIs were detected more frequently in the parietal and occipital lobes. A positive correlation was found between total CAA-SVD score and prevalence of CMI (ρ = 0.943; p = 0.005). Total CAA-SVD score was significantly higher in patients with CMIs than in those without (p = 0.009). In a multivariable logistic regression analysis, the presence of CMIs was significantly associated with total CAA-SVD score (odds ratio 2.318 [95% confidence interval 1.228-4.376]; p = 0.01, per each additional point). CONCLUSIONS The presence of CMIs with a high CAA-SVD score could be an indicator of more severe amyloid-associated vasculopathic changes in patients with probable CAA.
Collapse
Affiliation(s)
- Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kana Matsuda
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kimiko Yoshimaru
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Mie, Japan
| | - Masayuki Satoh
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Mie, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
26
|
Verny M, Duyckaerts C. Cognitive deficit, and neuropathological correlates, in the oldest-old. Rev Neurol (Paris) 2020; 176:670-676. [PMID: 32178879 DOI: 10.1016/j.neurol.2020.01.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Several disorders are usually involved in the cognitive deficit of the oldest old. Alzheimer disease is the commonest. It is usually characterized by progressive memory impairment - neocortical symptoms occurring much later in the course of the disease. Alzheimer disease should not be considered any more as the single cause of a cognitive deficit in a very old patient. Vascular alterations, possibly causing microinfarcts, are commonly associated, especially in cerebral amyloid angiopathy. A slowly progressive memory deficit with negative CSF biomarkers of Alzheimer's disease may be due to hippocampal sclerosis that may be the consequence of multiple causes: in most of the cases, it is associated with neuronal TDP-43 inclusions. Recently, a distribution of these inclusions to a territory more extensive than the hippocampus has been reported and attributed to a new entity, called Limbic-predominant Age-related TDP-43 Encephalopathy (LATE) with or without hippocampal sclerosis. The presence of cortical Lewy bodies may cause an intellectual deficit or contribute to it. The prevalence of dementia with cortical Lewy bodies in the oldest old is discussed. Tau inclusions in cortical glia have also been shown to participate to the intellectual deficit. Association of neurodegenerative and vascular changes is the most frequent situation in the very old patients. Systemic diseases such as diabetes or heart failure, prescription drugs (when misused), or toxic such as alcohol may also contribute to the cognitive impairment and be amenable to treatment.
Collapse
Affiliation(s)
- M Verny
- Centre de gériatrie, pavillon Marguerite-Bottard, hôpital de la Pitié-Salpêtrière, AP-HP, Sorbonne Université, 47-83, boulevard de l'Hôpital, 75651 Paris cedex, France; Team Neuronal Cell Biology & Pathology, Sorbonne University and UMR8256 (CNRS), Paris, France.
| | - C Duyckaerts
- Département de Neuropathologie Escourolle, AP-HP Sorbonne Université, Paris, France; ICM, équipe Alzheimer-Prions, Paris, France
| |
Collapse
|
27
|
Moretti R, Caruso P. Small Vessel Disease-Related Dementia: An Invalid Neurovascular Coupling? Int J Mol Sci 2020; 21:E1095. [PMID: 32046035 PMCID: PMC7036993 DOI: 10.3390/ijms21031095] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The arteriosclerosis-dependent alteration of brain perfusion is one of the major determinants in small vessel disease, since small vessels have a pivotal role in the brain's autoregulation. Nevertheless, as far as we know, endothelium distress can potentiate the flow dysregulation and lead to subcortical vascular dementia that is related to small vessel disease (SVD), also being defined as subcortical vascular dementia (sVAD), as well as microglia activation, chronic hypoxia and hypoperfusion, vessel-tone dysregulation, altered astrocytes, and pericytes functioning blood-brain barrier disruption. The molecular basis of this pathology remains controversial. The apparent consequence (or a first event, too) is the macroscopic alteration of the neurovascular coupling. Here, we examined the possible mechanisms that lead a healthy aging process towards subcortical dementia. We remarked that SVD and white matter abnormalities related to age could be accelerated and potentiated by different vascular risk factors. Vascular function changes can be heavily influenced by genetic and epigenetic factors, which are, to the best of our knowledge, mostly unknown. Metabolic demands, active neurovascular coupling, correct glymphatic process, and adequate oxidative and inflammatory responses could be bulwarks in defense of the correct aging process; their impairments lead to a potentially catastrophic and non-reversible condition.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|
28
|
De Guio F, Duering M, Fazekas F, De Leeuw FE, Greenberg SM, Pantoni L, Aghetti A, Smith EE, Wardlaw J, Jouvent E. Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative. J Cereb Blood Flow Metab 2020; 40:231-245. [PMID: 31744377 PMCID: PMC7370623 DOI: 10.1177/0271678x19888967] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain atrophy is increasingly evaluated in cerebral small vessel diseases. We aim at systematically reviewing the available data regarding its extent, correlates and cognitive consequences. Given that in this context, brain atrophy measures might be biased, the first part of the review focuses on technical aspects. Thereafter, data from the literature are analyzed in light of these potential limitations, to better understand the relationships between brain atrophy and other MRI markers of cerebral small vessel diseases. In the last part, we review the links between brain atrophy and cognitive alterations in patients with cerebral small vessel diseases.
Collapse
Affiliation(s)
- François De Guio
- Department of Neurology and Referral Center for Rare Vascular Diseases of the Brain and Retina (CERVCO), APHP, Lariboisière Hospital, Paris, DHU NeuroVasc, Univ Paris Diderot, and U1141 INSERM, France
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Frank-Erik De Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Leonardo Pantoni
- "Luigi Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Agnès Aghetti
- Department of Neurology and Referral Center for Rare Vascular Diseases of the Brain and Retina (CERVCO), APHP, Lariboisière Hospital, Paris, DHU NeuroVasc, Univ Paris Diderot, and U1141 INSERM, France
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eric Jouvent
- Department of Neurology and Referral Center for Rare Vascular Diseases of the Brain and Retina (CERVCO), APHP, Lariboisière Hospital, Paris, DHU NeuroVasc, Univ Paris Diderot, and U1141 INSERM, France
| |
Collapse
|
29
|
Zhu X, Xu F, Hoos MD, Lee H, Benveniste H, Van Nostrand WE. Reduced Levels of Cerebrospinal Fluid/Plasma Aβ40 as an Early Biomarker for Cerebral Amyloid Angiopathy in RTg-DI Rats. Int J Mol Sci 2020; 21:ijms21010303. [PMID: 31906317 PMCID: PMC6982234 DOI: 10.3390/ijms21010303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
The accumulation of fibrillar amyloid β-protein (Aβ) in blood vessels of the brain, the condition known as cerebral amyloid angiopathy (CAA), is a common small vessel disease that promotes cognitive impairment and is strongly associated with Alzheimer’s disease. Presently, the clinical diagnosis of this condition relies on neuroimaging markers largely associated with cerebral macro/microbleeds. However, these are markers of late-stage disease detected after extensive cerebral vascular amyloid accumulation has become chronic. Recently, we generated a novel transgenic rat model of CAA (rTg-DI) that recapitulates multiple aspects of human CAA disease with the progressive accumulation of cerebral vascular amyloid, largely composed of Aβ40, and the consistent emergence of subsequent microbleeds. Here, we investigated the levels of Aβ40 in the cerebrospinal fluid (CSF) and plasma of rTg-DI rats as CAA progressed from inception to late stage disease. The levels of Aβ40 in CSF and plasma precipitously dropped at the early onset of CAA accumulation at three months of age and continued to decrease with the progression of disease. Notably, the reduction in CSF/plasma Aβ40 levels preceded the emergence of cerebral microbleeds, which first occurred at about six months of age, as detected by in vivo magnetic resonance imaging and histological staining of brain tissue. These findings support the concept that reduced CSF/plasma levels of Aβ40 could serve as a biomarker for early stage CAA disease prior to the onset of cerebral microbleeds for future therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoyue Zhu
- George & Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; (X.Z.); (F.X.); (M.D.H.)
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; (X.Z.); (F.X.); (M.D.H.)
| | - Michael D. Hoos
- George & Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; (X.Z.); (F.X.); (M.D.H.)
- Enzo Life Sciences, 10 Executive Blvd, Farmingdale, NY 11735, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA; (H.L.); (H.B.)
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, CT 06520, USA; (H.L.); (H.B.)
| | - William E. Van Nostrand
- George & Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA; (X.Z.); (F.X.); (M.D.H.)
- Correspondence: ; Tel.: +1-401-874-2363
| |
Collapse
|
30
|
Patel N, Banahan C, Janus J, Horsfield MA, Cox A, Li X, Cappellugola L, Colman J, Egan V, Garrard P, Chung EM. Perioperative Cerebral Microbleeds After Adult Cardiac Surgery. Stroke 2019; 50:336-343. [PMID: 30572811 PMCID: PMC6354910 DOI: 10.1161/strokeaha.118.023355] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background and Purpose- Cerebral microbleeds (CMBs) have been observed using magnetic resonance imaging in patients with cardiovascular risk factors, cognitive deterioration, small vessel disease, and dementia. They are a well-known consequence of cerebral amyloid angiopathy, chronic hypertension, and diffuse axonal injury, among other causes. However, the frequency and location of new CMBs postadult cardiac surgery, in association with cognition and perioperative risk factors, have yet to be studied. Methods- Pre- and postsurgery magnetic resonance susceptibility-weighted images and neuropsychological tests were analyzed from a total of 75 patients undergoing cardiac surgery (70 men; mean age, 63±10 years). CMBs were identified by a neuroradiologist blinded to clinical details who independently assessed the presence and location of CMBs using standardized criteria. Results- New CMBs were identified in 76% of patients after cardiac surgery. The majority of new CMBs were located in the frontal lobe (46%) followed by the parietal lobe (15%), cerebellum (13%), occipital lobe (12%), and temporal lobe (8%). Patients with new CMBs typically began with a higher prevalence of preexisting CMBs ( P=0.02). New CMBs were associated with longer cardiopulmonary bypass times ( P=0.003), and there was a borderline association with lower percentage hematocrit ( P=0.04). Logistic regression analysis suggested a ≈2% increase in the odds of acquiring new CMBs during cardiac surgery for every minute of bypass time (odds ratio, 1.02; 95% CI, 1.00-1.05; P=0.04). Postoperative neuropsychological decline was observed in 44% of patients and seemed to be unrelated to new CMBs. Conclusions- New CMBs identified using susceptibility-weighted images were found in 76% of patients who underwent cardiac surgery. CMBs were globally distributed with the highest numbers in the frontal and parietal lobes. Our regression analysis indicated that length of cardiopulmonary bypass time and lowered hematocrit may be significant predictors for new CMBs after cardiac surgery. Clinical Trial Registration- URL: http://www.isrctn.com . Unique identifier: 66022965.
Collapse
Affiliation(s)
- Nikil Patel
- From the Department of Cardiovascular Sciences, University of Leicester, United Kingdom (N.P., J.J., M.A.H., L.C., E.M.L.C.)
- NIHR Leicester Biomedical Research Centre–Cardiovascular Theme, Glenfield Hospital, United Kingdom (N.P., E.M.L.C.)
- Department of Clinical Neurosciences, St George’s, University of London, United Kingdom (N.P., X.L., J.C., P.G.)
| | - Caroline Banahan
- Department of Medical Physics, University Hospitals of Leicester NHS Trust, United Kingdom (C.B., E.M.L.C.)
| | - Justyna Janus
- From the Department of Cardiovascular Sciences, University of Leicester, United Kingdom (N.P., J.J., M.A.H., L.C., E.M.L.C.)
| | - Mark A. Horsfield
- From the Department of Cardiovascular Sciences, University of Leicester, United Kingdom (N.P., J.J., M.A.H., L.C., E.M.L.C.)
| | - Anthony Cox
- Neuroradiology Department, St George’s Hospital, London, United Kingdom (A.C.)
| | - Xingfeng Li
- Department of Clinical Neurosciences, St George’s, University of London, United Kingdom (N.P., X.L., J.C., P.G.)
| | - Laurie Cappellugola
- From the Department of Cardiovascular Sciences, University of Leicester, United Kingdom (N.P., J.J., M.A.H., L.C., E.M.L.C.)
| | - Jordan Colman
- Department of Clinical Neurosciences, St George’s, University of London, United Kingdom (N.P., X.L., J.C., P.G.)
| | - Vincent Egan
- Department of Psychiatry and Applied Psychology, University of Nottingham, United Kingdom (V.E.)
| | - Peter Garrard
- Department of Clinical Neurosciences, St George’s, University of London, United Kingdom (N.P., X.L., J.C., P.G.)
| | - Emma M.L. Chung
- From the Department of Cardiovascular Sciences, University of Leicester, United Kingdom (N.P., J.J., M.A.H., L.C., E.M.L.C.)
- NIHR Leicester Biomedical Research Centre–Cardiovascular Theme, Glenfield Hospital, United Kingdom (N.P., E.M.L.C.)
- Department of Medical Physics, University Hospitals of Leicester NHS Trust, United Kingdom (C.B., E.M.L.C.)
| |
Collapse
|
31
|
Carmona-Iragui M, Videla L, Lleó A, Fortea J. Down syndrome, Alzheimer disease, and cerebral amyloid angiopathy: The complex triangle of brain amyloidosis. Dev Neurobiol 2019; 79:716-737. [PMID: 31278851 DOI: 10.1002/dneu.22709] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/04/2019] [Accepted: 07/02/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β-amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD-related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD-related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker-characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma-free model to study AD-related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Videla
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
32
|
Kulesh AA, Drobakha VE, Shestakov VV. Cerebral small vessel disease: classification, clinical manifestations, diagnosis, and features of treatment. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2019. [DOI: 10.14412/2074-2711-2019-3s-4-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The paper considers the relevance of the problem of cerebral small vessel disease (CSVD) that is an important cause of ischemic and hemorrhagic stroke, associated with the development of cognitive impairment and complications of antithrombotic therapy. It presents briefly the current issues of etiology and pathogenesis of the disease. Sporadic non-amyloid microangiopathy, cerebral amyloid angiopathy, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) are discussed in detail from the point of view of their clinical presentation, neuroimaging, and features of therapeutic tactics. An algorithm for diagnosing CSVD in patients admitted to hospital for stroke and a differentiated approach to their treatment are proposed. Consideration of the neuroimaging manifestations of CSVD is noted to be necessary for the safe and more effective treatment of patients with cerebrovascular diseases.
Collapse
Affiliation(s)
- A. A. Kulesh
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - V. E. Drobakha
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - V. V. Shestakov
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| |
Collapse
|
33
|
Ii Y, Maeda M, Ishikawa H, Ito A, Matsuo K, Umino M, Shindo A, Kida H, Satoh M, Niwa A, Taniguchi A, Tomimoto H. Cortical microinfarcts in patients with multiple lobar microbleeds on 3 T MRI. J Neurol 2019; 266:1887-1896. [DOI: 10.1007/s00415-019-09350-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/13/2019] [Accepted: 04/26/2019] [Indexed: 11/29/2022]
|