1
|
Morais RF, Pires R, Jesus T, Lemos R, Duro D, Lima M, Baldeiras I, Oliveira TG, Santana I. Cognitive impairment in neurodegenerative diseases: A trans-diagnostic approach using a lesion-symptom mapping analysis. Neuroscience 2025; 573:214-227. [PMID: 40118165 DOI: 10.1016/j.neuroscience.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal dementia (bvFTD), reflect a spectrum of cognitive impairments unified by cognitive decline. Traditional diagnostic approaches often overlook shared landscapes of these disorders. A transdiagnostic approach, cutting across conventional boundaries, may improve understanding of shared mechanisms. This study uses lesion-symptom mapping (LSM) to identify critical brain structures responsible for cognitive impairments. METHODS Patients diagnosed with Mild Cognitive Impairment (MCI), probable AD, and probable bvFTD were recruited from our memory clinic. Diagnoses were made by a multidisciplinary team using established criteria. Participants underwent detailed medical and neurological examinations, neuroimaging, cerebrospinal fluid analysis, and neuropsychological assessment. MRI scans were processed using FreeSurfer. LSM was used to assess correlations between brain structures and cognitive performance. RESULTS Significant correlations were found between neuropsychological test scores and reduced volume in specific brain regions. The Free and Cued Selective Reminding Test was linked to the right hippocampus and left nucleus accumbens. The Brief Visuospatial Memory Test-Revised correlated with the right hippocampus, left nucleus accumbens, and right middle temporal gyrus. Verbal fluency was linked to the left superior temporal sulcus and left middle temporal gyrus. Digit Span forward correlated with left superior frontal gyrus and left inferior parietal region, while Digit Span backward was linked to the right precuneus. Digit-Symbol Coding was associated with the left inferior parietal region. CONCLUSIONS This study highlights common neural targets in MCI, AD, and bvFTD and their link with cognitive impairment, emphasizing the value of LSM within a transdiagnostic approach to neurodegenerative diseases.
Collapse
Affiliation(s)
- Ricardo Félix Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Neuroradiology Department, ULS São João, Porto, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência (INESC TEC), Porto, Portugal.
| | - Ricardo Pires
- Functional Unit of Neuroradiology, Department of Medical Imaging, ULS d Coimbra, Coimbra, Portugal
| | - Tiago Jesus
- Center Algoritmi, LASI, University of Minho, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Raquel Lemos
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; ISPA, Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Lisbon, Portugal
| | - Diana Duro
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neurology Department, ULS de Coimbra, Coimbra, Portugal
| | - Marisa Lima
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neurology Department, ULS de Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, ULS Braga, Braga, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neurology Department, ULS de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Yu H, Kang K, Pliatsikas C, Zhou Y, Zhang H. Age-Related Differences in Speech and Gray Matter Volume: The Modulating Role of Multilingualism. Neuroimage 2025; 310:121149. [PMID: 40101864 DOI: 10.1016/j.neuroimage.2025.121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025] Open
Abstract
Speech involves complex processes such as language formulation, motor coordination, and cognitive functions. As people age, their speech abilities often decline, showing reduced fluency and complexity. Older adults also show decreased gray matter volume. However, the relationship between age-related differences in speech and gray matter volume remain unclear. Multilinguals may exhibit unique age-related speech patterns depending on their language profiles. This study investigates the relationships between age-related differences in brain structure and multilingual speech across different languages, considering the effects of multilingual experience. An integrated measure of speech was calculated and used to reflect the overall speech quality, which was lower in older than younger adults. Native language speech (i.e., Cantonese) was better than non-native language speech (i.e., Mandarin), especially in older adults. More extensive use of multiple languages was associated with enhanced speech quality in both native and non-native languages. Age significantly impacts whole brain gray matter volume, which was lower in older than younger adults. The right middle temporal gyrus emerged as a critical region for speech in both languages in older adults. Bilateral putamen shows sensitivity to the effect of multilingual experience on speech performance in older adults. These findings underscore the complex interplay between age, multilingualism, and brain structure, providing valuable insights into the neural mechanisms underlying multilingual speech performance.
Collapse
Affiliation(s)
- Hanxiang Yu
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China; Department of Psychology, University of Macau, Taipa, Macau SAR, China
| | - Keyi Kang
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China; Department of Psychology, University of Macau, Taipa, Macau SAR, China
| | - Christos Pliatsikas
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Yushen Zhou
- Department of English, University of Macau, Taipa, Macau SAR, China
| | - Haoyun Zhang
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China; Department of Psychology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
3
|
Muraki EJ, Pexman PM, Binney RJ. Mapping Contributions of the Anterior Temporal Semantic Hub to the Processing of Abstract and Concrete Verbs. Hum Brain Mapp 2025; 46:e70210. [PMID: 40275587 DOI: 10.1002/hbm.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Multiple representation theories of semantic processing propose that word meaning is supported by simulated sensorimotor experience in modality-specific neural regions, as well as in cognitive systems that involve processing of linguistic, emotional, and introspective information. According to the hub-and-spoke model of semantic memory, activity from these distributed cortical areas feeds into a primary semantic hub located in the ventral anterior temporal lobe (vATL). In the present pre-registered study, we examined whether different types of abstract verbs (mental, emotional and nonembodied) and concrete (embodied) verbs all engage the vATL, and also whether they differentially recruit a broader set of distributed neurocognitive systems (consistent with multiple representation theories). Finally, we investigated whether there is information about different verb types distributed across the broader ATL region, consistent with a Graded Semantic Hub Hypothesis. We collected data from 30 participants who completed a syntactic classification task (is it a verb? Yes or no) and a numerical judgment task which served as an active but less semantic baseline task. Whole brain univariate analyses revealed consistent BOLD signal throughout the canonical semantic network, including the left inferior frontal gyrus, left middle temporal gyrus, and the vATL. All types of abstract verbs engaged the vATL except for mental state verbs. Finally, a multivariate pattern analysis revealed clusters within the ATL that were differentially engaged when processing each type of abstract verb. Our findings extend previous research and suggest that the hub-and-spoke hypothesis and the graded semantic hub hypothesis provide a neurobiologically constrained model of semantics that can account for abstract verb representation and processing.
Collapse
Affiliation(s)
- Emiko J Muraki
- Department of Psychology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Penny M Pexman
- Department of Psychology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychology, Western University, London, Canada
| | - Richard J Binney
- Cognitive Neuroscience Institute, School of Psychology and Sport Science, Bangor University, Bangor, Wales, UK
| |
Collapse
|
4
|
Houben M, Postma TS, Fitzsimmons SMDD, Vriend C, Batelaan NM, Hoogendoorn AW, van der Werf YD, van den Heuvel OA. Increased Amygdala Activation During Symptom Provocation Predicts Response to Combined Repetitive Transcranial Magnetic Stimulation and Exposure Therapy in Obsessive-Compulsive Disorder in a Randomized Controlled Trial. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:295-303. [PMID: 39547413 DOI: 10.1016/j.bpsc.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) combined with exposure and response prevention is a promising treatment modality for treatment-refractory obsessive-compulsive disorder (OCD). However, not all patients respond sufficiently to this treatment. We investigated whether brain activation during a symptom provocation task could predict treatment response. METHODS Sixty-one adults with OCD (39 female/22 male) underwent symptom provocation with OCD- and fear-related visual stimuli during functional magnetic resonance imaging prior to an 8-week combined rTMS and exposure and response prevention treatment regimen. Participants received one of the following 3 rTMS treatments as part of a randomized controlled trial: 1) 10-Hz rTMS (110% resting motor threshold) to the left dorsolateral prefrontal cortex, 2) 10-Hz rTMS (110% resting motor threshold) to the left presupplementary motor area, or 3) 10-Hz control rTMS (60% resting motor threshold) to the vertex. Multiple regression and correlation were used to examine the predictive value of task-related brain activation for treatment response in the following regions of interest: the dorsomedial prefrontal cortex, amygdala, dorsolateral prefrontal cortex, and left presupplementary motor area. RESULTS The different treatment groups responded equally to treatment. Higher pretreatment task-related activation of the right amygdala to OCD-related stimuli showed a positive association with treatment response in all groups. Exploratory whole-brain analyses showed positive associations between activation in multiple task-relevant regions and treatment response. Only dorsal anterior cingulate cortex activation to fear-related stimuli showed a negative association with treatment outcome. CONCLUSIONS Higher pretreatment right amygdala activation during symptom provocation predicts better treatment response to combined rTMS and exposure and response prevention in OCD.
Collapse
Affiliation(s)
- Milan Houben
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands.
| | - Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Chris Vriend
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Neeltje M Batelaan
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands; Mental Health Program, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Adriaan W Hoogendoorn
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands; Mental Health Program, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Ghosh Hajra S, Meltzer JA, Keerthi P, Pappas C, Sekuler AB, Liu CC. Spontaneous blinking and brain health in aging: Large-scale evaluation of blink-related oscillations across the lifespan. Front Aging Neurosci 2025; 16:1473178. [PMID: 39839308 PMCID: PMC11747640 DOI: 10.3389/fnagi.2024.1473178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Blink-related oscillations (BROs) are newly discovered neurophysiological brainwave responses associated with spontaneous blinking, and represent environmental monitoring and awareness processes as the brain evaluates new visual information appearing after eye re-opening. BRO responses have been demonstrated in healthy young adults across multiple task states and are modulated by both task and environmental factors, but little is known about this phenomenon in aging. To address this, we undertook the first large-scale evaluation of BRO responses in healthy aging using the Cambridge Centre for Aging and Neuroscience (Cam-CAN) repository, which contains magnetoencephalography (MEG) data from a large sample (N = 457) of healthy adults across a broad age range (18-88) during the performance of a simple target detection task. The results showed that BRO responses were present in all age groups, and the associated effects exhibited significant age-related modulations comprising an increase in sensor-level global field power (GFP) and source-level theta and alpha spectral power within the bilateral precuneus. Additionally, the extent of cortical activations also showed an inverted-U relationship with age, consistent with neurocompensation with aging. Crucially, these age-related differences were not observed in the behavioral measures of task performance such as reaction time and accuracy, suggesting that blink-related neural responses during the target detection task are more sensitive in capturing aging-related brain function changes compared to behavioral measures alone. Together, these results suggest that BRO responses are not only present throughout the adult lifespan, but the effects can also capture brain function changes in healthy aging-thus providing a simple yet powerful avenue for evaluating brain health in aging.
Collapse
Affiliation(s)
- Sujoy Ghosh Hajra
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Jed A. Meltzer
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Prerana Keerthi
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Pappas
- School of Computer Science, McGill University, Hamilton, ON, Canada
| | - Allison B. Sekuler
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | | | - Careesa Chang Liu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
6
|
Tian L, Chen H, Kujala J, Parviainen T. Spatiotemporal dynamics of abstract concept processing: An MEG study. BRAIN AND LANGUAGE 2025; 260:105505. [PMID: 39637563 DOI: 10.1016/j.bandl.2024.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Our current understanding of how linguistic concepts are represented and retrieved in the brain is largely based on studies using concrete language, and only few studies have focused on the neural correlates of abstract concepts. The role of the motor system, besides the classical language network, has been intensively discussed in action-related concrete concepts. To advance our understanding of spatiotemporal dynamics underlying abstract concept processing, our study investigated to what extent language and motor regions are engaged in the processing of abstract concepts vs. concrete concepts. We used concrete, metaphorical, and abstract phrases as stimuli, creating a graded continuum of abstractness. Neuromagnetic signals were recorded from 26 Chinese native speakers using a 306-channel whole-head magnetoencephalography (MEG) system. Cluster-based permutation F-tests were carried out on the amplitude of source waveform for individual language and motor regions of interest (ROIs) in the three consecutive time-windows (200-300, 300-400, and 400-500 ms). Results showed that, compared with concrete and metaphorical phrases, abstract phrases evoked significantly weaker activation in the left posterior part of superior temporal sulcus (STS) at 200-300 ms, and significantly stronger activation in the left anterior temporal pole (TP) at 300-400 ms. We found no significant differences in the involvement of motor ROIs across conditions. Our results suggest that concrete concept processing engages more the posterior STS in an earlier time window, while abstract concept processing relies more strongly on the anterior TP in a later time window. Results are discussed by revisiting the ATL (anterior temporal lobe)-hub hypothesis and the novel definition of concrete and abstract concepts.
Collapse
Affiliation(s)
- Lili Tian
- Department of Psychology, University of Jyväskylä, Jyväskylä 40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä 40014, Finland; School of Foreign Languages, Dalian University of Technology, Dalian 116024, China; Language and Brain Research Centre, Sichuan International Studies University, Chongqing 400031, China
| | - Hongjun Chen
- School of Foreign Languages, Dalian University of Technology, Dalian 116024, China.
| | - Jan Kujala
- Department of Psychology, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, Jyväskylä 40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä 40014, Finland.
| |
Collapse
|
7
|
Hu B, Guan X, Zhai H, Han X, Hu C, Gong J. Cognitive and cortical network alterations in pediatric temporal lobe space-occupying lesions: an fMRI study. Front Hum Neurosci 2024; 18:1509899. [PMID: 39717148 PMCID: PMC11663916 DOI: 10.3389/fnhum.2024.1509899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Background Temporal lobe mass lesions are the most common intracranial space-occupying lesions in children, among various brain lobes. The temporal lobe is critically involved in higher cognitive functions, and surgical interventions often risk causing damage to these functions. If necessary interventions and prehabilitation can be conducted preoperatively, it might be possible to achieve a larger extent of lesion resection with minimal cognitive impairment. However, research in this area has been relatively limited in the past. Our study aims to fill this gap. Methods We enrolled 15 children with temporal lobe mass lesions and 15 age- and gender-matched healthy children as controls. All participants underwent cognitive assessments and functional MRI scans. The cognitive testing data and functional MRI data were then analyzed and compared between the two groups. Results Our findings suggest that children with temporal lobe mass lesions primarily exhibit impairments in working memory and sustained attention. Multiple brain network indices were altered in the affected children, with the most prominent change being hyperactivation of the default mode network (DMN). This hyperactivation was correlated with cognitive impairments, indicating that the overactivation of the DMN might represent an inefficient compensatory mechanism within the brain's networks. Conclusion Compared to healthy children, those with temporal lobe mass lesions experience deficits in working memory and sustained attention, and the hyperactivation of the DMN may be the underlying network mechanism driving these cognitive impairments. Our research offers a unique and clinically valuable reference for future studies on preoperative interventions and prehabilitation in this population.
Collapse
Affiliation(s)
- Bohan Hu
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, Anhui, China
| | - Xueyi Guan
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, Anhui, China
| | - Huina Zhai
- Beijing RIMAG Medical Imaging Center, Beijing, China
| | - Xu Han
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cuiling Hu
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Gong
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, Anhui, China
| |
Collapse
|
8
|
Liu CY, Qin L, Tao R, Deng W, Jiang T, Wang N, Matthews S, Siok WT. Delineating Region-Specific contributions and connectivity patterns for semantic association and categorization through ROI and Granger causality analysis. BRAIN AND LANGUAGE 2024; 258:105476. [PMID: 39357106 DOI: 10.1016/j.bandl.2024.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The neural mechanisms supporting semantic association and categorization are examined in this study. Semantic association involves linking concepts through shared themes, events, or scenes, while semantic categorization organizes meanings hierarchically based on defining features. Twenty-three adults participated in an fMRI study performing categorization and association judgment tasks. Results showed stronger activation in the inferior frontal gyrus during association and marginally weaker activation in the posterior middle temporal gyrus (pMTG) during categorization. Granger causality analysis revealed bottom-up connectivity from the visual cortex to the hippocampus during semantic association, whereas semantic categorization exhibited strong reciprocal connections between the pMTG and frontal semantic control regions, together with information flow from the visual association area and hippocampus to the pars triangularis. We propose that demands on semantic retrieval, precision of semantic representation, perceptual experiences and world knowledge result in observable differences between these two semantic relations.
Collapse
Affiliation(s)
- Chun Yin Liu
- Department of Medical Biophysics, University of Western Ontario, Canada
| | - Lang Qin
- School of Chinese as a Second Language, Peking University, Beijing 100871, PR China
| | - Ran Tao
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China; Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Wenxiyuan Deng
- Department of Linguistics, The University of Hong Kong, Hong Kong SAR 999077, PR China
| | - Tian Jiang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Nizhuan Wang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Stephen Matthews
- Department of Linguistics, The University of Hong Kong, Hong Kong SAR 999077, PR China
| | - Wai Ting Siok
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China.
| |
Collapse
|
9
|
Rouse MA, Halai AD, Ramanan S, Rogers TT, Garrard P, Patterson K, Rowe JB, Lambon Ralph MA. Social-semantic knowledge in frontotemporal dementia and after anterior temporal lobe resection. Brain Commun 2024; 6:fcae378. [PMID: 39513090 PMCID: PMC11542483 DOI: 10.1093/braincomms/fcae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Degraded semantic memory is a prominent feature of frontotemporal dementia (FTD). It is classically associated with semantic dementia and anterior temporal lobe (ATL) atrophy, but semantic knowledge can also be compromised in behavioural variant FTD. Motivated by understanding behavioural change in FTD, recent research has focused selectively on social-semantic knowledge, with proposals that the right ATL is specialized for social concepts. Previous studies have assessed very different types of social concepts and have not compared performance with that of matched non-social concepts. Consequently, it remains unclear to what extent various social concepts are (i) concurrently impaired in FTD, (ii) distinct from general semantic memory and (iii) differentially supported by the left and right ATL. This study assessed multiple aspects of social-semantic knowledge and general conceptual knowledge across cohorts with ATL damage arising from either neurodegeneration or resection. We assembled a test battery measuring knowledge of multiple types of social concept. Performance was compared with non-social general conceptual knowledge, measured using the Cambridge Semantic Memory Test Battery and other matched non-social-semantic tests. Our trans-diagnostic approach included behavioural variant FTD, semantic dementia and 'mixed' intermediate cases to capture the FTD clinical spectrum, as well as age-matched healthy controls. People with unilateral left or right ATL resection for temporal lobe epilepsy were also recruited to assess how selective damage to the left or right ATL impacts social- and non-social-semantic knowledge. Social- and non-social-semantic deficits were severe and highly correlated in FTD. Much milder impairments were found after unilateral ATL resection, with no left versus right differences in social-semantic knowledge or general semantic processing and with only naming showing a greater deficit following left versus right damage. A principal component analysis of all behavioural measures in the FTD cohort extracted three components, interpreted as capturing (i) FTD severity, (ii) semantic memory and (iii) executive function. Social and non-social measures both loaded heavily on the same semantic memory component, and scores on this factor were uniquely associated with bilateral ATL grey matter volume but not with the degree of ATL asymmetry. Together, these findings demonstrate that both social- and non-social-semantic knowledge degrade in FTD (semantic dementia and behavioural variant FTD) following bilateral ATL atrophy. We propose that social-semantic knowledge is part of a broader conceptual system underpinned by a bilaterally implemented, functionally unitary semantic hub in the ATLs. Our results also highlight the value of a trans-diagnostic approach for investigating the neuroanatomical underpinnings of cognitive deficits in FTD.
Collapse
Affiliation(s)
- Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Siddharth Ramanan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Timothy T Rogers
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter Garrard
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0SZ, UK
| | | |
Collapse
|
10
|
Shekara A, Ross A, Soper DJ, Paulk AC, Cash SS, Shear PK, Sheehy JP, Basu I. Anxious/depressed individuals exhibit disrupted frontotemporal synchrony during cognitive conflict encoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617540. [PMID: 39484390 PMCID: PMC11526853 DOI: 10.1101/2024.10.10.617540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Anxiety and depressive disorders are associated with cognitive control deficits, yet their underlying neural mechanisms remain poorly understood. Here, we used high-resolution stereotactic EEG (sEEG) to determine how anxiety and/or depression modulates neural and behavioral responses when cognitive control is engaged in individuals with medically refractory epilepsy undergoing sEEG monitoring for surgical evaluation. We analyzed sEEG data recorded from frontotemporal regions of 29 participants (age range: 19-55, mean age: 35.5, female: 16/29) while they performed a Multi-Source Interference Task (MSIT) designed to elicit cognitive conflict. Neurobehavioral interviews, symptom rating scales, and clinical documentation were used to categorize participants as demonstrating anxiety and/or depression symptoms (A/D, n=13) or as epilepsy controls (EC, n=16). Generalized linear mixed-effects (GLME) models were used to analyze behavioral and neural data. Models of oscillatory power were used to identify brain regions within conflict-encoding networks in which coherence and phase locking values (PLV) were examined in A/D and EC. A/D participants demonstrated a greater conflict effect (response time slowing with higher cognitive load), without impairment in response time (RT) or accuracy compared to EC. A/D participants also showed significantly enhanced conflict-evoked theta (4-8Hz) and alpha (8-15Hz) power in the dorsolateral prefrontal cortex (dlPFC) and amygdala as well as widespread broadband activity in the lateral temporal lobe (LTL) compared to EC. Additionally, theta coherence and PLV between dlPFC-LTL and dlPFC-amygdala were reduced by conflict in A/D. Our findings suggest individuals with anxiety/depression symptoms exhibit heightened frontotemporal oscillatory activity and disrupted frontotemporal synchrony during cognitive conflict encoding, which may indicate a greater need for cognitive resources due to ineffective cognitive processing. These results highlight a potential role of frontotemporal circuits in conflict encoding that are altered in anxiety/depression, and may further inform future therapeutic interventions aimed at enhancing cognitive control in these populations.
Collapse
Affiliation(s)
- Aniruddha Shekara
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Biomedical Engineering, University of Cincinnati College of Engineering and Applied Science, Cincinnati, OH 45219, USA
| | - Alexander Ross
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniel J. Soper
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Angelique C. Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sydney S. Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Paula K. Shear
- Department of Psychology, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - John P. Sheehy
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ishita Basu
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Biomedical Engineering, University of Cincinnati College of Engineering and Applied Science, Cincinnati, OH 45219, USA
| |
Collapse
|
11
|
Riccardi N, Blackett DS, Broadhead A, den Ouden D, Rorden C, Fridriksson J, Bonilha L, Desai RH. A Rose by Any Other Name: Mapping Taxonomic and Thematic Naming Errors Poststroke. J Cogn Neurosci 2024; 36:2251-2267. [PMID: 39106171 PMCID: PMC11792165 DOI: 10.1162/jocn_a_02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Understanding the neurobiology of semantic knowledge is a major goal of cognitive neuroscience. Taxonomic and thematic semantic knowledge are represented differently within the brain's conceptual networks, but the specific neural mechanisms remain unclear. Some neurobiological models propose that the anterior temporal lobe is an important hub for taxonomic knowledge, whereas the TPJ is especially involved in the representation of thematic knowledge. However, recent studies have provided divergent evidence. In this context, we investigated the neural correlates of taxonomic and thematic confrontation naming errors in 79 people with aphasia. We used three complementary lesion-symptom mapping (LSM) methods to investigate how structure and function in both spared and impaired brain regions relate to taxonomic and thematic naming errors. Voxel-based LSM mapped brain damage, activation-based LSM mapped BOLD signal in surviving tissue, and network-based LSM mapped white matter subnetwork integrity to error type. Voxel- and network-based lesion symptom mapping provided converging evidence that damage/disruption of the left mid-to-anterior temporal lobe was associated with a greater proportion of thematic naming errors. Activation-based lesion symptom mapping revealed that higher BOLD signal in the left anterior temporal lobe during an in-house naming task was associated with a greater proportion of taxonomic errors on the Philadelphia Naming Test administered outside of the scanner. A lower BOLD signal in the bilateral angular gyrus, precuneus, and right inferior frontal cortex was associated with a greater proportion of taxonomic errors. These findings provide novel evidence that damage to the anterior temporal lobe is especially related to thematic naming errors.
Collapse
|
12
|
Querella P, Attout L, Fias W, Majerus S. From long-term to short-term: Distinct neural networks underlying semantic knowledge and its recruitment in working memory. Neuropsychologia 2024; 202:108949. [PMID: 38971371 DOI: 10.1016/j.neuropsychologia.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Although numerous studies suggest that working memory (WM) and semantic long-term knowledge interact, the nature and underlying neural mechanisms of this intervention remain poorly understood. Using functional magnetic resonance imaging (fMRI), this study investigated the extent to which neural markers of semantic knowledge in long-term memory (LTM) are activated during the WM maintenance stage in 32 young adults. First, the multivariate neural patterns associated with four semantic categories were determined via an implicit semantic activation task. Next, the participants maintained words - the names of the four semantic categories implicitly activated in the first task - in a verbal WM task. Multi-voxel pattern analyses showed reliable neural decoding of the four semantic categories in the implicit semantic activation and the verbal WM tasks. Critically, however, no between-task classification of semantic categories was observed. Searchlight analyses showed that for the WM task, semantic category information could be decoded in anterior temporal areas associated with abstract semantic category knowledge. In the implicit semantic activation task, semantic category information was decoded in superior temporal, occipital and frontal cortices associated with domain-specific semantic feature representations. These results indicate that item-level semantic activation during verbal WM involves shallow rather than deep semantic information.
Collapse
Affiliation(s)
- Pauline Querella
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Belgium.
| | - Lucie Attout
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Belgium; National Fund for Scientific Research, Belgium, Department of Psychology, Psychology and Cognitive Neuroscience Research Unit, University of Liège, Place des Orateurs 1 (B33), 4000, Liège, Belgium
| | - Wim Fias
- Department of Experimental Psychology, Ghent University, Belgium
| | - Steve Majerus
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Belgium; National Fund for Scientific Research, Belgium, Department of Psychology, Psychology and Cognitive Neuroscience Research Unit, University of Liège, Place des Orateurs 1 (B33), 4000, Liège, Belgium
| |
Collapse
|
13
|
Angelini L, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J. Bidirectional and Cross-Hemispheric Modulations of Face-Selective Neural Activity Induced by Electrical Stimulation within the Human Cortical Face Network. Brain Sci 2024; 14:906. [PMID: 39335402 PMCID: PMC11429542 DOI: 10.3390/brainsci14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
A major scientific objective of cognitive neuroscience is to define cortico-cortical functional connections supporting cognitive functions. Here, we use an original approach combining frequency-tagging and direct electrical stimulation (DES) to test for bidirectional and cross-hemispheric category-specific modulations within the human cortical face network. A unique patient bilaterally implanted with depth electrodes in multiple face-selective cortical regions of the ventral occipito-temporal cortex (VOTC) was shown 70 s sequences of variable natural object images at a 6 Hz rate, objectively identifying deviant face-selective neural activity at 1.2 Hz (i.e., every five images). Concurrent electrical stimulation was separately applied for 10 seconds on four independently defined face-selective sites in the right and left VOTC. Upon stimulation, we observed reduced or even abolished face-selective neural activity locally and, most interestingly, at distant VOTC recording sites. Remote DES effects were found up to the anterior temporal lobe (ATL) in both forward and backward directions along the VOTC, as well as across the two hemispheres. This reduction was specific to face-selective neural activity, with the general 6 Hz visual response being mostly unaffected. Overall, these results shed light on the functional connectivity of the cortical face-selective network, supporting its non-hierarchical organization as well as bidirectional effective category-selective connections between posterior 'core' regions and the ATL. They also pave the way for widespread and systematic development of this approach to better understand the functional and effective connectivity of human brain networks.
Collapse
Affiliation(s)
- Luna Angelini
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Corentin Jacques
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
| | - Louis Maillard
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, IMoPA, UMR CNRS 7365, F-54000 Nancy, France; (L.A.)
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
14
|
Lifanov-Carr J, Griffiths BJ, Linde-Domingo J, Ferreira CS, Wilson M, Mayhew SD, Charest I, Wimber M. Reconstructing Spatiotemporal Trajectories of Visual Object Memories in the Human Brain. eNeuro 2024; 11:ENEURO.0091-24.2024. [PMID: 39242212 PMCID: PMC11439564 DOI: 10.1523/eneuro.0091-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
How the human brain reconstructs, step-by-step, the core elements of past experiences is still unclear. Here, we map the spatiotemporal trajectories along which visual object memories are reconstructed during associative recall. Specifically, we inquire whether retrieval reinstates feature representations in a copy-like but reversed direction with respect to the initial perceptual experience, or alternatively, this reconstruction involves format transformations and regions beyond initial perception. Participants from two cohorts studied new associations between verbs and randomly paired object images, and subsequently recalled the objects when presented with the corresponding verb cue. We first analyze multivariate fMRI patterns to map where in the brain high- and low-level object features can be decoded during perception and retrieval, showing that retrieval is dominated by conceptual features, represented in comparatively late visual and parietal areas. A separately acquired EEG dataset is then used to track the temporal evolution of the reactivated patterns using similarity-based EEG-fMRI fusion. This fusion suggests that memory reconstruction proceeds from anterior frontotemporal to posterior occipital and parietal regions, in line with a conceptual-to-perceptual gradient but only partly following the same trajectories as during perception. Specifically, a linear regression statistically confirms that the sequential activation of ventral visual stream regions is reversed between image perception and retrieval. The fusion analysis also suggests an information relay to frontoparietal areas late during retrieval. Together, the results shed light onto the temporal dynamics of memory recall and the transformations that the information undergoes between the initial experience and its later reconstruction from memory.
Collapse
Affiliation(s)
- Julia Lifanov-Carr
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Benjamin J Griffiths
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Juan Linde-Domingo
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Department of Experimental Psychology, Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain
- Center for Adaptive Rationality, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Catarina S Ferreira
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Martin Wilson
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stephen D Mayhew
- Institute of Health and Neurodevelopment (IHN), School of Psychology, Aston University, Birmingham B4 7ET, United Kingdom
| | - Ian Charest
- Département de Psychologie, Université de Montréal, Montréal, Quebec H2V 2S9, Canada
| | - Maria Wimber
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
- School of Psychology & Neuroscience and Centre for Cognitive Neuroimaging (CCNi), University of Glasgow, Glasgow G12 8QB, United Kingdom
| |
Collapse
|
15
|
Balgova E, Diveica V, Jackson RL, Binney RJ. Overlapping neural correlates underpin theory of mind and semantic cognition: Evidence from a meta-analysis of 344 functional neuroimaging studies. Neuropsychologia 2024; 200:108904. [PMID: 38759780 DOI: 10.1016/j.neuropsychologia.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Key unanswered questions for cognitive neuroscience include whether social cognition is underpinned by specialised brain regions and to what extent it simultaneously depends on more domain-general systems. Until we glean a better understanding of the full set of contributions made by various systems, theories of social cognition will remain fundamentally limited. In the present study, we evaluate a recent proposal that semantic cognition plays a crucial role in supporting social cognition. While previous brain-based investigations have focused on dissociating these two systems, our primary aim was to assess the degree to which the neural correlates are overlapping, particularly within two key regions, the anterior temporal lobe (ATL) and the temporoparietal junction (TPJ). We focus on activation associated with theory of mind (ToM) and adopt a meta-analytic activation likelihood approach to synthesise a large set of functional neuroimaging studies and compare their results with studies of semantic cognition. As a key consideration, we sought to account for methodological differences across the two sets of studies, including the fact that ToM studies tend to use nonverbal stimuli while the semantics literature is dominated by language-based tasks. Overall, we observed consistent overlap between the two sets of brain regions, especially in the ATL and TPJ. This supports the claim that tasks involving ToM draw upon more general semantic retrieval processes. We also identified activation specific to ToM in the right TPJ, bilateral anterior mPFC, and right precuneus. This is consistent with the view that, nested amongst more domain-general systems, there is specialised circuitry that is tuned to social processes.
Collapse
Affiliation(s)
- Eva Balgova
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Department of Psychology, Aberystwyth University, Ceredigion, Wales, UK
| | - Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK.
| |
Collapse
|
16
|
Haitas N, Dubuc J, Massé-Leblanc C, Chamberland V, Amiri M, Glatard T, Wilson M, Joanette Y, Steffener J. Registered report: Age-preserved semantic memory and the CRUNCH effect manifested as differential semantic control networks: An fMRI study. PLoS One 2024; 19:e0289384. [PMID: 38917084 PMCID: PMC11198863 DOI: 10.1371/journal.pone.0289384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/25/2024] [Indexed: 06/27/2024] Open
Abstract
Semantic memory representations are generally well maintained in aging, whereas semantic control is thought to be more affected. To explain this phenomenon, this study tested the predictions of the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH), focusing on task demands in aging as a possible framework. The CRUNCH effect would manifest itself in semantic tasks through a compensatory increase in neural activation in semantic control network regions but only up to a certain threshold of task demands. This study compares 39 younger (20-35 years old) with 39 older participants (60-75 years old) in a triad-based semantic judgment task performed in an fMRI scanner while manipulating task demand levels (low versus high) through semantic distance. In line with the CRUNCH predictions, differences in neurofunctional activation and behavioral performance (accuracy and response times) were expected in younger versus older participants in the low- versus high-demand conditions, which should be manifested in semantic control Regions of Interest (ROIs). Our older participants had intact behavioral performance, as proposed in the literature for semantic memory tasks (maintained accuracy and slower response times (RTs)). Age-invariant behavioral performance in the older group compared to the younger one is necessary to test the CRUNCH predictions. The older adults were also characterized by high cognitive reserve, as our neuropsychological tests showed. Our behavioral results confirmed that our task successfully manipulated task demands: error rates, RTs and perceived difficulty increased with increasing task demands in both age groups. We did not find an interaction between age group and task demand, or a statistically significant difference in activation between the low- and high-demand conditions for either RTs or accuracy. As for brain activation, we did not find the expected age group by task demand interaction, or a significant main effect of task demand. Overall, our results are compatible with some neural activation in the semantic network and the semantic control network, largely in frontotemporoparietal regions. ROI analyses demonstrated significant effects (but no interactions) of task demand in the left and right inferior frontal gyrus, the left posterior middle temporal gyrus, the posterior inferior temporal gyrus and the prefrontal gyrus. Overall, our test did not confirm the CRUNCH predictions.
Collapse
Affiliation(s)
- Niobe Haitas
- Laboratory of Communication and Aging, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jade Dubuc
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Vincent Chamberland
- Faculty of Arts and Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Mahnoush Amiri
- Laboratory of Communication and Aging, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| | - Tristan Glatard
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada
| | - Maximiliano Wilson
- Centre de Recherche CERVO – CIUSSS de la Capitale-Nationale et Département de Réadaptation, Université Laval, Quebec City, Quebec, Canada
| | - Yves Joanette
- Laboratory of Communication and Aging, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jason Steffener
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Jastrzab LE, Chaudhury B, Ashley SA, Koldewyn K, Cross ES. Beyond human-likeness: Socialness is more influential when attributing mental states to robots. iScience 2024; 27:110070. [PMID: 38947497 PMCID: PMC11214418 DOI: 10.1016/j.isci.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/08/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
We sought to replicate and expand previous work showing that the more human-like a robot appears, the more willing people are to attribute mind-like capabilities and socially engage with it. Forty-two participants played games against a human, a humanoid robot, a mechanoid robot, and a computer algorithm while undergoing functional neuroimaging. We confirmed that the more human-like the agent, the more participants attributed a mind to them. However, exploratory analyses revealed that the perceived socialness of an agent appeared to be as, if not more, important for mind attribution. Our findings suggest top-down knowledge cues may be equally or possibly more influential than bottom-up stimulus cues when exploring mind attribution in non-human agents. While further work is now required to test this hypothesis directly, these preliminary findings hold important implications for robotic design and to understand and test the flexibility of human social cognition when people engage with artificial agents.
Collapse
Affiliation(s)
- Laura E. Jastrzab
- Institute for Cognitive Neuroscience, School of Human and Behavioural Science, Bangor University, Wales, UK
- Institute for Neuroscience and Psychology, School of Psychology, University of Glasgow, Glasgow, UK
| | - Bishakha Chaudhury
- Institute for Neuroscience and Psychology, School of Psychology, University of Glasgow, Glasgow, UK
| | - Sarah A. Ashley
- Institute for Cognitive Neuroscience, School of Human and Behavioural Science, Bangor University, Wales, UK
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Kami Koldewyn
- Institute for Cognitive Neuroscience, School of Human and Behavioural Science, Bangor University, Wales, UK
| | - Emily S. Cross
- Institute for Neuroscience and Psychology, School of Psychology, University of Glasgow, Glasgow, UK
- Chair for Social Brain Sciences, Department of Humanities, Social and Political Sciences, ETHZ, Zürich, Switzerland
| |
Collapse
|
18
|
Ten Oever S, Titone L, te Rietmolen N, Martin AE. Phase-dependent word perception emerges from region-specific sensitivity to the statistics of language. Proc Natl Acad Sci U S A 2024; 121:e2320489121. [PMID: 38805278 PMCID: PMC11161766 DOI: 10.1073/pnas.2320489121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Neural oscillations reflect fluctuations in excitability, which biases the percept of ambiguous sensory input. Why this bias occurs is still not fully understood. We hypothesized that neural populations representing likely events are more sensitive, and thereby become active on earlier oscillatory phases, when the ensemble itself is less excitable. Perception of ambiguous input presented during less-excitable phases should therefore be biased toward frequent or predictable stimuli that have lower activation thresholds. Here, we show such a frequency bias in spoken word recognition using psychophysics, magnetoencephalography (MEG), and computational modelling. With MEG, we found a double dissociation, where the phase of oscillations in the superior temporal gyrus and medial temporal gyrus biased word-identification behavior based on phoneme and lexical frequencies, respectively. This finding was reproduced in a computational model. These results demonstrate that oscillations provide a temporal ordering of neural activity based on the sensitivity of separable neural populations.
Collapse
Affiliation(s)
- Sanne Ten Oever
- Language and Computation in Neural Systems group, Max Planck Institute for Psycholinguistics, NijmegenXD 6525, The Netherlands
- Language and Computation in Neural Systems group, Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, NijmegenEN 6525, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, EV 6229, The Netherlands
| | - Lorenzo Titone
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, LeipzigD-04303, Germany
| | - Noémie te Rietmolen
- Language and Computation in Neural Systems group, Max Planck Institute for Psycholinguistics, NijmegenXD 6525, The Netherlands
- Language and Computation in Neural Systems group, Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, NijmegenEN 6525, The Netherlands
| | - Andrea E. Martin
- Language and Computation in Neural Systems group, Max Planck Institute for Psycholinguistics, NijmegenXD 6525, The Netherlands
- Language and Computation in Neural Systems group, Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, NijmegenEN 6525, The Netherlands
| |
Collapse
|
19
|
Rouse MA, Binney RJ, Patterson K, Rowe JB, Lambon Ralph MA. A neuroanatomical and cognitive model of impaired social behaviour in frontotemporal dementia. Brain 2024; 147:1953-1966. [PMID: 38334506 PMCID: PMC11146431 DOI: 10.1093/brain/awae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
Impaired social cognition is a core deficit in frontotemporal dementia (FTD). It is most commonly associated with the behavioural-variant of FTD, with atrophy of the orbitofrontal and ventromedial prefrontal cortex. Social cognitive changes are also common in semantic dementia, with atrophy centred on the anterior temporal lobes. The impairment of social behaviour in FTD has typically been attributed to damage to the orbitofrontal cortex and/or temporal poles and/or the uncinate fasciculus that connects them. However, the relative contributions of each region are unresolved. In this review, we present a unified neurocognitive model of controlled social behaviour that not only explains the observed impairment of social behaviours in FTD, but also assimilates both consistent and potentially contradictory findings from other patient groups, comparative neurology and normative cognitive neuroscience. We propose that impaired social behaviour results from damage to two cognitively- and anatomically-distinct components. The first component is social-semantic knowledge, a part of the general semantic-conceptual system supported by the anterior temporal lobes bilaterally. The second component is social control, supported by the orbitofrontal cortex, medial frontal cortex and ventrolateral frontal cortex, which interacts with social-semantic knowledge to guide and shape social behaviour.
Collapse
Affiliation(s)
- Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, School of Human and Behavioural Sciences, Bangor University, Bangor LL57 2AS, UK
| | - Karalyn Patterson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0SZ, UK
| | | |
Collapse
|
20
|
Bellini C, Del Maschio N, Gentile M, Del Mauro G, Franceschini R, Abutalebi J. Original language versus dubbed movies: Effects on our brain and emotions. BRAIN AND LANGUAGE 2024; 253:105424. [PMID: 38815502 DOI: 10.1016/j.bandl.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Converging evidence suggests that emotions are often dulled in one's foreign language. Here, we paired fMRI with a naturalistic viewing paradigm (i.e., original vs. dubbed versions of sad, fun and neutral movie clips) to investigate the neural correlates of emotion perception as a function of native (L1) and foreign (L2) language context. Watching emotional clips in L1 (vs. L2) reflected in activations of anterior temporal cortices involved in semantic cognition, arguably indicating a closer association of emotion concepts with the native language. The processing of fun clips in L1 (vs. L2) reflected in enhanced response of the right amygdala, suggesting a deeper emotional experience of positively valenced stimuli in the L1. Of interest, the amygdala response to fun clips positively correlated with participants' proficiency in the L2, indicating that a higher L2 competence may reduce emotional processing differences across a bilingual's two languages. Our findings are compatible with the view that language provides a context for the construction of emotions.
Collapse
Affiliation(s)
- Camilla Bellini
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| | - Marco Gentile
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| | - Gianpaolo Del Mauro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore MD 21201, United States.
| | - Rita Franceschini
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics, Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy; UiT The Arctic University of Norway, PO Box 6050, Langnes, N-9037 Tromsø, Norway.
| |
Collapse
|
21
|
Li AY, Ladyka-Wojcik N, Qazilbash H, Golestani A, Walther DB, Martin CB, Barense MD. Experience transforms crossmodal object representations in the anterior temporal lobes. eLife 2024; 13:e83382. [PMID: 38647143 PMCID: PMC11081630 DOI: 10.7554/elife.83382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a 4-day paradigm, in which participants learned three-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased toward visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.
Collapse
Affiliation(s)
- Aedan Yue Li
- Department of Psychology, University of TorontoTorontoCanada
| | | | - Heba Qazilbash
- Department of Psychology, University of TorontoTorontoCanada
| | - Ali Golestani
- Department of Physics and Astronomy, University of CalgaryCalgaryCanada
| | - Dirk B Walther
- Department of Psychology, University of TorontoTorontoCanada
- Rotman Research Institute, Baycrest Health SciencesNorth YorkCanada
| | - Chris B Martin
- Department of Psychology, Florida State UniversityTallahasseeUnited States
| | - Morgan D Barense
- Department of Psychology, University of TorontoTorontoCanada
- Rotman Research Institute, Baycrest Health SciencesNorth YorkCanada
| |
Collapse
|
22
|
Krieger-Redwood K, Wang X, Souter N, Gonzalez Alam TRDJ, Smallwood J, Jackson RL, Jefferies E. Graded and sharp transitions in semantic function in left temporal lobe. BRAIN AND LANGUAGE 2024; 251:105402. [PMID: 38484446 DOI: 10.1016/j.bandl.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Recent work has focussed on how patterns of functional change within the temporal lobe relate to whole-brain dimensions of intrinsic connectivity variation (Margulies et al., 2016). We examined two such 'connectivity gradients' reflecting the separation of (i) unimodal versus heteromodal and (ii) visual versus auditory-motor cortex, examining visually presented verbal associative and feature judgments, plus picture-based context and emotion generation. Functional responses along the first dimension sometimes showed graded change between modality-tuned and heteromodal cortex (in the verbal matching task), and other times showed sharp functional transitions, with deactivation at the extremes and activation in the middle of this gradient (internal generation). The second gradient revealed more visual than auditory-motor activation, regardless of content (associative, feature, context, emotion) or task process (matching/generation). We also uncovered subtle differences across each gradient for content type, which predominantly manifested as differences in relative magnitude of activation or deactivation.
Collapse
Affiliation(s)
- Katya Krieger-Redwood
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas Souter
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom; School of Psychology, University of Sussex, Brighton, United Kingdom
| | | | | | - Rebecca L Jackson
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom.
| |
Collapse
|
23
|
Keller TA, Mason RA, Legg AE, Just MA. The neural and cognitive basis of expository text comprehension. NPJ SCIENCE OF LEARNING 2024; 9:21. [PMID: 38514702 PMCID: PMC10957871 DOI: 10.1038/s41539-024-00232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
As science and technology rapidly progress, it becomes increasingly important to understand how individuals comprehend expository technical texts that explain these advances. This study examined differences in individual readers' technical comprehension performance and differences among texts, using functional brain imaging to measure regional brain activity while students read passages on technical topics and then took a comprehension test. Better comprehension of the technical passages was related to higher activation in regions of the left inferior frontal gyrus, left superior parietal lobe, bilateral dorsolateral prefrontal cortex, and bilateral hippocampus. These areas are associated with the construction of a mental model of the passage and with the integration of new and prior knowledge in memory. Poorer comprehension of the passages was related to greater activation of the ventromedial prefrontal cortex and the precuneus, areas involved in autobiographical and episodic memory retrieval. More comprehensible passages elicited more brain activation associated with establishing links among different types of information in the text and activation associated with establishing conceptual coherence within the text representation. These findings converge with previous behavioral research in their implications for teaching technical learners to become better comprehenders and for improving the structure of instructional texts, to facilitate scientific and technological comprehension.
Collapse
Affiliation(s)
- Timothy A Keller
- Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Robert A Mason
- Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Aliza E Legg
- Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Marcel Adam Just
- Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
24
|
Yu L, Wang W, Li Z, Ren Y, Liu J, Jiao L, Xu Q. Alexithymia modulates emotion concept activation during facial expression processing. Cereb Cortex 2024; 34:bhae071. [PMID: 38466112 DOI: 10.1093/cercor/bhae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Alexithymia is characterized by difficulties in emotional information processing. However, the underlying reasons for emotional processing deficits in alexithymia are not fully understood. The present study aimed to investigate the mechanism underlying emotional deficits in alexithymia. Using the Toronto Alexithymia Scale-20, we recruited college students with high alexithymia (n = 24) or low alexithymia (n = 24) in this study. Participants judged the emotional consistency of facial expressions and contextual sentences while recording their event-related potentials. Behaviorally, the high alexithymia group showed longer response times versus the low alexithymia group in processing facial expressions. The event-related potential results showed that the high alexithymia group had more negative-going N400 amplitudes compared with the low alexithymia group in the incongruent condition. More negative N400 amplitudes are also associated with slower responses to facial expressions. Furthermore, machine learning analyses based on N400 amplitudes could distinguish the high alexithymia group from the low alexithymia group in the incongruent condition. Overall, these findings suggest worse facial emotion perception for the high alexithymia group, potentially due to difficulty in spontaneously activating emotion concepts. Our findings have important implications for the affective science and clinical intervention of alexithymia-related affective disorders.
Collapse
Affiliation(s)
- Linwei Yu
- Department of Psychology, Ningbo University, Ningbo 315211, China
| | - Weihan Wang
- Department of Psychology, Ningbo University, Ningbo 315211, China
| | - Zhiwei Li
- Department of Psychology, Ningbo University, Ningbo 315211, China
| | - Yi Ren
- Department of Psychology, Ningbo University, Ningbo 315211, China
| | - Jiabin Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Lan Jiao
- Department of Psychology, Ningbo University, Ningbo 315211, China
| | - Qiang Xu
- Department of Psychology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
25
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
26
|
Ofori E, Vaillancourt DE, Greig-Custo MT, Barker W, Hanson K, DeKosky ST, Garvan CS, Adjouadi M, Golde T, Loewenstein DA, Stecher C, Fowers R, Duara R. Free-water imaging reveals unique brain microstructural deficits in hispanic individuals with Dementia. Brain Imaging Behav 2024; 18:106-116. [PMID: 37903991 PMCID: PMC11157151 DOI: 10.1007/s11682-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 11/01/2023]
Abstract
Prior evidence suggests that Hispanic and non-Hispanic individuals differ in potential risk factors for the development of dementia. Here we determine whether specific brain regions are associated with cognitive performance for either ethnicity along various stages of Alzheimer's disease. For this cross-sectional study, we examined 108 participants (61 Hispanic vs. 47 Non-Hispanic individuals) from the 1Florida Alzheimer's Disease Research Center (1Florida ADRC), who were evaluated at baseline with diffusion-weighted and T1-weighted imaging, and positron emission tomography (PET) amyloid imaging. We used FreeSurfer to segment 34 cortical regions of interest. Baseline Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were used as measures of cognitive performance. Group analyses assessed free-water measures (FW) and volume. Statistically significant FW regions based on ethnicity x group interactions were used in a stepwise regression function to predict total MMSE and MoCA scores. Random forest models were used to identify the most predictive brain-based measures of a dementia diagnosis separately for Hispanic and non-Hispanic groups. Results indicated elevated FW values for the left inferior temporal gyrus, left middle temporal gyrus, left banks of the superior temporal sulcus, left supramarginal gyrus, right amygdala, and right entorhinal cortex in Hispanic AD subjects compared to non-Hispanic AD subjects. These alterations occurred in the absence of different volumes of these regions in the two AD groups. FW may be useful in detecting individual differences potentially reflective of varying etiology that can influence cognitive decline and identify MRI predictors of cognitive performance, particularly among Hispanics.
Collapse
Affiliation(s)
- Edward Ofori
- College of Health Solutions, Arizona State University, 425 N. 5th St Phoenix, Phoenix, AZ, 85004, USA.
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Maria T Greig-Custo
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA
| | - Kevin Hanson
- Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Emory Center for Neurodegenerative Disease, Departments of Pharmacology, Chemical Biology, & Neurology, Atlanta, GA, USA
| | - Cynthia S Garvan
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Malek Adjouadi
- Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Todd Golde
- Emory Center for Neurodegenerative Disease, Departments of Pharmacology, Chemical Biology, & Neurology, Atlanta, GA, USA
- Department of Psychiatry, Miller School of Medicine, Center for Cognitive Neuroscience and Aging University of Miami, Miami, FL, USA
| | - David A Loewenstein
- Department of Psychiatry, Miller School of Medicine, Center for Cognitive Neuroscience and Aging University of Miami, Miami, FL, USA
| | - Chad Stecher
- College of Health Solutions, Arizona State University, 425 N. 5th St Phoenix, Phoenix, AZ, 85004, USA
| | - Rylan Fowers
- College of Health Solutions, Arizona State University, 425 N. 5th St Phoenix, Phoenix, AZ, 85004, USA
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL, USA
| |
Collapse
|
27
|
Zheng XY, Hebart MN, Grill F, Dolan RJ, Doeller CF, Cools R, Garvert MM. Parallel cognitive maps for multiple knowledge structures in the hippocampal formation. Cereb Cortex 2024; 34:bhad485. [PMID: 38204296 PMCID: PMC10839836 DOI: 10.1093/cercor/bhad485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that reflect the embedding of objects in diverse relational structures.
Collapse
Affiliation(s)
- Xiaochen Y Zheng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
| | - Martin N Hebart
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Department of Medicine, Justus Liebig University, 35390, Giessen, Germany
| | - Filip Grill
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Neurology, 6525 GA, Nijmegen, the Netherlands
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, United Kingdom
| | - Christian F Doeller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU, 7491, Trondheim, Norway
- Wilhelm Wundt Institute of Psychology, Leipzig University, 04109, Leipzig, Germany
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Psychiatry, 6525 GA, Nijmegen, the Netherlands
| | - Mona M Garvert
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Tompary A, Xia A, Coslett BH, Thompson-Schill SL. Disruption of Anterior Temporal Lobe Reduces Distortions in Memory From Category Knowledge. J Cogn Neurosci 2023; 35:1899-1918. [PMID: 37713660 PMCID: PMC10860667 DOI: 10.1162/jocn_a_02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Memory retrieval does not provide a perfect recapitulation of past events, but instead an imperfect reconstruction of event-specific details and general knowledge. However, it remains unclear whether this reconstruction relies on mixtures of signals from different memory systems, including one supporting general knowledge. Here, we investigate whether the anterior temporal lobe (ATL) distorts new memories because of prior category knowledge. In this preregistered experiment (n = 36), participants encoded and retrieved image-location associations. Most images' locations were clustered according to their category, but some were in random locations. With this protocol, we previously demonstrated that randomly located images were retrieved closer to their category cluster relative to their encoded locations, suggesting an influence of category knowledge. We combined this procedure with TMS delivered to the left ATL before retrieval. We separately examined event-specific details (error) and category knowledge (bias) to identify distinct signals attributable to different memory systems. We found that TMS to ATL attenuated bias in location memory, but this effect was limited to exploratory analyses of atypical category members of animal categories. The magnitude of error was not impacted, suggesting that a memory's fidelity can be decoupled from its distortion by category knowledge. This raises the intriguing possibility that retrieval is jointly supported by separable memory systems.
Collapse
|
29
|
Petrides M. On the evolution of polysensory superior temporal sulcus and middle temporal gyrus: A key component of the semantic system in the human brain. J Comp Neurol 2023; 531:1987-1995. [PMID: 37434287 DOI: 10.1002/cne.25521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
The primary auditory cortex and other early auditory cortical areas lie on Heschl's gyrus within the Sylvian fissure. On the adjacent lateral surface of the superior temporal gyrus, the cortex processes higher order auditory information leading to auditory perception. On the ventral surface of the temporal lobe in the primate brain, there are areas that process higher order visual information leading to visual perception. These sensory-specific auditory and visual processing regions are separated by areas that integrate multisensory information within the deep superior temporal sulcus in both the macaque monkey and human brains. In the human brain, the multisensory integration cortex expands and forms the adjacent middle temporal gyrus. The expansion of this multisensory region in the language-dominant hemisphere of the human brain is critical for the emergence of semantic processing, namely, the processing of conceptual information that is not sensory specific but rather relies on multisensory integration.
Collapse
Affiliation(s)
- Michael Petrides
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Pratts J, Pobric G, Yao B. Bridging phenomenology and neural mechanisms of inner speech: ALE meta-analysis on egocentricity and spontaneity in a dual-mechanistic framework. Neuroimage 2023; 282:120399. [PMID: 37827205 DOI: 10.1016/j.neuroimage.2023.120399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
The neural mechanisms of inner speech remain unclear despite its importance in a variety of cognitive processes and its implication in aberrant perceptions such as auditory verbal hallucinations. Previous research has proposed a corollary discharge model in which inner speech is a truncated form of overt speech, relying on speech production-related regions (e.g. left inferior frontal gyrus). This model does not fully capture the diverse phenomenology of inner speech and recent research suggesting alternative perception-related mechanisms of generation. Therefore, we present and test a framework in which inner speech can be generated by two separate mechanisms, depending on its phenomenological qualities: a corollary discharge mechanism relying on speech production regions and a perceptual simulation mechanism within speech perceptual regions. The results of the activation likelihood estimation meta-analysis examining inner speech studies support the idea that varieties of inner speech recruit different neural mechanisms.
Collapse
Affiliation(s)
- Jaydan Pratts
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, University of Manchester, UK
| | - Gorana Pobric
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, University of Manchester, UK
| | - Bo Yao
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, University of Manchester, UK; Department of Psychology, Fylde College, Lancaster University, UK.
| |
Collapse
|
31
|
Naspi L, Stensholt C, Karlsson AE, Monge ZA, Cabeza R. Effects of Aging on Successful Object Encoding: Enhanced Semantic Representations Compensate for Impaired Visual Representations. J Neurosci 2023; 43:7337-7350. [PMID: 37673674 PMCID: PMC10621770 DOI: 10.1523/jneurosci.2265-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/08/2023] Open
Abstract
Although episodic memory and visual processing decline substantially with healthy aging, semantic knowledge is generally spared. There is evidence that older adults' spared semantic knowledge can support episodic memory. Here, we used functional magnetic resonance imaging (fMRI) combined with representational similarity analyses (RSAs) to examine how novel visual and preexisting semantic representations at encoding predict subjective memory vividness at retrieval. Eighteen young and seventeen older adults (female and male participants) encoded images of objects during fMRI scanning and recalled these images while rating the vividness of their memories. After scanning, participants discriminated between studied images and similar lures. RSA based on a deep convolutional neural network and normative concept feature data were used to link patterns of neural activity during encoding to visual and semantic representations. Relative to young adults, the specificity of activation patterns for visual features was reduced in older adults, consistent with dedifferentiation. However, the specificity of activation patterns for semantic features was enhanced in older adults, consistent with hyperdifferentiation. Despite dedifferentiation, visual representations in early visual cortex (EVC) predicted high memory vividness in both age groups. In contrast, semantic representations in lingual gyrus (LG) and fusiform gyrus (FG) were associated with high memory vividness only in the older adults. Intriguingly, data suggests that older adults with lower specificity of visual representations in combination with higher specificity of semantic representations tended to rate their memories as more vivid. Our findings suggest that memory vividness in aging relies more on semantic representations over anterior regions, potentially compensating for age-related dedifferentiation of visual information in posterior regions.SIGNIFICANCE STATEMENT Normal aging is associated with impaired memory for events while semantic knowledge might even improve. We investigated the effects of aging on the specificity of visual and semantic information in the brain when viewing common objects and how this information enables subsequent memory vividness for these objects. Using functional magnetic resonance imaging (fMRI) combined with modeling of the stimuli we found that visual information was represented with less specificity in older than young adults while still supporting memory vividness. In contrast semantic information supported memory vividness only in older adults and especially in those individuals that had the lowest specificity of visual information. These findings provide evidence for a spared semantic memory system increasingly recruited to compensate for degraded visual representations in older age.
Collapse
Affiliation(s)
- Loris Naspi
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Charlotte Stensholt
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Anna E Karlsson
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
| | - Zachary A Monge
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| | - Roberto Cabeza
- Department of Psychology, Humboldt University of Berlin, Berlin 10117, Germany
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708
| |
Collapse
|
32
|
Alonso-Sánchez MF, Limongi R, Gati J, Palaniyappan L. Language network self-inhibition and semantic similarity in first-episode schizophrenia: A computational-linguistic and effective connectivity approach. Schizophr Res 2023; 259:97-103. [PMID: 35568676 DOI: 10.1016/j.schres.2022.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION A central feature of schizophrenia is the disorganization and impoverishment of language. Recently, we observed higher semantic similarity in first-episode-schizophrenia (FES) patients. In this study, we investigate if this aberrant similarity relates to the 'causal' connectivity between two key nodes of the word production system: inferior frontal gyrus (IFG) and the semantic-hub at the ventral anterior temporal lobe (vATL). METHODS Resting-state fMRI scans were collected from 60 participants (30 untreated FES and 30 healthy controls). The semantic distance was measured with the CoVec semantic tool based on GloVe. A spectral dynamic causal model with Parametrical Empirical Bayes was constructed modelling the intrinsic self-inhibitory and extrinsic-excitatory connections within the brain regions. We estimated the parameters of a fully connected model with the semantic distance as a covariate. RESULTS FES patients chose words with higher semantic similarity when describing the pictures compared to the HC group. Among patients, an increased semantic similarity was related with an increase in intrinsic connections within both the vATL and IFG, suggesting that reduced 'synaptic gain' in these regions likely contribute to aberrant sampling of the semantic space during discourse in schizophrenia. CONCLUSIONS Lexical impoverishment relates to increased self-inhibition in both the IFG and vATL. The associated reduction in synaptic gain may relate to reduced precision of locally generated neural activity, forcing the choice of words that are already 'activated' in a lexical network. One approach to improve word sampling may be via promoting synaptic gain via supra-physiological stimulation within the Broca's-vATL network; this proposal needs verification.
Collapse
Affiliation(s)
- María Francisca Alonso-Sánchez
- CIDCL, Fonoaudiología, Facultad de Medicina, Universidad de Valparaíso, Chile; Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Joseph Gati
- Robarts Research Institute, Western University, London, Ontario, Canada; Centre for Youth Mental Health Service Innovation, Research and Training, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, Ontario, Canada; Centre for Youth Mental Health Service Innovation, Research and Training, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
33
|
Thomas G, McMahon KL, Finch E, Copland DA. Interindividual variability and consistency of language mapping paradigms for presurgical use. BRAIN AND LANGUAGE 2023; 243:105299. [PMID: 37413742 DOI: 10.1016/j.bandl.2023.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/08/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Most functional MRI studies of language processing have focussed on group-level inference, but for clinical use, the aim is to predict outcomes at an individual patient level. This requires being able to identify atypical activation and understand how differences relate to language outcomes. A language mapping paradigm that selectively activates left hemisphere language regions in healthy individuals allows atypical activation in a patient to be more easily identified. We investigated the interindividual variability and consistency of language activation in 12 healthy participants using three tasks-verb generation, responsive naming, and sentence comprehension-for future presurgical use. Responsive naming produced the most consistent left-lateralised activation across participants in frontal and temporal regions that postsurgical voxel-based lesion-symptom mapping studies suggest are most critical for language outcomes. Studies with a long-term clinical aim of predicting language outcomes in neurosurgical patients and stroke patients should first establish paradigm validity at an individual level in healthy participants.
Collapse
Affiliation(s)
- Georgia Thomas
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Herston Imaging Research Facility, The University of Queensland, Brisbane, Australia
| | - Emma Finch
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Research and Innovation, West Moreton Health, Ipswich, Australia; Speech Pathology Department, Princess Alexandra Hospital, Brisbane, Australia
| | - David A Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| |
Collapse
|
34
|
Banks MI, Krause BM, Berger DG, Campbell DI, Boes AD, Bruss JE, Kovach CK, Kawasaki H, Steinschneider M, Nourski KV. Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology. PLoS Biol 2023; 21:e3002239. [PMID: 37651504 PMCID: PMC10499207 DOI: 10.1371/journal.pbio.3002239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bryan M. Krause
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - D. Graham Berger
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Declan I. Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron D. Boes
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Joel E. Bruss
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher K. Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Mitchell Steinschneider
- Department of Neurology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Kirill V. Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
35
|
Jackson RL, Humphreys GF, Rice GE, Binney RJ, Lambon Ralph MA. A network-level test of the role of the co-activated default mode network in episodic recall and social cognition. Cortex 2023; 165:141-159. [PMID: 37285763 PMCID: PMC10284259 DOI: 10.1016/j.cortex.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 06/09/2023]
Abstract
Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g., univariate) analyses independently testing the function of individual regions and not examining the full set of regions that form a network whilst co-activated. Connectivity is dynamic and the function of a region may change based on its current connections. Therefore, determining the function of a network requires assessment at this network-level. Yet popular theories implicating the default mode network (DMN) in episodic memory and social cognition, rest principally upon analyses performed at the level of individual brain regions. Here we use independent component analysis to formally test the role of the DMN in episodic and social processing at the network level. As well as an episodic retrieval task, two independent datasets were employed to assess DMN function across the breadth of social cognition; a person knowledge judgement and a theory of mind task. Each task dataset was separated into networks of co-activated regions. In each, the co-activated DMN, was identified through comparison to an a priori template and its relation to the task model assessed. This co-activated DMN did not show greater activity in episodic or social tasks than high-level baseline conditions. Thus, no evidence was found to support hypotheses that the co-activated DMN is involved in explicit episodic or social tasks at a network-level. The networks associated with these processes are described. Implications for prior univariate findings and the functional significance of the co-activated DMN are considered.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK; MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Grace E Rice
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
36
|
Zhang Y, Mirman D, Hoffman P. Taxonomic and thematic relations rely on different types of semantic features: Evidence from an fMRI meta-analysis and a semantic priming study. BRAIN AND LANGUAGE 2023; 242:105287. [PMID: 37263104 DOI: 10.1016/j.bandl.2023.105287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Taxonomic and thematic relations are major components of semantic representation but their neurocognitive underpinnings are still debated. We hypothesised that taxonomic relations preferentially activate parts of anterior temporal lobe (ATL) because they rely more on colour and shape features, while thematic relations preferentially activate temporoparietal cortex (TPC) because they rely more on action and location knowledge. We first conducted activation likelihood estimation (ALE) meta-analysis to assess evidence for neural specialisation in the existing fMRI literature (Study 1), then used a primed semantic judgement task to examine if the two relations are primed by different feature types (Study 2). We find that taxonomic relations show minimal feature-based specialisation but preferentially activate the lingual gyrus. Thematic relations are more dependent on action and location features and preferentially engage TPC. The meta-analysis also showed that lateral ATL is preferentially engaged by Thematic relations, which may reflect their greater reliance on verbal associations.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK.
| |
Collapse
|
37
|
Timofeeva P, Quiñones I, Geng S, de Bruin A, Carreiras M, Amoruso L. Behavioral and oscillatory signatures of switch costs in highly proficient bilinguals. Sci Rep 2023; 13:7725. [PMID: 37173436 PMCID: PMC10176297 DOI: 10.1038/s41598-023-34895-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Bilinguals with a high proficiency in their first (L1) and second language (L2) often show comparable reaction times when switching from their L1 to L2 and vice-versa ("symmetrical switch costs"). However, the neurophysiological signatures supporting this effect are not well understood. Here, we ran two separate experiments and assessed behavioral and MEG responses in highly proficient Spanish-Basque bilinguals while they overtly name pictures in a mixed-language context. In the behavioral experiment, bilinguals were slower when naming items in switch relative to non-switch trials, and this switch cost was comparable for both languages (symmetrical). The MEG experiment mimicked the behavioral one, with switch trials showing more desynchronization than non-switch trials across languages (symmetric neural cost) in the alpha band (8-13 Hz). Source-localization revealed the engagement of right parietal and premotor areas, which have been linked to language selection and inhibitory control; and of the left anterior temporal lobe (ATL), a cross-linguistic region housing conceptual knowledge that generalizes across languages. Our results suggest that highly proficient bilinguals implement a language-independent mechanism, supported by alpha oscillations, which is involved in cue-based language selection and facilitates conceptually-driven lexical access in the ATL, possibly by inhibiting non-target lexical items or disinhibiting target ones.
Collapse
Affiliation(s)
- Polina Timofeeva
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), 20009, San Sebastian, Spain
| | - Ileana Quiñones
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain
| | - Shuang Geng
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), 20009, San Sebastian, Spain
| | - Angela de Bruin
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Manuel Carreiras
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain
- Universidad del País Vasco (UPV/EHU), 20009, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48940, Bilbao, Spain
| | - Lucia Amoruso
- BCBL, Basque Center On Brain, Language and Cognition, Paseo Mikeletegi 69, 2nd floor, 20009, Donostia/San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, 48940, Bilbao, Spain.
| |
Collapse
|
38
|
Rahimi S, Jackson R, Farahibozorg SR, Hauk O. Time-Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG pattern transformation based functional connectivity metric. Neuroimage 2023; 270:119958. [PMID: 36813063 PMCID: PMC10030313 DOI: 10.1016/j.neuroimage.2023.119958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Functional and effective connectivity methods are essential to study the complex information flow in brain networks underlying human cognition. Only recently have connectivity methods begun to emerge that make use of the full multidimensional information contained in patterns of brain activation, rather than unidimensional summary measures of these patterns. To date, these methods have mostly been applied to fMRI data, and no method allows vertex-to-vertex transformations with the temporal specificity of EEG/MEG data. Here, we introduce time-lagged multidimensional pattern connectivity (TL-MDPC) as a novel bivariate functional connectivity metric for EEG/MEG research. TL-MDPC estimates the vertex-to-vertex transformations among multiple brain regions and across different latency ranges. It determines how well patterns in ROI X at time point tx can linearly predict patterns of ROI Y at time point ty. In the present study, we use simulations to demonstrate TL-MDPC's increased sensitivity to multidimensional effects compared to a unidimensional approach across realistic choices of number of trials and signal-to-noise ratios. We applied TL-MDPC, as well as its unidimensional counterpart, to an existing dataset varying the depth of semantic processing of visually presented words by contrasting a semantic decision and a lexical decision task. TL-MDPC detected significant effects beginning very early on, and showed stronger task modulations than the unidimensional approach, suggesting that it is capable of capturing more information. With TL-MDPC only, we observed rich connectivity between core semantic representation (left and right anterior temporal lobes) and semantic control (inferior frontal gyrus and posterior temporal cortex) areas with greater semantic demands. TL-MDPC is a promising approach to identify multidimensional connectivity patterns, typically missed by unidimensional approaches.
Collapse
Affiliation(s)
- Setareh Rahimi
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom.
| | - Rebecca Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom
| | - Seyedeh-Rezvan Farahibozorg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom
| |
Collapse
|
39
|
Rijpma MG, Montembeault M, Shdo S, Kramer JH, Miller BL, Rankin KP. Semantic knowledge of social interactions is mediated by the hedonic evaluation system in the brain. Cortex 2023; 161:26-37. [PMID: 36878098 PMCID: PMC10365613 DOI: 10.1016/j.cortex.2022.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 02/10/2023]
Abstract
Attaching semantic meaning to sensory information received from both inside and outside our bodies is a fundamental function of the human brain. The theory of Controlled Semantic Cognition (CSC) proposes that the formation of semantic knowledge relies on connections between spatially distributed modality-specific spoke-nodes, and a modality-general hub in the anterior temporal lobes (ATLs). This theory can also be applied to social semantic knowledge, though certain domain-specific spoke-nodes may make a disproportionate contribution to the understanding of social concepts. The ATLs have strong connections with spoke-node structures such as the subgenual ACC (sgACC) and the orbitofrontal cortex (OFC) that play an important role in predicting the hedonic value of stimuli. We hypothesized that in addition to the ATL semantic hub, a social semantic task would also require input from hedonic evaluation structures. We used voxel based morphometry (VBM) to examine structural brain-behavior relationships in 152 patients with neurodegeneration (Alzheimer's disease [N = 12], corticobasal syndrome (N = 18], progressive supranuclear palsy [N = 13], behavioral variant frontotemporal dementia [N = 56], and primary progressive aphasia (PPA) [N = 53]) using the Social Interaction Vocabulary Task (SIVT). This task measures the ability to correctly match a social term (e.g. "gossiping") with a visual depiction of that social interaction. As predicted, VBM showed that worse SIVT scores corresponded with volume loss in bilateral ATL semantic hub regions, but also in the sgACC, OFC, caudate and putamen (pFWE <0.05). These results support the CSC model of a hub-and-spoke organization of social semantic knowledge with the ATL as a domain-general semantic hub, and ventromedial and striatal structures as domain specific spoke-nodes. Importantly, these results suggest that correct comprehension of social semantic concepts requires emotional 'tagging' of a concept by the evaluation system, and that the social deficits observed in some neurodegenerative disease syndromes may be caused by the break-down of this mechanism.
Collapse
Affiliation(s)
- Myrthe G Rijpma
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA.
| | - Maxime Montembeault
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| | - Suzanne Shdo
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| | - Joel H Kramer
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| | - Katherine P Rankin
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| |
Collapse
|
40
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
41
|
González-García I, Visser M. A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology. Healthcare (Basel) 2023; 11:healthcare11060821. [PMID: 36981478 PMCID: PMC10047953 DOI: 10.3390/healthcare11060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Over the last two decades, the functional role of the bilateral anterior temporal lobes (bATLs) has been receiving more attention. They have been associated with semantics and social concept processing, and are regarded as a core region for depression. In the past, the role of the ATL has often been overlooked in semantic models based on functional magnetic resonance imaging (fMRI) due to geometric distortions in the BOLD signal. However, previous work has unequivocally associated the bATLs with these higher-order cognitive functions following advances in neuroimaging techniques to overcome the geometric distortions. At the same time, the importance of the neural basis of conceptual knowledge in understanding mood disorders became apparent. Theoretical models of the neural basis of mood and anxiety disorders have been classically studied from the emotion perspective, without concentrating on conceptual processing. However, recent work suggests that the ATL, a brain region underlying conceptual knowledge, plays an essential role in mood and anxiety disorders. Patients with anxiety and depression often cope with self-blaming biases and guilt. The theory is that in order to experience guilt, the brain needs to access the related conceptual information via the ATL. This narrative review describes how aberrant interactions of the ATL with the fronto–limbic emotional system could underlie mood and anxiety disorders.
Collapse
|
42
|
Delhaye E, Coco MI, Bahri MA, Raposo A. Typicality in the brain during semantic and episodic memory decisions. Neuropsychologia 2023; 184:108529. [PMID: 36898662 DOI: 10.1016/j.neuropsychologia.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Concept typicality is a key semantic dimension supporting the categorical organization of items based on their features, such that typical items share more features with other members of their category than atypical items, which are more distinctive. Typicality effects manifest in better accuracy and faster response times during categorization tasks, but higher performance for atypical items in episodic memory tasks, due to their distinctiveness. At a neural level, typicality has been linked to the anterior temporal lobe (ATL) and the inferior frontal gyrus (IFG) in semantic decision tasks, but patterns of brain activity during episodic memory tasks remain to be understood. We investigated the neural correlates of typicality in semantic and episodic memory to determine the brain regions associated with semantic typicality and uncover effects arising when items are reinstated during retrieval. In an fMRI study, 26 healthy young subjects first performed a category verification task on words representing typical and atypical concepts (encoding), and then completed a recognition memory task (retrieval). In line with previous literature, we observed higher accuracy and faster response times for typical items in the category verification task, while atypical items were better recognized in the episodic memory task. During category verification, univariate analyses revealed a greater involvement of the angular gyrus for typical items and the inferior frontal gyrus for atypical items. During the correct recognition of old items, regions belonging to the core recollection network were activated. We then compared the similarity of the representations from encoding to retrieval (ERS) using Representation Similarity Analyses. Results showed that typical items were reinstated more than atypical ones in several regions including the left precuneus and left anterior temporal lobe (ATL). This suggests that the correct retrieval of typical items requires finer-grained processing, evidenced by greater item-specific reinstatement, which is needed to resolve their confusability with other members of the category due to their higher feature similarity. Our findings confirm the centrality of the ATL in the processing of typicality while extending it to memory retrieval.
Collapse
Affiliation(s)
- Emma Delhaye
- GIGA-CRC IVI, Liege University, Belgium; CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal.
| | - Moreno I Coco
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal; Department of Psychology, Sapienza, University of Rome, Italy; IRCCS Santa Lucia, Rome, Italy
| | | | - Ana Raposo
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Portugal
| |
Collapse
|
43
|
Tian L, Chen H, Heikkinen PP, Liu W, Parviainen T. Spatiotemporal Dynamics of Activation in Motor and Language Areas Suggest a Compensatory Role of the Motor Cortex in Second Language Processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:178-197. [PMID: 37229145 PMCID: PMC10205076 DOI: 10.1162/nol_a_00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023]
Abstract
The involvement of the motor cortex in language understanding has been intensively discussed in the framework of embodied cognition. Although some studies have provided evidence for the involvement of the motor cortex in different receptive language tasks, the role that it plays in language perception and understanding is still unclear. In the present study, we explored the degree of involvement of language and motor areas in a visually presented sentence comprehension task, modulated by language proficiency (L1: native language, L2: second language) and linguistic abstractness (literal, metaphorical, and abstract). Magnetoencephalography data were recorded from 26 late Chinese learners of English. A cluster-based permutation F test was performed on the amplitude of the source waveform for each motor and language region of interest (ROI). Results showed a significant effect of language proficiency in both language and motor ROIs, manifested as overall greater involvement of language ROIs (short insular gyri and planum polare of the superior temporal gyrus) in the L1 than the L2 during 300-500 ms, and overall greater involvement of motor ROI (central sulcus) in the L2 than the L1 during 600-800 ms. We interpreted the over-recruitment of the motor area in the L2 as a higher demand for cognitive resources to compensate for the inadequate engagement of the language network. In general, our results indicate a compensatory role of the motor cortex in L2 understanding.
Collapse
Affiliation(s)
- Lili Tian
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
- School of Foreign Languages, Dalian University of Technology, Dalian, China
- Language and Brain Research Centre, Sichuan International Studies University, Chongqing, China
| | - Hongjun Chen
- School of Foreign Languages, Dalian University of Technology, Dalian, China
| | - Pyry Petteri Heikkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Wenya Liu
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
44
|
Frisby SL, Halai AD, Cox CR, Lambon Ralph MA, Rogers TT. Decoding semantic representations in mind and brain. Trends Cogn Sci 2023; 27:258-281. [PMID: 36631371 DOI: 10.1016/j.tics.2022.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
A key goal for cognitive neuroscience is to understand the neurocognitive systems that support semantic memory. Recent multivariate analyses of neuroimaging data have contributed greatly to this effort, but the rapid development of these novel approaches has made it difficult to track the diversity of findings and to understand how and why they sometimes lead to contradictory conclusions. We address this challenge by reviewing cognitive theories of semantic representation and their neural instantiation. We then consider contemporary approaches to neural decoding and assess which types of representation each can possibly detect. The analysis suggests why the results are heterogeneous and identifies crucial links between cognitive theory, data collection, and analysis that can help to better connect neuroimaging to mechanistic theories of semantic cognition.
Collapse
Affiliation(s)
- Saskia L Frisby
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, Chaucer Road, Cambridge CB2 7EF, UK.
| | - Ajay D Halai
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, Chaucer Road, Cambridge CB2 7EF, UK
| | - Christopher R Cox
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Matthew A Lambon Ralph
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, Chaucer Road, Cambridge CB2 7EF, UK
| | - Timothy T Rogers
- Department of Psychology, University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706, USA.
| |
Collapse
|
45
|
Sugimoto H, Abe MS, Otake-Matsuura M. Word-producing brain: Contribution of the left anterior middle temporal gyrus to word production patterns in spoken language. BRAIN AND LANGUAGE 2023; 238:105233. [PMID: 36842390 DOI: 10.1016/j.bandl.2023.105233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Vocabulary is based on semantic knowledge. The anterior temporal lobe (ATL) has been considered an essential region for processing semantic knowledge; nonetheless, the association between word production patterns and the structural and functional characteristics of the ATL remains unclear. To examine this, we analyzed over one million words from group conversations among community-dwelling older adults and their multimodal magnetic resonance imaging data. A quantitative index for the word production patterns, namely the exponent β of Heaps' law, positively correlated with the left anterior middle temporal gyrus volume. Moreover, β negatively correlated with its resting-state functional connectivity with the precuneus. There was no significant correlation with the diffusion tensor imaging metrics in any fiber. These findings suggest that the vocabulary richness in spoken language depends on the brain status characterized by the semantic knowledge-related brain structure and its activation dissimilarity with the precuneus, a core region of the default mode network.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Masato S Abe
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; Faculty of Culture and Information Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto-fu 610-0394, Japan.
| | - Mihoko Otake-Matsuura
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| |
Collapse
|
46
|
Chiou R, Cox CR, Lambon Ralph MA. Bipartite functional fractionation within the neural system for social cognition supports the psychological continuity of self versus other. Cereb Cortex 2023; 33:1277-1299. [PMID: 35394005 PMCID: PMC9930627 DOI: 10.1093/cercor/bhac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Research of social neuroscience establishes that regions in the brain's default-mode network (DN) and semantic network (SN) are engaged by socio-cognitive tasks. Research of the human connectome shows that DN and SN regions are both situated at the transmodal end of a cortical gradient but differ in their loci along this gradient. Here we integrated these 2 bodies of research, used the psychological continuity of self versus other as a "test-case," and used functional magnetic resonance imaging to investigate whether these 2 networks would encode social concepts differently. We found a robust dissociation between the DN and SN-while both networks contained sufficient information for decoding broad-stroke distinction of social categories, the DN carried more generalizable information for cross-classifying across social distance and emotive valence than did the SN. We also found that the overarching distinction of self versus other was a principal divider of the representational space while social distance was an auxiliary factor (subdivision, nested within the principal dimension), and this representational landscape was more manifested in the DN than in the SN. Taken together, our findings demonstrate how insights from connectome research can benefit social neuroscience and have implications for clarifying the 2 networks' differential contributions to social cognition.
Collapse
Affiliation(s)
| | - Christopher R Cox
- Department of Psychology, Louisiana State University, LA 70803, Baton Rouge, United States
| | - Matthew A Lambon Ralph
- MRC Cognition & Brain Science Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| |
Collapse
|
47
|
Li J, Yang Y, Viñas-Guasch N, Yang Y, Bi HY. Differences in brain functional networks for audiovisual integration during reading between children and adults. Ann N Y Acad Sci 2023; 1520:127-139. [PMID: 36478220 DOI: 10.1111/nyas.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Building robust letter-to-sound correspondences is a prerequisite for developing reading capacity. However, the neural mechanisms underlying the development of audiovisual integration for reading are largely unknown. This study used functional magnetic resonance imaging in a lexical decision task to investigate functional brain networks that support audiovisual integration during reading in developing child readers (10-12 years old) and skilled adult readers (20-28 years old). The results revealed enhanced connectivity in a prefrontal-superior temporal network (including the right medial frontal gyrus, right superior frontal gyrus, and left superior temporal gyrus) in adults relative to children, reflecting the development of attentional modulation of audiovisual integration involved in reading processing. Furthermore, the connectivity strength of this brain network was correlated with reading accuracy. Collectively, this study, for the first time, elucidates the differences in brain networks of audiovisual integration for reading between children and adults, promoting the understanding of the neurodevelopment of multisensory integration in high-level human cognition.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yinghui Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,China Welfare Institute Information and Research Center, Soong Ching Ling Children Development Center, Shanghai, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Bartoň M, Rapcsak SZ, Zvončák V, Mareček R, Cvrček V, Rektorová I. Functional neuroanatomy of reading in Czech: Evidence of a dual-route processing architecture in a shallow orthography. Front Psychol 2023; 13:1037365. [PMID: 36726504 PMCID: PMC9885179 DOI: 10.3389/fpsyg.2022.1037365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction According to the strong version of the orthographic depth hypothesis, in languages with transparent letter-sound mappings (shallow orthographies) the reading of both familiar words and unfamiliar nonwords may be accomplished by a sublexical pathway that relies on serial grapheme-to-phoneme conversion. However, in languages such as English characterized by inconsistent letter-sound relationships (deep orthographies), word reading is mediated by a lexical-semantic pathway that relies on mappings between word-specific orthographic, semantic, and phonological representations, whereas the sublexical pathway is used primarily to read nonwords. Methods In this study, we used functional magnetic resonance imaging to elucidate neural substrates of reading in Czech, a language characterized by a shallo worthography. Specifically, we contrasted patterns of brain activation and connectivity during word and nonword reading to determine whether similar or different neural mechanisms are involved. Neural correlates were measured as differences in simple whole-brain voxel-wise activation, and differences in visual word form area (VWFA) task-related connectivity were computed on the group level from data of 24 young subject. Trial-to-trial reading reaction times were used as a measure of task difficulty, and these effects were subtracted from the activation and connectivity effects in order to eliminate difference in cognitive effort which is naturally higher for nonwords and may mask the true lexicality effects. Results We observed pattern of activity well described in the literature mostly derived from data of English speakers - nonword reading (as compared to word reading) activated the sublexical pathway to a greater extent whereas word reading was associated with greater activation of semantic networks. VWFA connectivity analysis also revealed stronger connectivity to a component of the sublexical pathway - left inferior frontal gyrus (IFG), for nonword compared to word reading. Discussion These converging results suggest that the brain mechanism of skilled reading in shallow orthography languages are similar to those engaged when reading in languages with a deep orthography and are supported by a universal dual-pathway neural architecture.
Collapse
Affiliation(s)
- Marek Bartoň
- Applied Neuroscience Research Group, Central European Institute of Technology – CEITEC, Masaryk University, Brno, Czechia
| | - Steven Z. Rapcsak
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Vojtěch Zvončák
- Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Radek Mareček
- Applied Neuroscience Research Group, Central European Institute of Technology – CEITEC, Masaryk University, Brno, Czechia
| | - Václav Cvrček
- Institute of the Czech National Corpus, Charles University, Prague, Czechia
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology – CEITEC, Masaryk University, Brno, Czechia,International Clinical Research Center, ICRC, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia,*Correspondence: Irena Rektorová, ✉ ; ✉
| |
Collapse
|
49
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
50
|
The role of the angular gyrus in semantic cognition: a synthesis of five functional neuroimaging studies. Brain Struct Funct 2023; 228:273-291. [PMID: 35476027 DOI: 10.1007/s00429-022-02493-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/04/2022] [Indexed: 01/07/2023]
Abstract
Semantic knowledge is central to human cognition. The angular gyrus (AG) is widely considered a key brain region for semantic cognition. However, the role of the AG in semantic processing is controversial. Key controversies concern response polarity (activation vs. deactivation) and its relation to task difficulty, lateralization (left vs. right AG), and functional-anatomical subdivision (PGa vs. PGp subregions). Here, we combined the fMRI data of five studies on semantic processing (n = 172) and analyzed the response profiles from the same anatomical regions-of-interest for left and right PGa and PGp. We found that the AG was consistently deactivated during non-semantic conditions, whereas response polarity during semantic conditions was inconsistent. However, the AG consistently showed relative response differences between semantic and non-semantic conditions, and between different semantic conditions. A combined analysis across all studies revealed that AG responses could be best explained by separable effects of task difficulty and semantic processing demand. Task difficulty effects were stronger in PGa than PGp, regardless of hemisphere. Semantic effects were stronger in left than right AG, regardless of subregion. These results suggest that the AG is engaged in both domain-general task-difficulty-related processes and domain-specific semantic processes. In semantic processing, we propose that left AG acts as a "multimodal convergence zone" that binds different semantic features associated with the same concept, enabling efficient access to task-relevant features.
Collapse
|