1
|
Fakih R, Varon Miller A, Raghuram A, Sanchez S, Miller JM, Kandemirli S, Zhu C, Shaban A, Leira EC, Samaniego EA. High resolution 7T MR imaging in characterizing culprit intracranial atherosclerotic plaques. Interv Neuroradiol 2025; 31:24-31. [PMID: 36573263 PMCID: PMC11833844 DOI: 10.1177/15910199221145760] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Current imaging modalities underestimate the severity of intracranial atherosclerotic disease (ICAD). High resolution vessel wall imaging (HR-VWI) MRI is a powerful tool in characterizing plaques. We aim to show that HR-VWI MRI is more accurate at detecting and characterizing intracranial plaques compared to digital subtraction angiography (DSA), time-of-flight (TOF) MRA, and computed tomography angiogram (CTA). METHODS Patients with symptomatic ICAD prospectively underwent 7T HR-VWI. We calculated: degree of stenosis, plaque burden (PB), and remodeling index (RI). The sensitivity of detecting a culprit plaque for each modality as well as the correlations between different variables were analyzed. Interobserver agreement on the determination of a culprit plaque on every imaging modality was evaluated. RESULTS A total of 44 patients underwent HR-VWI. Thirty-four patients had CTA, 18 TOF-MRA, and 18 DSA. The sensitivity of plaque detection was 88% for DSA, 78% for TOF-MRA, and 76% for CTA. There's significant positive correlation between PB and degree of stenosis on HR-VWI MRI (p < 0.001), but not between PB and degree of stenosis in DSA (p = 0.168), TOF-MRA (p = 0.144), and CTA (p = 0.253). RI had a significant negative correlation with degree of stenosis on HR-VWI MRI (p = 0.003), but not on DSA (p = 0.783), TOF-MRA (p = 0.405), or CTA (p = 0.751). The best inter-rater agreement for culprit plaque detection was with HR-VWI (p = 0.001). CONCLUSIONS The degree of stenosis measured by intra-luminal techniques does not fully reflect the true extent of ICAD. HR-VWI is a more accurate tool in characterizing atherosclerotic plaques and may be the default imaging modality in clinical practice.
Collapse
Affiliation(s)
- Rami Fakih
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alberto Varon Miller
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ashrita Raghuram
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sebastian Sanchez
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Jacob M Miller
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sedat Kandemirli
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Amir Shaban
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Enrique C Leira
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Edgar A Samaniego
- Department of Neurology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Department of Neurosurgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
2
|
Wei X, Cheng J, Zhang L, Xu R, Zhang W. Association of systemic inflammatory response index and plaque characteristics with the severity and recurrence of cerebral ischemic events. J Stroke Cerebrovasc Dis 2024; 33:107558. [PMID: 38262100 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
AIM We aimed to investigate the relationship between systemic inflammatory response index (SIRI) and intracranial plaque features, as well as the risk factors related to the severity and recurrence of cerebral ischemic events. METHODS We enrolled 170 patients with cerebral ischemic events. Baseline demographic characteristics and laboratory indicators were collected from all participants. All patients were assessed by high-resolution magnetic resonance vessel wall imaging for culprit plaque characteristics and intracranial atherosclerotic burden. Outpatient or telephone follow-up were conducted at 1, 3, and 6 months after discharge. RESULTS SIRI levels were significantly associated with the enhanced plaque number (r = 0.205, p = 0.007), total plaque stenosis score (r = 0.178, p = 0.020), total plaque enhancement score (r = 0.222, p = 0.004), intraplaque hemorrhage (F = 5.630, p = 0.004), and plaque surface irregularity (F = 3.986, p = 0.021). Higher SIRI levels (OR = 1.892), total plaque enhancement score (OR = 1.392), intraplaque hemorrhage (OR = 3.370) and plaque surface irregularity (OR = 2.846) were independent risk factors for moderate-severe stroke, and these variables were significantly positively correlated with NIHSS (P < 0.05 for all). In addition, higher age (HR = 1.063, P = 0.015), higher SIRI levels (HR = 2.003, P < 0.001), and intraplaque hemorrhage (HR = 4.482, P = 0.008) were independently associated with recurrent stroke. CONCLUSIONS Higher SIRI levels may have adverse effects on the vulnerability and burden of intracranial plaques, and links to the severity and recurrence of ischemic events. Therefore, SIRI may provide important supplementary information for evaluating intracranial plaque stability and risk stratification of patients.
Collapse
Affiliation(s)
- Xiaofan Wei
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jie Cheng
- Department of Radiology,Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing 400038, China
| | - Limin Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ruoyu Xu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wei Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
3
|
Lucci C, Rissanen I, Takx RAP, van der Kolk AG, Harteveld AA, Dankbaar JW, Geerlings MI, de Jong PA, Hendrikse J. Imaging of intracranial arterial disease: a comparison between MRI and unenhanced CT. FRONTIERS IN RADIOLOGY 2024; 4:1338418. [PMID: 38426079 PMCID: PMC10902099 DOI: 10.3389/fradi.2024.1338418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Background and purpose Arterial calcifications on unenhanced CT scans and vessel wall lesions on MRI are often used interchangeably to portray intracranial arterial disease. However, the extent of pathology depicted with each technique is unclear. We investigated the presence and distribution of these two imaging findings in patients with a history of cerebrovascular disease. Materials and methods We analyzed CT and MRI data from 78 patients admitted for stroke or TIA at our institution. Vessel wall lesions were assessed on 7 T MRI sequences, while arterial calcifications were assessed on CT scans. The number of vessel wall lesions, severity of intracranial internal carotid artery (iICA) calcifications, and overall presence and distribution of the two imaging findings were visually assessed in the intracranial arteries. Results At least one vessel wall lesion or arterial calcification was assessed in 69 (88%) patients. Only the iICA and vertebral arteries (VA) showed a substantial number of both calcifications and vessel wall lesions. The other vessels showed almost exclusively vessel wall lesions. The number of vessel wall lesions was associated with the severity of iICA calcification (p = 0.013). Conclusions The number of vessel wall lesions increases with the severity of iICA calcifications. Nonetheless, the distribution of vessel wall lesions on MRI and arterial calcifications on CT shows remarkable differences. These findings support the need for a combined approach to examine intracranial arterial disease.
Collapse
Affiliation(s)
- Carlo Lucci
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Ina Rissanen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Richard A. P. Takx
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Anja G. van der Kolk
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Anita A. Harteveld
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jan W. Dankbaar
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Mirjam I. Geerlings
- Department of General Practice, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Aging & Later Life, and Personalized Medicine, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, and Mood, Anxiety, Psychosis, Stress, and Sleep, Amsterdam, Netherlands
| | - Pim A. de Jong
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Lin CJ, Chung CP, Liao NC, Chen PL, Chi NF, Lai YJ, Tang CW, Wu CH, Chang FC, Luo CB, Fay LY, Lin CF, Chou CH, Lee TH, Lee JT, Jeng JS, Lee IH. The 2023 Taiwan Stroke Society Guidelines for the management of patients with intracranial atherosclerotic disease. J Chin Med Assoc 2023; 86:697-714. [PMID: 37341526 DOI: 10.1097/jcma.0000000000000952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Intracranial atherosclerotic disease (ICAD) is a major cause of ischemic stroke, especially in Asian populations, which has a high risk of recurrent stroke and cardiovascular comorbidities. The present guidelines aim to provide updated evidence-based recommendations for diagnosis and management of patients with ICAD. Taiwan Stroke Society guideline consensus group developed recommendations for management of patients with ICAD via consensus meetings based on updated evidences. Each proposed class of recommendation and level of evidence was approved by all members of the group. The guidelines cover six topics, including (1) epidemiology and diagnostic evaluation of ICAD, (2) nonpharmacological management of ICAD, (3) medical therapy for symptomatic ICAD, (4) endovascular thrombectomy and rescue therapy for acute ischemic stroke with underlying ICAD, (5) endovascular interventional therapy for postacute symptomatic intracranial arterial stenosis, and (6) surgical treatment of chronic symptomatic intracranial arterial stenosis. Intensive medical treatment including antiplatelet therapy, risk factor control, and life style modification are essential for patients with ICAD.
Collapse
Affiliation(s)
- Chun-Jen Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Ping Chung
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Nien-Chen Liao
- Department of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Po-Lin Chen
- Department of Neurology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Nai-Fang Chi
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Jun Lai
- Radiology Department, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Chih-Wei Tang
- Neurology Department and Stroke Center, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chao-Bao Luo
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Li-Yu Fay
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chun-Fu Lin
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chung-Hsing Chou
- Neurology Department, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Jiunn-Tay Lee
- Neurology Department, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Jiann-Shing Jeng
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - I-Hui Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Evaluation of High Intracranial Plaque Prevalence in Type 2 Diabetes Using Vessel Wall Imaging on 7 T Magnetic Resonance Imaging. Brain Sci 2023; 13:brainsci13020217. [PMID: 36831760 PMCID: PMC9954742 DOI: 10.3390/brainsci13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND While type 2 diabetes (T2D) is a major risk for ischemic stroke, the associated vessel wall characteristics remain essentially unknown. This study aimed to clarify intracranial vascular changes on three-dimensional vessel wall imaging (3D-VWI) using fast spin echo by employing 7Tesla (7T) magnetic resonance imaging (MRI) in T2D patients without advanced atherosclerosis as compared to healthy controls. METHODS In 48 T2D patients and 35 healthy controls, the prevalence of cerebral small vessel diseases and intracranial plaques were evaluated by 3D-VWI with 7T MRI. RESULTS The prevalence rate of lacunar infarction was significantly higher in T2D than in controls (n = 8 in T2D vs. n = 0 in control, p = 0.011). The mean number of intracranial plaques in both anterior and posterior circulation of each subject was significantly larger in T2D than in controls (2.23 in T2D vs. 0.94 in control, p < 0.01). In T2D patients, gender was associated with the presence of intracranial plaques. CONCLUSION This is the first study to demonstrate the high prevalence of intracranial plaque in T2D patients with neither confirmed atherosclerotic disease nor symptoms by performing intracranial 3D-VWI employing 7TMRI. Investigation of intracranial VWI with 7T MRI is expected to provide novel insights allowing early intensive risk management for prevention of ischemic stroke in T2D patients.
Collapse
|
6
|
Li F, Wang Y, Hu T, Wu Y. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:714. [PMID: 35845481 PMCID: PMC9279807 DOI: 10.21037/atm-22-2364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective Atherosclerosis is a systemic disease that occurs in the arteries, and it is the most important causative factor of ischemic stroke. Vessel wall magnetic resonance imaging (VWMRI) is one of the best non-invasive methods for displaying the vascular features of intracranial atherosclerosis. The main clinical applications of this technique include the exploration of the pathogenesis of intracranial atherosclerotic lesions, follow-up monitoring, and treatment prognosis judgment. As the demand for intracranial VWMRI increases in clinical practice, radiologists should be aware of the selection of imaging parameters and how they affect image quality, clinical indications, evaluation methods, and limitations in interpreting these images. Therefore, this review focused on describing how to perform and interpret VWMRI of intracranial atherosclerotic lesions. Methods We searched the studies on the application of VWMRI in the PubMed database from January 1, 2000 to March 31, 2022, and focused on the analysis of related studies on VWMRI in atherosclerotic lesions, including technical application, expert consensus, imaging characteristics, and the clinical significance of intracranial atherosclerotic lesions. Key Content and Findings We reviewed and summarized recent advances in the clinical application of VWMRI in atherosclerotic diseases. Currently accepted principles and expert consensus recommendations for intracranial VWMRI include high spatial resolution, multiplanar two and three-dimensional imaging, multiple tissue-weighted sequences, and blood and cerebrospinal fluid suppression. Understanding the characteristics of VWMRI of normal intracranial arteries is the basis for interpreting VWMRI of atherosclerotic lesions. Evaluating VWMRI imaging features of intracranial atherosclerotic lesions includes plaque morphological and enhancement characteristics. The evaluation of atherosclerotic plaque stability is the highlight of VWMRI. Conclusions VWMRI has a wide range of clinical applications and can address important clinical questions and provide critical information for treatment decisions. VWMRI plays a key role in the comprehensive evaluation and prevention of intracranial atherosclerosis. However, intracranial VWMRI is still unable to obtain in vivo plaque pathological specimens for imaging—pathological comparison is the most significant limitation of this technique. Further technical improvements are expected to reduce acquisition time and may ultimately contribute to a better understanding of the underlying pathology of lesions on VWMRI.
Collapse
Affiliation(s)
- Fangbing Li
- Department of Radiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yilin Wang
- Department of Radiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianxiang Hu
- Department of Radiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yejun Wu
- Department of Radiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Ghaznawi R, Zwartbol MHT, de Bresser J, Kuijf HJ, Vincken KL, Rissanen I, Geerlings MI, Hendrikse J. Microinfarcts in the Deep Gray Matter on 7T MRI: Risk Factors, MRI Correlates, and Relation to Cognitive Functioning-The SMART-MR Study. AJNR Am J Neuroradiol 2022; 43:829-836. [PMID: 35618425 DOI: 10.3174/ajnr.a7512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The clinical relevance of cortical microinfarcts has recently been established; however, studies on microinfarcts in the deep gray matter are lacking. We examined the risk factors and MR imaging correlates of microinfarcts in the deep gray matter on 7T MR imaging and their relation to cognitive functioning. MATERIALS AND METHODS Within the Second Manifestations of ARTerial disease-Magnetic Resonance (SMART-MR) study, 213 patients (mean age, 68 [SD, 8] years) had a risk-factor assessment, 7T and 1.5T brain MR imaging, and a cognitive examination. Microinfarcts on 7T MR imaging were defined as lesions of <5 mm. Regression models were used to examine the age-adjusted associations among risk factors, MR imaging markers, and microinfarcts. Cognitive function was summarized as composite and domain-specific z scores. RESULTS A total of 47 microinfarcts were found in 28 patients (13%), most commonly in the thalamus. Older age, history of stroke, hypertension, and intima-media thickness were associated with microinfarcts. On 1.5T MR imaging, cerebellar infarcts (relative risk = 2.75; 95% CI, 1.4-5.33) and lacunes in the white (relative risk = 3.28; 95% CI, 3.28-6.04) and deep gray matter (relative risk = 3.06; 95% CI, 1.75-5.35) were associated with microinfarcts, and on 7T MR imaging cortical microinfarcts (relative risk = 2.33; 95% CI, 1.32-4.13). Microinfarcts were also associated with poorer global cognitive functioning (mean difference in the global z score between patients with multiple microinfarcts versus none = -0.97; 95% CI, -1.66 to -0.28, P = .006) and across all cognitive domains. CONCLUSIONS Microinfarcts in the deep gray matter on 7T MR imaging were associated with worse cognitive functioning and risk factors and MR imaging markers of small-vessel and large-vessel disease. Our findings suggest that microinfarcts in the deep gray matter may represent a novel imaging marker of vascular brain injury.
Collapse
Affiliation(s)
- R Ghaznawi
- Form the Department of Radiology (R.G., M.H.T.Z., J.H.), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Julius Center for Health Sciences and Primary Care (R.G., I.R., M.I.G.), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - M H T Zwartbol
- Form the Department of Radiology (R.G., M.H.T.Z., J.H.), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - J de Bresser
- Department of Radiology (J.D.B.), Leiden University Medical Center, Leiden, the Netherlands
| | - H J Kuijf
- Image Sciences Institute (H.J.K, K.L.V), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - K L Vincken
- Image Sciences Institute (H.J.K, K.L.V), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - I Rissanen
- Julius Center for Health Sciences and Primary Care (R.G., I.R., M.I.G.), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - M I Geerlings
- Julius Center for Health Sciences and Primary Care (R.G., I.R., M.I.G.), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | | | | |
Collapse
|
8
|
Wu G, Wang H, Zhao C, Cao C, Chai C, Huang L, Guo Y, Gong Z, Tirschwell D, Zhu C, Xia S. Large Culprit Plaque and More Intracranial Plaques Are Associated with Recurrent Stroke: A Case-Control Study Using Vessel Wall Imaging. AJNR Am J Neuroradiol 2022; 43:207-215. [PMID: 35058299 PMCID: PMC8985671 DOI: 10.3174/ajnr.a7402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Intracranial atherosclerotic plaque features are potential factors associated with recurrent stroke, but previous studies only focused on a single lesion, and few studies investigated them with perfusion impairment. This study aimed to investigate the association among whole-brain plaque features, perfusion deficit, and stroke recurrence. MATERIALS AND METHODS Patients with ischemic stroke due to intracranial atherosclerosis were retrospectively collected and categorized into first-time and recurrent-stroke groups. Patients underwent high-resolution vessel wall imaging and DSC-PWI. Intracranial plaque number, culprit plaque features (such as plaque volume/burden, degree of stenosis, enhancement ratio), and perfusion deficit variables were recorded. Logistic regression analyses were performed to determine the independent factors associated with recurrent stroke. RESULTS One hundred seventy-five patients (mean age, 59 [SD, 12] years; 115 men) were included. Compared with the first-time stroke group (n = 100), the recurrent-stroke group (n = 75) had a larger culprit volume (P = .006) and showed more intracranial plaques (P < .001) and more enhanced plaques (P = .003). After we adjusted for other factors, culprit plaque volume (OR, 1.16 per 10-mm3 increase; 95% CI, 1.03-1.30; P = .015) and total plaque number (OR, 1.31; 95% CI, 1.13-1.52; P < .001) were independently associated with recurrent stroke. Combining these factors increased the area under the curve to 0.71. CONCLUSIONS Large culprit plaque and more intracranial plaques were independently associated with recurrent stroke. Performing whole-brain vessel wall imaging may help identify patients with a higher risk of recurrent stroke.
Collapse
Affiliation(s)
- G. Wu
- From The School of Medicine (G.W., H.W.), Nankai University, Tianjin, China
| | - H. Wang
- From The School of Medicine (G.W., H.W.), Nankai University, Tianjin, China
| | - C. Zhao
- Department of Radiology (C. Zhao), First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - C. Cao
- Department of Radiology (C. Cao), Tianjin Huanhu Hospital, Tianjin, China
| | - C. Chai
- Department of Radiology (C. Chai, L.H., Y.G., S.X.)
| | - L. Huang
- Department of Radiology (C. Chai, L.H., Y.G., S.X.)
| | - Y. Guo
- Department of Radiology (C. Chai, L.H., Y.G., S.X.)
| | - Z. Gong
- Neurology (Z.G.), Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | | | - C. Zhu
- Radiology (C. Zhu), University of Washington, Seattle, Washington
| | - S. Xia
- Department of Radiology (C. Chai, L.H., Y.G., S.X.)
| |
Collapse
|
9
|
Mazzacane F, Mazzoleni V, Scola E, Mancini S, Lombardo I, Busto G, Rognone E, Pichiecchio A, Padovani A, Morotti A, Fainardi E. Vessel Wall Magnetic Resonance Imaging in Cerebrovascular Diseases. Diagnostics (Basel) 2022; 12:diagnostics12020258. [PMID: 35204348 PMCID: PMC8871392 DOI: 10.3390/diagnostics12020258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Cerebrovascular diseases are a leading cause of disability and death worldwide. The definition of stroke etiology is mandatory to predict outcome and guide therapeutic decisions. The diagnosis of pathological processes involving intracranial arteries is especially challenging, and the visualization of intracranial arteries’ vessel walls is not possible with routine imaging techniques. Vessel wall magnetic resonance imaging (VW-MRI) uses high-resolution, multiparametric MRI sequences to directly visualize intracranial arteries walls and their pathological alterations, allowing a better characterization of their pathology. VW-MRI demonstrated a wide range of clinical applications in acute cerebrovascular disease. Above all, it can be of great utility in the differential diagnosis of atherosclerotic and non-atherosclerotic intracranial vasculopathies. Additionally, it can be useful in the risk stratification of intracranial atherosclerotic lesions and to assess the risk of rupture of intracranial aneurysms. Recent advances in MRI technology made it more available, but larger studies are still needed to maximize its use in daily clinical practice.
Collapse
Affiliation(s)
- Federico Mazzacane
- Department of Emergency Neurology and Stroke Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Valentina Mazzoleni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (V.M.); (A.P.)
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Elisa Scola
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (E.S.); (S.M.); (I.L.); (G.B.)
| | - Sara Mancini
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (E.S.); (S.M.); (I.L.); (G.B.)
| | - Ivano Lombardo
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (E.S.); (S.M.); (I.L.); (G.B.)
| | - Giorgio Busto
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (E.S.); (S.M.); (I.L.); (G.B.)
| | - Elisa Rognone
- Department of Neuroradiology, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Department of Neuroradiology, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (V.M.); (A.P.)
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Andrea Morotti
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
- Correspondence:
| |
Collapse
|
10
|
Ultra-high-field MRI studies of brain structure and function in humans and nonhuman primates: A collaborative approach to precision medicine. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Co-existence and interrelationship between intracranial artery stenosis and extracranial carotid atherosclerosis in an asymptomatic rural population of 13 villages in northern China. Clin Neurol Neurosurg 2021; 210:107013. [PMID: 34775363 DOI: 10.1016/j.clineuro.2021.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We investigated the characteristics and relationship of co-existing intracranial artery stenosis (ICAS) and extracranial carotid atherosclerosis in an asymptomatic rural population in northern China. METHODS Asymptomatic residents ≥ 30 years old in 13 villages underwent simultaneous cervical vascular and transcranial Doppler ultrasound. ICAS was defined as ≥ 50% stenosis. Extracranial carotid atherosclerosis severity was classified as increased intimal medial thickness (IMT), plaques, and a plaque with ≥ 50% extracranial artery stenosis (ECAS). Demographic details, medical history, and blood biochemistry results were collected. The relationship between ICAS and extracranial carotid atherosclerosis severity was determined using the chi-square trend test and binary logistic regression analysis. RESULTS A total of 2598 asymptomatic participants were included; 122 (4.7%) had ICAS, 1071 (41.2%) had extracranial carotid atherosclerosis, and 84 (3.2%) had co-existing extracranial carotid atherosclerosis and ICAS. Those with co-existing ICAS and extracranial carotid atherosclerosis were older (P = 0.006) and had a higher hypertension (HTN) and diabetes mellitus (DM) prevalence (P < 0.001). HTN (95% confidence interval [CI]=1.31-3.55, odds ratio [OR]=2.15) and DM (95% CI=1.17-4.30, OR=2.24) were found to be independent risk factors for asymptomatic ICAS with extracranial carotid atherosclerosis. Among those with ICAS, 38/122 had no extracranial carotid atherosclerosis, 8/122 had increased IMT, 64/122 had a plaque, and 12/122 had ECAS. As extracranial carotid atherosclerosis severity increases, ICAS prevalence increases. CONCLUSION Co-existing ICAS and extracranial carotid atherosclerosis occurred in 3.2% of asymptomatic populations in rural areas of northern China. As extracranial carotid atherosclerosis severity increased, ICAS prevalence also increased. HTN and DM might be independent indicators of co-existing ICAS and extracranial carotid atherosclerosis.
Collapse
|
12
|
Zwartbol MH, van der Kolk AG, Kuijf HJ, Witkamp TD, Ghaznawi R, Hendrikse J, Geerlings MI. Intracranial vessel wall lesions on 7T MRI and MRI features of cerebral small vessel disease: The SMART-MR study. J Cereb Blood Flow Metab 2021; 41:1219-1228. [PMID: 33023386 PMCID: PMC8138333 DOI: 10.1177/0271678x20958517] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The etiology of cerebral small vessel disease (CSVD) is the subject of ongoing research. Although intracranial atherosclerosis (ICAS) has been proposed as a possible cause, studies on their relationship remain sparse. We used 7 T vessel wall magnetic resonance imaging (MRI) to study the association between intracranial vessel wall lesions-a neuroimaging marker of ICAS-and MRI features of CSVD. Within the SMART-MR study, cross-sectional analyses were performed in 130 patients (68 ± 9 years; 88% male). ICAS burden-defined as the number of vessel wall lesions-was determined on 7 T vessel wall MRI. CSVD features were determined on 1.5 T and 7 T MRI. Associations between ICAS burden and CSVD features were estimated with linear or modified Poisson regression, adjusted for age, sex, vascular risk factors, and medication use. In 125 patients, ≥1 vessel wall lesions were found (mean 8.5 ± 5.7 lesions). ICAS burden (per + 1 SD) was associated with presence of large subcortical and/or cortical infarcts (RR = 1.65; 95%CI: 1.12-2.43), lacunes (RR = 1.45; 95% CI: 1.14-1.86), cortical microinfarcts (RR = 1.48; 95%CI: 1.13-1.94), and total white matter hyperintensity volume (b = 0.24; 95%CI: 0.02-0.46). Concluding, patients with a higher ICAS burden had more CSVD features, although no evidence of co-location was observed. Further longitudinal studies are required to determine if ICAS precedes development of CSVD.
Collapse
Affiliation(s)
- Maarten Ht Zwartbol
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Anja G van der Kolk
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Theo D Witkamp
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rashid Ghaznawi
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
13
|
Henningsson M, Malik S, Botnar R, Castellanos D, Hussain T, Leiner T. Black-Blood Contrast in Cardiovascular MRI. J Magn Reson Imaging 2020; 55:61-80. [PMID: 33078512 PMCID: PMC9292502 DOI: 10.1002/jmri.27399] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
MRI is a versatile technique that offers many different options for tissue contrast, including suppressing the blood signal, so‐called black‐blood contrast. This contrast mechanism is extremely useful to visualize the vessel wall with high conspicuity or for characterization of tissue adjacent to the blood pool. In this review we cover the physics of black‐blood contrast and different techniques to achieve blood suppression, from methods intrinsic to the imaging readout to magnetization preparation pulses that can be combined with arbitrary readouts, including flow‐dependent and flow‐independent techniques. We emphasize the technical challenges of black‐blood contrast that can depend on flow and motion conditions, additional contrast weighting mechanisms (T1, T2, etc.), magnetic properties of the tissue, and spatial coverage. Finally, we describe specific implementations of black‐blood contrast for different vascular beds.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel Castellanos
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tarique Hussain
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Division of Pediatric Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
14
|
Zwartbol MHT, van der Kolk AG, Ghaznawi R, van der Graaf Y, Hendrikse J, Geerlings MI. Intracranial atherosclerosis on 7T MRI and cognitive functioning: The SMART-MR study. Neurology 2020; 95:e1351-e1361. [PMID: 32631923 DOI: 10.1212/wnl.0000000000010199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/11/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the association between intracranial atherosclerosis (ICAS) and cognitive functioning in patients with a history of vascular disease. METHODS Within the Second Manifestations of Arterial Disease-Magnetic Resonance (SMART-MR) study, cross-sectional analyses were performed in 130 patients (mean ± SD age 68 ± 9 years) with 7T vessel wall MRI data. Vessel wall lesions were rated according to established criteria and summed into a circulatory and artery-specific ICAS burden. Associations between ICAS burden and Z scores of memory, executive functioning, working memory, and processing speed were estimated using linear regression analyses adjusted for age, sex, education, reading ability, and vascular risk factors. RESULTS A total of 125 patients (96%) had ≥1 vessel wall lesion; the mean ICAS burden was 8.5 ± 5.7. A statistically nonsignificant association was found between total ICAS burden and memory (b = -0.03 per +1 lesion; 95% confidence interval [CI] -0.05 to 0.00). No associations were found for the other domains. A statistically significant association was found for ICAS burden of the posterior cerebral artery (PCA) and memory (b = -0.12 per +1 lesion; 95% CI -0.23 to -0.01) and executive functioning (b = -0.10 per +1 lesion; 95% CI -0.19 to -0.01). Statistically nonsignificant associations were found for the anterior cerebral artery (ACA) burden and memory (b = -0.13 per +1 lesion; 95% CI -0.26 to 0.01) and executive functioning (b = -0.11 per +1 lesion; 95% CI -0.22 to 0.01). Additional adjustments for large infarcts, white matter hyperintensities, lacunes, and ≥50% carotid stenosis produced similar results. CONCLUSIONS Our results suggest an artery-specific vulnerability of memory and executive functioning to ICAS, possibly due to strategic brain regions involved with these cognitive domains, which are located in the arterial territory of the PCA and ACA.
Collapse
Affiliation(s)
- Maarten H T Zwartbol
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Anja G van der Kolk
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Rashid Ghaznawi
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Yolanda van der Graaf
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Jeroen Hendrikse
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Mirjam I Geerlings
- From the Department of Radiology (M.H.T.Z., A.G.v.d.K., R.G., J.H.) and Julius Center for Health Sciences and Primary Care (R.G., Y.v.d.G., M.I.G.), University Medical Center Utrecht and Utrecht University, the Netherlands.
| | | |
Collapse
|
15
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Rutland JW, Delman BN, Gill CM, Zhu C, Shrivastava RK, Balchandani P. Emerging Use of Ultra-High-Field 7T MRI in the Study of Intracranial Vascularity: State of the Field and Future Directions. AJNR Am J Neuroradiol 2020; 41:2-9. [PMID: 31879330 DOI: 10.3174/ajnr.a6344] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Cerebrovascular disease is a major source of mortality that commonly requires neurosurgical intervention. MR imaging is the preferred technique for imaging cerebrovascular structures, as well as regions of pathology that include microbleeds and ischemia. Advanced MR imaging sequences such as time-of-flight, susceptibility-weighted imaging, and 3D T2-weighted sequences have demonstrated excellent depiction of arterial and venous structures with and without contrast administration. While the advantages of 3T compared with 1.5T have been described, the role of ultra-high-field (7T) MR imaging in neurovascular imaging remains poorly understood. In the present review, we examine emerging neurosurgical applications of 7T MR imaging in vascular imaging of diverse conditions and discuss current limitations and future directions for this technique.
Collapse
Affiliation(s)
- J W Rutland
- From the Translational and Molecular Imaging Institute (J.W.R., B.N.D., P.B.)
- Departments of Neurosurgery (J.W.R., C.M.G., R.K.S.)
| | - B N Delman
- From the Translational and Molecular Imaging Institute (J.W.R., B.N.D., P.B.)
- Diagnostic, Molecular, and Interventional Radiology (B.N.D.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - C M Gill
- Departments of Neurosurgery (J.W.R., C.M.G., R.K.S.)
| | - C Zhu
- Department of Radiology and Biomedical Imaging (C.Z.), University of California San Francisco, San Francisco, California
| | | | - P Balchandani
- From the Translational and Molecular Imaging Institute (J.W.R., B.N.D., P.B.)
| |
Collapse
|
17
|
Zwartbol MHT, Geerlings MI, Ghaznawi R, Hendrikse J, van der Kolk AG. Intracranial Atherosclerotic Burden on 7T MRI Is Associated with Markers of Extracranial Atherosclerosis: The SMART-MR Study. AJNR Am J Neuroradiol 2019; 40:2016-2022. [PMID: 31806592 DOI: 10.3174/ajnr.a6308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/24/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Intracranial atherosclerosis, a major risk factor for ischemic stroke, is thought to have different atherogenic mechanisms than extracranial atherosclerosis. Studies investigating their relationship in vivo are sparse and report inconsistent results. We studied the relationship between intracranial atherosclerosis and extracranial atherosclerosis in a cohort of patients with a history of vascular disease. MATERIALS AND METHODS Within the Second Manifestations of ARTerial disease-Magnetic Resonance (SMART) study, cross-sectional analyses were performed in 130 patients (mean age, 68 ± 9 years) with a history of vascular disease and with assessable 7T intracranial vessel wall MR imaging data. Intracranial atherosclerosis burden was defined as the number of intracranial vessel wall lesions in the circle of Willis and its major branches. Age- and sex-adjusted unstandardized regression coefficients (b-value) were calculated with intracranial atherosclerosis burden as the dependent variable and extracranial atherosclerosis markers as independent variables. RESULTS Ninety-six percent of patients had ≥1 vessel wall lesion, with a mean intracranial atherosclerosis burden of 8.5 ± 5.7 lesions. Significant associations were observed between higher intracranial atherosclerosis burden and carotid intima-media thickness (b = 0.53 lesions per +0.1 mm; 95% CI, 0.1-1.0 lesions), 50%-100% carotid stenosis versus no stenosis (b = 6.6 lesions; 95% CI, 2.3-10.9 lesions), ankle-brachial index ≤ 0.9 versus >0.9 (b = 4.9 lesions; 95% CI, 1.7-8.0 lesions), and estimated glomerular filtration rate (b = -0.77 lesions per +10 mL/min; 95% CI, -1.50 to -0.03 lesions). No significant differences in intracranial atherosclerosis burden were found among different categories of vascular disease. CONCLUSIONS Intracranial atherosclerosis was associated with various extracranial markers of atherosclerosis, not supporting a different etiology.
Collapse
Affiliation(s)
- M H T Zwartbol
- From the Department of Radiology (M.H.T.Z., R.G., J.H., A.G.v.d.K.)
| | - M I Geerlings
- Julius Center for Health Sciences and Primary Care (M.I.G., R.G.), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - R Ghaznawi
- From the Department of Radiology (M.H.T.Z., R.G., J.H., A.G.v.d.K.)
- Julius Center for Health Sciences and Primary Care (M.I.G., R.G.), University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - J Hendrikse
- From the Department of Radiology (M.H.T.Z., R.G., J.H., A.G.v.d.K.)
| | - A G van der Kolk
- From the Department of Radiology (M.H.T.Z., R.G., J.H., A.G.v.d.K.)
| |
Collapse
|