1
|
Qi C, Wang Y, Li X, Zheng C, Gu Y, Hu J, Qiu Y, Xie G, Xu S, Zheng Y, Lv Z, Zheng W. Target inhibition of SPAK in choroid plexus attenuates T cell infiltration and demyelination in experimental autoimmune encephalomyelitis. J Neuroinflammation 2025; 22:80. [PMID: 40082912 PMCID: PMC11907836 DOI: 10.1186/s12974-025-03407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Disease-modifying therapies (DMTs) that prevent immune cell infiltration into the brain have demonstrated efficacy in multiple sclerosis (MS) treatment. However, their unpredictable adverse effects necessitate the development of safer therapeutic alternatives. The choroid plexus (ChP) functions as a crucial barrier against immune cell invasion, and previous studies have shown that preventing immune cell infiltration across the ChP reduces brain lesion in MS animal models. Understanding ChP barrier regulation is therefore essential for identifying novel therapeutic targets for MS. Here, we explored the role of Ste20-related proline/alanine-rich kinase (SPAK) in experimental autoimmune encephalomyelitis (EAE). METHODS We examined the expression patterns of SPAK signaling in ChP using immunofluorescence in the EAE model. To investigate the roles of SPAK, matrix metalloproteinase (MMP) 2 and MMP9 in EAE pathology, we performed ChP-specific gene manipulation via intracerebroventricular (ICV) injection of recombinant adeno-associated virus 2/5 (rAAV2/5). T cell infiltration into the central nervous system (CNS) was analyzed using CD4 immunostaining and flow cytometry. We employed cell immunofluorescence, transwell assays, and rescue experiments in vitro to study SPAK's effects on ChP epithelial barrier integrity. We also evaluated the protective effects of SPAK-Na-K-2Cl cotransporter-1 (NKCC1) inhibitors (ZT-1a and bumetanide) on immune invasion and demyelination during EAE using pharmacological approaches. RESULTS Following EAE induction, we observed progressive increases in both total and phosphorylated SPAK levels in ChP epithelium. Notably, ChP-specific SPAK knockdown significantly reduced T cell invasion and ameliorated EAE pathology, while SPAK overexpression exacerbated these effects. Bulk RNA sequencing and subsequent qPCR validation revealed that SPAK knockdown decreased the expression of MMP2 and MMP9, MMPs that compromise barrier integrity by degrading tight junction proteins. In vitro studies demonstrated that SPAK overexpression impaired ChP barrier function through the activator protein-1 (AP-1)-MMP2/9-zonula occludens-1 (ZO-1) axis. Furthermore, ChP-specific knockdown of either MMP2 or MMP9 protected against EAE pathology. Additionally, we identified SPAK-NKCC1 antagonists (bumetanide and ZT-1a) as promising therapeutic candidates for MS/EAE treatment. CONCLUSIONS Our findings demonstrate that targeting ChP-SPAK signaling represents a novel therapeutic strategy for MS treatment.
Collapse
Affiliation(s)
- Chenxing Qi
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Yeping Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xuhang Li
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Cheng Zheng
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Yi Gu
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Junxiao Hu
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Yiming Qiu
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Shujun Xu
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yuyin Zheng
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Zhongyue Lv
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Wu Zheng
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
2
|
Hu J, Huynh DT, Dunn DE, Wu J, Manriquez-Rodriguez C, Zhang QE, Hirschkorn GA, Georgiou GR, Hirata T, Myers SA, Floyd SR, Chi JT, Boyce M. Evidence for Functional Regulation of the KLHL3/WNK Pathway by O-GlcNAcylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640596. [PMID: 40060460 PMCID: PMC11888436 DOI: 10.1101/2025.02.27.640596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The 42-member Kelch-like (KLHL) protein family are adaptors for ubiquitin E3 ligase complexes, governing the stability of a wide range of substrates. KLHL proteins are critical for maintaining proteostasis in a variety of tissues and are mutated in human diseases, including cancer, neurodegeneration, and familial hyperkalemic hypertension. However, the regulation of KLHL proteins remains incompletely understood. Previously, we reported that two KLHL family members, KEAP1 and gigaxonin, are regulated by O-linked β-N-acetylglucosamine (O-GlcNAc), an intracellular form of glycosylation. Interestingly, some ubiquitination targets of KEAP1 and gigaxonin are themselves also O-GlcNAcylated, suggesting that multi-level control by this posttranslational modification may influence many KLHL pathways. To test this hypothesis, we examined KLHL3, which ubiquitinates with-no-lysine (WNK) kinases to modulate downstream ion channel activity. Our biochemical and glycoproteomic data demonstrate that human KLHL3 and all four WNK kinases (WNK1-4) are O-GlcNAcylated. Moreover, our results suggest that O-GlcNAcylation affects WNK4 function in both osmolarity control and ferroptosis, with potential implications ranging from blood pressure regulation to neuronal health and survival. This work demonstrates the functional regulation of the KLHL3/WNK axis by O-GlcNAcylation and supports a broader model of O-GlcNAc serving as a general regulator of KLHL signaling and proteostasis.
Collapse
Affiliation(s)
- Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Duc T. Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Denise E. Dunn
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cindy Manriquez-Rodriguez
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Qianyi E. Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - George R. Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tetsuya Hirata
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Samuel A. Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Masenga SK, Wandira N, Cattivelli-Murdoch G, Saleem M, Beasley H, Hinton A, Ertuglu LA, Mwesigwa N, Kleyman TR, Kirabo A. Salt sensitivity of blood pressure: mechanisms and sex-specific differences. Nat Rev Cardiol 2025:10.1038/s41569-025-01135-0. [PMID: 39984695 DOI: 10.1038/s41569-025-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease in individuals with or without hypertension. However, the mechanisms and management of SSBP remain unclear, mainly because the diagnosis of this condition relies on salt loading-depletion protocols that are not feasible in the clinic. The prevalence of hypertension is lower in premenopausal women than in men, but this sex-specific difference is reversed after menopause. Whether excessive SSBP in women at any age contributes to this reversal is unknown, but many clinical studies that have rigorously assessed for SSBP using salt loading-depletion protocols have confirmed that SSBP is more prevalent in women than in men, including during premenopausal age. In this Review, we discuss sex-specific mechanisms of SSBP. We describe sex-related differences in renal transporters, hypertensive pregnancy, SSBP in autoimmune disorders and mitogen-activated protein kinase signalling pathways, and highlight limitations and lessons learned from Dahl salt-sensitive rat models.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND research Group, Department of Pathology and Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia.
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Nelson Wandira
- Vanderbilt Mater of Public Health Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lale A Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, Department of Cell Biology, and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annet Kirabo
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Xie J, Yang Q, Zeng X, Zeng Q, Xiao H. Dihydromyricetin inhibits injury caused by ischemic stroke through the lncRNA SNHG17/miR-452-3p/CXCR4 axis. PeerJ 2025; 13:e18876. [PMID: 39897488 PMCID: PMC11786715 DOI: 10.7717/peerj.18876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Ischemic stroke (IS) is an important cause of death worldwide. Dihydromyricetin (DHM) has been reported to have neuroprotective potential, but its role and mechanism in IS have not been fully elucidated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to determine the safe dose of DHM in BV2 microglia and its applicability in OGD/R-treated cells. The mechanism of action of DHM was explored by RT-qPCR, ELISA, luciferase reporter gene assay and western blotting. DHM dose-dependently enhanced BV2 cell viability post-OGD/R and attenuated inflammation and oxidative stress. The protective effects of DHM were found to be mediated through the downregulation of SNHG17, which in turn modulated miR-452-3p expression. miR-452-3p was identified as a negative regulator of pro-inflammatory CXCR4, a direct target whose expression was inversely affected by SNHG17. The interaction between SNHG17 and miR-452-3p was further confirmed by RNA pull-down assays. Furthermore, manipulation of the SNHG17/miR-452-3p/CXCR4 axis was shown to modulate the NF-κB signaling pathway as evidenced by changes in phosphorylation levels. In conclusion, our findings elucidate a novel DHM-mediated neuroprotective mechanism in microglial cells involving the SNHG17/miR-452-3p/CXCR4 regulatory axis. This axis attenuates OGD/R-induced inflammatory and oxidative stress, suggesting a therapeutic potential for DHM in conditions characterized by such pathological processes.
Collapse
Affiliation(s)
- Jiacheng Xie
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuyue Yang
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xueliang Zeng
- Department of Pharmacology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qi Zeng
- Department of Ultrasound, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hai Xiao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Hochstetler A, Courtney Y, Oloko P, Baskin B, Ding-Su A, Stinson T, McGuone D, Haynes R, Lehtinen MK, Costine-Bartell B. Acute temporal, regional, and cell-type specific NKCC1 disruption following severe TBI in the developing gyrencephalic brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633889. [PMID: 39896526 PMCID: PMC11785025 DOI: 10.1101/2025.01.20.633889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Traumatic brain injury (TBI) in children is a leading cause of morbidity and mortality, with no effective treatment and limited clinical management. We developed a multifactorial traumatic brain injury model in piglets which mirrors the evolving pathophysiology of severe pediatric TBI, showing age-dependent hypoxic-ischemic cerebral cortical injury and matrix metalloproteinase-driven vasogenic edema, with infant piglets experiencing less tissue damage than toddler piglets. Extracellular matrix breakdown can precipitate neuronal dysfunction, disrupting chloride homeostasis and the reversal potential for GABA. We hypothesized that ongoing tissue damage might be related to markers of "immature GABA", evaluated by changes to the expression and phosphorylation of sodium-potassium-2-chloride cotransporter 1 (NKCC1), potassium-chloride cotransporter 2 (KCC2), and a regulatory kinase, (STE20/SPS1-related proline-alanine-rich protein kinase) SPAK. We mapped these markers in developing swine and infant human brain, identifying a postnatal pNKCC1 decrease in human infant hippocampus, and a perinatal cortical and hippocampal GABA switch in pigs, with no change in the thalamus. In infant piglets with severe TBI, upregulation of neuronal pNKCC1 correlated with hypoxic-ischemic injury and seizure duration. We also observed dysregulation of NKCC1, KCC2, and SPAK in cortex and hippocampus in infant and toddler piglets with severe TBI, with thalamus unchanged. We noted ectopic, non-apical localization of pNKCC1 signal in choroid plexus epithelium across ages in piglets and humans with severe TBI, indicating acute dysregulation of the CSF chloride milieu. These findings position swine as a useful model for pediatric TBI research and suggest that SPAK or NKCC1 inhibition in infants may be therapeutic. Significance statement Severe TBI in early childhood, the majority of which is due to abuse, remains an understudied area of neurotrauma. Our piglet model effectively replicates the pathophysiology of severe pediatric TBI, capturing age-dependent injury patterns and mechanisms of spreading hypoxic-ischemic injury throughout the cortical ribbon. We identified upregulation of neuronal-pNKCC1 in infant piglets, but not toddler piglets with severe TBI, and found this correlates with injury severity, seizure duration, and subarachnoid hemorrhage. Our findings indicate that treatments targeted to inhibit neuronal NKCC1 might alleviate evolving brain injury in infants with severe TBI. This model provides a valuable platform for studying mechanisms of TBI and testing new interventions, potentially advancing therapeutic strategies for pediatric brain injury where stopping traumatic seizures is difficult.
Collapse
|
6
|
Shen L, Li F, Xia K, Zhan L, Zhang D, Yan Z. Nuclear receptor subfamily 4 group a member 1 eases angiotensin II-arose oxidative stress in vascular smooth muscle cell by boosting nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 3 transcription. Cytojournal 2024; 21:43. [PMID: 39737121 PMCID: PMC11683370 DOI: 10.25259/cytojournal_86_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension. Material and Methods First, models of VSMC with Nur77, nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 3 (NLRC3) and tumor necrosis factor receptor-associated factor 6 (TRAF6) knockdown or overexpression were constructed using Short Hairpin RNA (Nur77) or pcDNA3.1 vector, respectively. Next, the putative-binding motifs between Nur77 and NLRC3 promoters were detected by dual luciferase assay. We conducted reverse transcription quantitative polymerase chain reaction (qPCR) and Western blot (WB) analysis to detect Nur77, NLRC3, and TRAF6 levels in VSMCs. Then, cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, wound-healing assay, enzyme-linked immunosorbent assay, and 2',7'-dichlorofluorescin diacetate were employed to examine the impact of the knockdown or overexpression of Nur77, NLRC3, and TRAF6 on VSMCs treated with Ang II. The assays measured cell viability and proliferation, cell migration, malondialdehyde levels, and reactive oxygen species levels. Results The overexpression of Nur77 repressed cell growth (P < 0.001), migration (P < 0.01), and oxidative stress (P < 0.01) induced by Ang II in VSMCs. Nur77 transcriptionally promoted the expression of NLRC3 (P < 0.001), and the upregulation of NLRC3 suppressed cell proliferation (P < 0.05) and oxidative stress (P < 0.001) mediated by Ang II. Furthermore, NLRC3 negatively regulated the TRAF6/nuclear factor-kappa B (NF-κB) axis activated by Ang II, which resulted in the repression of hyperproliferation of VSMCs (P < 0.01) and oxidative stress (P < 0.001). Conclusion Nur77 suppressed growth and oxidative stress induced by Ang II in VSMCs by promoting NLRC3 transcription, which, further, repressed the TRAF6/NF-κB axis. This understanding provides novel insights into the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Li Shen
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Cardiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Ke Xia
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingli Zhan
- Department of Cardiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Dan Zhang
- Department of Cardiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Zhiqiang Yan
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Central Laboratory, Fengxian District Central Hospital, Southern Medical University, Shanghai, China
| |
Collapse
|
7
|
Mi Z, Povysheva N, Rose ME, Ma J, Zeh DJ, Harikumar N, Bhuiyan MIH, Graham SH. Abolishing UCHL1's hydrolase activity exacerbates ischemia-induced axonal injury and functional deficits in mice. J Cereb Blood Flow Metab 2024; 44:1349-1361. [PMID: 38833565 PMCID: PMC11542126 DOI: 10.1177/0271678x241258809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 06/06/2024]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) is a neuronal protein important in maintaining axonal integrity and motor function and may be important in the pathogenesis of many neurological disorders. UCHL1 may ameliorate acute injury and improve recovery after cerebral ischemia. In the current study, the hypothesis that UCHL1's hydrolase activity underlies its effect in maintaining axonal integrity and function is tested after ischemic injury. Hydrolase activity was inhibited by treatment with a UCHL1 hydrolase inhibitor or by employing knockin mice bearing a mutation in the hydrolase active site (C90A). Ischemic injury was induced by oxygen-glucose deprivation (OGD) in brain slice preparations and by transient middle cerebral artery occlusion (tMCAO) surgery in mice. Hydrolase activity inhibition increased restoration time and decreased the amplitude of evoked axonal responses in the corpus callosum after OGD. Mutation of the hydrolase active site exacerbated white matter injury as detected by SMI32 immunohistochemistry, and motor deficits as detected by beam balance and cylinder testing after tMCAO. These results demonstrate that UCHL1 hydrolase activity ameliorates white matter injury and functional deficits after acute ischemic injury and support the hypothesis that UCHL1 activity plays a significant role in preserving white matter integrity and recovery of function after cerebral ischemia.
Collapse
Affiliation(s)
- Zhiping Mi
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marie E Rose
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Ma
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dennis J Zeh
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikitha Harikumar
- Department of Neuroscience, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad Iqbal H Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA
| | - Steven H Graham
- Department of Neurology, School of Medicine, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Lin L, Chen Y, He K, Metwally S, Jha R, Capuk O, Bhuiyan MIH, Singh G, Cao G, Yin Y, Sun D. Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation. J Neuroinflammation 2024; 21:220. [PMID: 39256783 PMCID: PMC11385148 DOI: 10.1186/s12974-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) helps maintain the homeostasis of the brain by forming the blood-CSF barrier via tight junctions (TJ) at the choroid plexus epithelial cells, and subsequently preventing neuroinflammation by restricting immune cells infiltration into the central nervous system. However, whether chronic cerebral hypoperfusion causes ChP structural damage and blood-CSF barrier impairment remains understudied. METHODS The bilateral carotid stenosis (BCAS) model in adult male C57BL/6 J mice was used to induce cerebral hypoperfusion, a model for vascular contributions to cognitive impairment and dementia (VCID). BCAS-mediated changes of the blood-CSF barrier TJ proteins, apical secretory Na+-K+-Cl- cotransporter isoform 1 (NKCC1) protein and regulatory serine-threonine kinases SPAK, and brain infiltration of myeloid-derived immune cells were assessed. RESULTS BCAS triggered dynamic changes of TJ proteins (claudin 1, claudin 5) accompanied with stimulation of SPAK-NKCC1 complex and NF-κB in the ChP epithelial cells. These changes impacted the integrity of the blood-CSF barrier, as evidenced by ChP infiltration of macrophages/microglia, neutrophils and T cells. Importantly, pharmacological blockade of SPAK with its potent inhibitor ZT1a in BCAS mice attenuated brain immune cell infiltration and improved cognitive neurological function. CONCLUSIONS BCAS causes chronic ChP blood-CSF damage and immune cell infiltration. Our study sheds light on the SPAK-NKCC1 complex as a therapeutic target in neuroinflammation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai He
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gazal Singh
- Biomedical Masters Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Boyd-Shiwarski CR, Shiwarski DJ, Subramanya AR. A New Phase for WNK Kinase Signaling Complexes as Biomolecular Condensates. Physiology (Bethesda) 2024; 39:0. [PMID: 38624245 PMCID: PMC11460533 DOI: 10.1152/physiol.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The purpose of this review is to highlight transformative advances that have been made in the field of biomolecular condensates, with special emphasis on condensate material properties, physiology, and kinases, using the With-No-Lysine (WNK) kinases as a prototypical example. To convey how WNK kinases illustrate important concepts for biomolecular condensates, we start with a brief history, focus on defining features of biomolecular condensates, and delve into some examples of how condensates are implicated in cellular physiology (and pathophysiology). We then highlight how WNK kinases, through the action of "WNK droplets" that ubiquitously regulate intracellular volume and kidney-specific "WNK bodies" that are implicated in distal tubule salt reabsorption and potassium homeostasis, exemplify many of the defining features of condensates. Finally, this review addresses the controversies within this emerging field and questions to address.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Daniel J Shiwarski
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Nascimento AA, Pereira-Figueiredo D, Borges-Martins VP, Kubrusly RC, Calaza KC. GABAergic system and chloride cotransporters as potential therapeutic targets to mitigate cell death in ischemia. J Neurosci Res 2024; 102:e25355. [PMID: 38808645 DOI: 10.1002/jnr.25355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Gamma aminobutyric acid (GABA) is a critical inhibitory neurotransmitter in the central nervous system that plays a vital role in modulating neuronal excitability. Dysregulation of GABAergic signaling, particularly involving the cotransporters NKCC1 and KCC2, has been implicated in various pathologies, including epilepsy, schizophrenia, autism spectrum disorder, Down syndrome, and ischemia. NKCC1 facilitates chloride influx, whereas KCC2 mediates chloride efflux via potassium gradient. Altered expression and function of these cotransporters have been associated with excitotoxicity, inflammation, and cellular death in ischemic events characterized by reduced cerebral blood flow, leading to compromised tissue metabolism and subsequent cell death. NKCC1 inhibition has emerged as a potential therapeutic approach to attenuate intracellular chloride accumulation and mitigate neuronal damage during ischemic events. Similarly, targeting KCC2, which regulates chloride efflux, holds promise for improving outcomes and reducing neuronal damage under ischemic conditions. This review emphasizes the critical roles of GABA, NKCC1, and KCC2 in ischemic pathologies and their potential as therapeutic targets. Inhibiting or modulating the activity of these cotransporters represents a promising strategy for reducing neuronal damage, preventing excitotoxicity, and improving neurological outcomes following ischemic events. Furthermore, exploring the interactions between natural compounds and NKCC1/KCC2 provides additional avenues for potential therapeutic interventions for ischemic injury.
Collapse
Affiliation(s)
- A A Nascimento
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Graduate Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - D Pereira-Figueiredo
- Graduate Program in Biomedical Sciences (Physiology and Pharmacology), Fluminense Federal University, Niterói, Brazil
| | - V P Borges-Martins
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - R C Kubrusly
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - K C Calaza
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Graduate Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
- Graduate Program in Biomedical Sciences (Physiology and Pharmacology), Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
11
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
12
|
Bhuiyan MIH, Habib K, Sultan MT, Chen F, Jahan I, Weng Z, Rahman MS, Islam R, Foley LM, Hitchens TK, Deng X, Canna SW, Sun D, Cao G. SPAK inhibitor ZT-1a attenuates reactive astrogliosis and oligodendrocyte degeneration in a mouse model of vascular dementia. CNS Neurosci Ther 2024; 30:e14654. [PMID: 38433018 PMCID: PMC10909630 DOI: 10.1111/cns.14654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Astrogliosis and white matter lesions (WML) are key characteristics of vascular contributions to cognitive impairment and dementia (VCID). However, the molecular mechanisms underlying VCID remain poorly understood. Stimulation of Na-K-Cl cotransport 1 (NKCC1) and its upstream kinases WNK (with no lysine) and SPAK (the STE20/SPS1-related proline/alanine-rich kinase) play a role in astrocytic intracellular Na+ overload, hypertrophy, and swelling. Therefore, in this study, we assessed the effect of SPAK inhibitor ZT-1a on pathogenesis and cognitive function in a mouse model of VCID induced by bilateral carotid artery stenosis (BCAS). METHODS Following sham or BCAS surgery, mice were randomly assigned to receive either vehicle (DMSO) or SPAK inhibitor ZT-1a treatment regimen (days 14-35 post-surgery). Mice were then evaluated for cognitive functions by Morris water maze, WML by ex vivo MRI-DTI analysis, and astrogliosis/demyelination by immunofluorescence and immunoblotting. RESULTS Compared to sham control mice, BCAS-Veh mice exhibited chronic cerebral hypoperfusion and memory impairments, accompanied by significant MRI DTI-detected WML and oligodendrocyte (OL) death. Increased activation of WNK-SPAK-NKCC1-signaling proteins was detected in white matter tissues and in C3d+ GFAP+ cytotoxic astrocytes but not in S100A10+ GFAP+ homeostatic astrocytes in BCAS-Veh mice. In contrast, ZT-1a-treated BCAS mice displayed reduced expression and phosphorylation of NKCC1, decreased astrogliosis, OL death, and WML, along with improved memory functions. CONCLUSION BCAS-induced upregulation of WNK-SPAK-NKCC1 signaling contributes to white matter-reactive astrogliosis, OL death, and memory impairment. Pharmacological inhibition of the SPAK activity has therapeutic potential for alleviating pathogenesis and memory impairment in VCID.
Collapse
Affiliation(s)
- Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute for Neurodegenerative DisordersUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| | - Khadija Habib
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Md Tipu Sultan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Fenghua Chen
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Israt Jahan
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Zhongfang Weng
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | | | - Lesley M. Foley
- Animal Imaging CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - T. Kevin Hitchens
- Animal Imaging CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenFujianChina
| | - Scott W. Canna
- Department of Pediatric RheumatologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Dandan Sun
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute for Neurodegenerative DisordersUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| | - Guodong Cao
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Health Care System Pittsburgh Healthcare SystemGeriatric Research Education and Clinical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Xie C, Gao X, Liu G, Tang H, Li C. USP10 is a potential mediator for vagus nerve stimulation to alleviate neuroinflammation in ischaemic stroke by inhibiting NF-κB signalling pathway. Front Immunol 2023; 14:1130697. [PMID: 37153558 PMCID: PMC10157167 DOI: 10.3389/fimmu.2023.1130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Vagus nerve stimulation (VNS) has a protective effect on neurological recovery in ischaemic stroke. However, its underlying mechanism remains to be clarified. Ubiquitin-specific protease 10 (USP10), a member of the ubiquitin-specific protease family, has been shown to inhibit the activation of the NF-κB signalling pathway. Therefore, this study investigated whether USP10 plays a key role in the protective effect of VNS against ischemic stroke and explore its mechanism. Methods Ischaemic stroke model was constructed by transient middle cerebral artery occlusion (tMCAO) in mice. VNS was performed at 30 min, 24hr, and 48hr after the establishment of tMCAO model. USP10 expression induced by VNS after tMCAO was measured. LV-shUSP10 was used to establish the model with low expression of USP10 by stereotaxic injection technique. The effects of VNS with or without USP10 silencing on neurological deficits, cerebral infarct volume, NF-κB pathway activation, glial cell activation, and release of pro-inflammation cytokines were assessed. Results VNS enhanced the expression of USP10 following tMCAO. VNS ameliorated neurological deficits and reduced cerebral infarct volume, but this effect was inhibited by silencing of USP10. Activation of the NF-κB pathway and the expression of inflammatory cytokines induced by tMCAO were suppressed by VNS. Moreover, VNS promoted the pro-to-anti-inflammatory response of microglia and inhibited activation of astrocytes, while silencing of USP10 prevented the neuroprotective and anti-neuroinflammatory effects of VNS. Conclusion USP10 is a potential mediator for VNS to alleviate neurological deficits, neuroinflammation, and glial cell activation in ischaemic stroke by inhibiting NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chenchen Xie
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Geriatrics, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Changqing Li,
| |
Collapse
|
14
|
Bhuiyan MIH, Fischer S, Patel SM, Oft H, Zhang T, Foley LM, Zhang J, Hitchens TK, Molyneaux BJ, Deng X, Sun D. Efficacy of novel SPAK inhibitor ZT-1a derivatives (1c, 1d, 1g & 1h) on improving post-stroke neurological outcome and brain lesion in mice. Neurochem Int 2023; 162:105441. [PMID: 36375633 PMCID: PMC9839627 DOI: 10.1016/j.neuint.2022.105441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
SPAK inhibitor ZT-1a was previously shown to be neuroprotective in murine ischemic stroke models. In this study, we further examined the efficacy of four ZT-1a derivatives (ZT-1c, -1d, -1g and -1h) on reducing stroke-induced sensorimotor function impairment and brain lesions. Vehicle control (Veh) or ZT-1 derivatives were administered via osmotic pump to adult C57BL/6J mice during 3-21 h post-stroke. Neurological behavior of these mice was assessed at days 1, 3, 5, and 7 post-stroke and MRI T2WI and DTI analysis was subsequently conducted in ex vivo brains. Veh-treated stroke mice displayed sensorimotor function deficits compared to Sham mice. In contrast, mice receiving ZT-1a derivatives displayed significantly lower neurological deficits at days 3-7 post-stroke (p < 0.05), with ZT-1a, ZT-1c and ZT-1d showing greater impact than ZT-1h and ZT-1g. ZT-1a treatment was the most effective in reducing brain lesion volume on T2WI and in preserving NeuN + neurons (p < 0.01), followed by ZT-1d > -1c > -1g > -1h. The Veh-treated stroke mice displayed white matter tissue injury, reflected by reduced fractional anisotropy (FA) or axial diffusivity (AD) values in external capsule, internal capsule and hippocampus. In contrast, only ZT-1a-as well as ZT-1c-treated stroke mice exhibited significantly higher FA and AD values. These findings demonstrate that post-stroke administration of SPAK inhibitor ZT-1a and its derivatives (ZT-1c and ZT-1d) is effective in protecting gray and white matter tissues in ischemic brains, showing a potential for ischemic stroke therapy development.
Collapse
Affiliation(s)
- Mohammad Iqbal H Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Sydney Fischer
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shivani M Patel
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Helena Oft
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15203, USA
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15203, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bradley J Molyneaux
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Xiu M, Li L, Li Y, Gao Y. An update regarding the role of WNK kinases in cancer. Cell Death Dis 2022; 13:795. [PMID: 36123332 PMCID: PMC9485243 DOI: 10.1038/s41419-022-05249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Mengxi Xiu
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Li Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yandong Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yong Gao
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
16
|
7-Hydroxyflavone Alleviates Myocardial Ischemia/Reperfusion Injury in Rats by Regulating Inflammation. Molecules 2022; 27:molecules27175371. [PMID: 36080137 PMCID: PMC9458087 DOI: 10.3390/molecules27175371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammation is the primary pathological process of myocardial ischemia/reperfusion injury (MI/RI). 7-Hydroxyflavone (HF), a natural flavonoid with a variety of bioactivities, plays a crucial role in various biological processes. However, its cardioprotective effects and the underlying mechanisms of MI/RI have not been investigated. This study aimed to explore whether pretreatment with HF could attenuate MI/RI-induced inflammation in rats and investigate its potential mechanisms. The results showed that pretreatment with HF could significantly improve the anatomic data and electrocardiograph parameters, reduce the myocardial infarct size, decrease markers of myocardial injury (aspartate transaminase, creatine kinase, lactate dehydrogenase, and cardiac troponin I), inhibit inflammatory cytokines (IL-1β, IL-6, and TNF-α), suppress oxidative stress, and recover the architecture of the cardiomyocytes. The cardioprotective effect of HF was connected with the regulation of the MAPK/NF-κB signaling pathway. What is more, molecular docking was carried out to prove that HF could be stably combined with p38, ERK1/2, JNK, and NF-κB. In summary, this is a novel study demonstrating the cardioprotective effects of HF against MI/RI in vivo. Consequently, these results demonstrate that HF can be considered a promising potential therapy for MI/RI.
Collapse
|