1
|
Flanagan L, Mansur BDM, Reichert C, Richter A, Golbabaei S, Kizilirmak JM, Sweeney-Reed CM. Exploring anterior thalamus functional connectivity with cortical regions in prospective memory with ultra-high-field functional MRI. Brain Commun 2025; 7:fcaf135. [PMID: 40276704 PMCID: PMC12018800 DOI: 10.1093/braincomms/fcaf135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Prospective memory, or memory for future intentions, engages particular cortical regions. Lesion studies also implicate the thalamus, with prospective memory deterioration following thalamic stroke. Neuroimaging, anatomical and lesion studies suggest the anterior nuclei of the thalamus (ANT), in particular, are involved in episodic memory, with electrophysiological studies suggesting an active role in selecting neural assemblies underlying particular memory traces. Here, we hypothesized that the ANT are engaged in realizing prospectively-encoded intentions, detectable using ultra-high-field strength functional MRI. Using a within-subject design, participants (N = 14; age 20-35 years) performed an ongoing n-back working memory task with two cognitive loads, each with and without a prospective memory component, during 7-Tesla functional MRI. Seed-to-voxel whole brain functional connectivity analyses were performed to establish whether including a prospective memory component in an ongoing task results in greater connectivity between ANT and cortical regions engaged in prospective memory. Repeated measures ANOVAs were applied to behavioral and connectivity measures, with the factors Task Type (with prospective memory or not) and N-Back (2-back or 3-back). Response accuracy was greater and reaction times faster without the prospective memory component, and accuracy was higher in the 2- than 3-back condition. Task Type had a main effect on connectivity with an ANT seed, with greater ANT-DLPFC and ANT-STG connectivity when including a prospective memory component. Post hoc testing based on a significant interaction showed greater ANT-DLPFC connectivity (p-FWE = 0.007) when prospective memory was included with the low cognitive load and ANT-STG connectivity (p-FWE = 0.019) with the high cognitive load ongoing task. Direct comparison showed greater functional connectivity between these areas and the ANT than dorsomedial nucleus of the thalamus (DMNT) during prospective remembering. Enhanced ANT-DLPFC connectivity, a brain region with an established role in strategic monitoring for prospective memory cues, arose with a low cognitive load ongoing task that enabled monitoring. This connectivity was significantly less on direct comparison with increasing the cognitive load of the ongoing task without prospective memory, suggesting specificity for prospective memory. Greater ANT-STG connectivity on prospective memory inclusion in the higher cognitive load ongoing task fits with reported STG activation on prospective memory through spontaneous retrieval. Lower connectivity on direct comparison with a DMNT seed suggests ANT specificity. The findings fit with a coordinating role for the ANT in prospective remembering. Given the small sample, these findings should be considered preliminary, with replication required.
Collapse
Affiliation(s)
- Luke Flanagan
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Bruno de Matos Mansur
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
| | | | - Anni Richter
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, 39120 Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, 39120 Magdeburg, Germany
| | - Soroosh Golbabaei
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Jasmin M Kizilirmak
- Neurodidactics and NeuroLab, Institute of Psychology, University of Hildesheim, 31141 Hildesheim, Germany
- German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
2
|
Lim MJ, Tan J, Robert C, Tan WY, Venketasubramanian N, Chen C, Hilal S. The effect of hippocampal subfield volumes on cognitive decline and incident dementia in a memory clinic cohort. J Alzheimers Dis 2025:13872877251329574. [PMID: 40183347 DOI: 10.1177/13872877251329574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundThe hippocampus plays a central role in cognition and hippocampal atrophy is a key hallmark of Alzheimer's disease. Evidence has suggested associations between hippocampal subfield volumes and specific cognitive domains and dementia risk. However, to our knowledge, no study has examined the role of hippocampal subfield volumes in cognitive decline across different domains over time.ObjectiveWe investigated associations between hippocampal subfield volumes and changes in cognitive domains together with incident dementia in a memory clinic cohort.MethodsAssociations between hippocampal subfield volumes and cognitive decline over three years (n = 443) were analyzed using generalized estimating equations, and associations with incident dementia (n = 283) using multiple logistic regression.ResultsAt baseline, all hippocampal subfield volumes were associated with diagnosis of dementia, while the CA4-dentate gyrus, molecular layer, subicular complex, and fimbria volumes were associated with diagnosis of CIND. Over three years, all subfields except the hippocampal fissure were associated with memory. Decreased molecular layer (OR:2.26, 95%CI:1.50;3.50) size was associated with increased risk of dementia.ConclusionsOur findings suggest that hippocampal atrophy of the cornu ammonis, CA4-dentate gyrus, and molecular layer may first manifest with cognitive impairment in memory before other subfields of the hippocampus, and that molecular layer volume may be an early biomarker of dementia. Further research demonstrating the biological role of hippocampal subfields in specific cognitive domains is required.
Collapse
Affiliation(s)
- Mervyn Jr Lim
- Division of Neurosurgery, University Surgical Centre, National University Health System, Singapore
- Memory Ageing and Cognition Center, National University Health System, Singapore
| | - Jaclyn Tan
- Division of Neurosurgery, University Surgical Centre, National University Health System, Singapore
| | - Caroline Robert
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Ying Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Christopher Chen
- Memory Ageing and Cognition Center, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Memory Ageing and Cognition Center, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
3
|
Zilioli A, Pancaldi B, Baumeister H, Busi G, Misirocchi F, Mutti C, Florindo I, Morelli N, Mohanty R, Berron D, Westman E, Spallazzi M. Unveiling the hippocampal subfield changes across the Alzheimer's disease continuum: a systematic review of neuroimaging studies. Brain Imaging Behav 2025; 19:253-267. [PMID: 39443362 DOI: 10.1007/s11682-024-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Studies exploring the hippocampal subfield atrophy in Alzheimer's disease (AD) have shown contradictory results. This review aims to disentangle such heterogeneity by investigating the dynamic changes of hippocampal subfields across the AD continuum. We systematically searched the PubMed and EMBASE databases for case-control studies. Selected studies included investigations of biomarker-based amyloid status and reported data on hippocampal subfield atrophy using advanced MRI techniques. Twelve studies were included. Despite high heterogeneity, a distinguishable pattern of vulnerability of hippocampal subfields can be recognized from the cognitively unimpaired phase to the dementia stage, shedding light on hippocampal changes with disease progression. Consistent findings revealed atrophy in the subiculum and presubiculum, along with a potential increase in volume in the cornu ammonis (CA) among the cognitively unimpaired group, a feature not observed in patients experiencing subjective cognitive decline. Atrophy in the subiculum, presubiculum, CA 1-4, and the dentate gyrus characterized the mild cognitive impairment stage, with a more pronounced severity in the progression to dementia.
Collapse
Affiliation(s)
- Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Beatrice Pancaldi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Gabriele Busi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Carlotta Mutti
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Florindo
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
| | - Nicola Morelli
- Department of Neurology, G. da Saliceto Hospital, Piacenza, Italy
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
| |
Collapse
|
4
|
Addante RJ, Clise E, Waechter R, Bengson J, Drane DL, Perez-Caban J. Context familiarity is a third kind of episodic memory distinct from item familiarity and recollection. iScience 2024; 27:111439. [PMID: 39758982 PMCID: PMC11699256 DOI: 10.1016/j.isci.2024.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
Episodic memory is accounted for with two processes: "familiarity" when generally recognizing an item and "recollection" when retrieving the full contextual details bound with the item. We tested a combination of item recognition confidence and source memory, focusing upon three conditions: "item-only hits with source unknown" ('item familiarity'), "low-confidence hits with correct source memory" ('context familiarity'), and "high-confidence hits with correct source memory" ('recollection'). Behaviorally, context familiarity was slower than the others during item recognition, but faster during source memory. Electrophysiologically, a triple dissociation was evident in event-related potentials (ERPs), which was independently replicated. Context familiarity exhibited a negative effect from 800 to 1200 ms, differentiated from positive ERPs for item-familiarity (400-600 ms) and recollection (600-900 ms). These three conditions thus reflect mutually exclusive, fundamentally different processes of episodic memory, and we offer a new, tri-component model of memory. Context familiarity is a third distinct process of episodic memory.
Collapse
Affiliation(s)
- Richard J. Addante
- Florida Institute of Technology, Department of Psychology, 150 W. University Dr., Melbourne, FL 32905, USA
- Florida Institute of Technology, Department of Biomechanical Engineering, Melbourne, FL 32905, USA
- Neurocog Analytics, LLC, Palm Bay, FL 32905, USA
| | - Evan Clise
- Florida Institute of Technology, Department of Psychology, 150 W. University Dr., Melbourne, FL 32905, USA
| | - Randall Waechter
- Windward Islands Research and Education Foundation (WINDREF), Saint George University Medical School, Saint George, Grenada
| | | | | | - Jahdiel Perez-Caban
- Florida Institute of Technology, Department of Psychology, 150 W. University Dr., Melbourne, FL 32905, USA
| |
Collapse
|
5
|
Shao X, Li A, Wang Z, Xue G, Zhu B. False recall is associated with larger caudate in males but not in females. Memory 2024; 32:1341-1348. [PMID: 38416016 DOI: 10.1080/09658211.2024.2319314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
After learning semantically related words, some people are more likely than others to incorrectly recall unstudied but semantically related lures (i.e., Deese-Roediger-McDermott [DRM] false recall). Previous studies have suggested that neural activity in subcortical regions (e.g., the caudate) is involved in false memory, and that there may be sex differences in the neural basis of false memory. However, sex-specific associations between subcortical volumes and false memory are not well understood. This study investigated whether sex modulates the associations between subcortical volumes and DRM false recall in 400 healthy college students. Volumes of subcortical regions including the caudate, accumbens, amygdala, hippocampus, pallidum, putamen and thalamus were obtained from structural magnetic resonance images and measured using FreeSurfer. The results showed that males had lower true and false recall but larger subcortical volumes than females. Interestingly, higher false recall was associated with a larger caudate in males, but not in females. This association was significant after controlling for age and intracranial volume. This study provides new evidence on the neural basis of false recall. It suggests that the caudate plays a role in false recall in young men, and that future studies of the neural correlates of false memory should consider sex differences.
Collapse
Affiliation(s)
- Xuhao Shao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Institute of Developmental Psychology, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, People's Republic of China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, People's Republic of China
| | - Ao Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Zehua Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
- Institute of Developmental Psychology, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, People's Republic of China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Addante RJ, Clise E, Waechter R, Bengson J, Drane DL, Perez-Caban J. A third kind of episodic memory: Context familiarity is distinct from item familiarity and recollection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603640. [PMID: 39071285 PMCID: PMC11275934 DOI: 10.1101/2024.07.15.603640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Episodic memory is accounted for with two processes: 'familiarity' when generally recognizing an item and 'recollection' when retrieving the full contextual details bound with the item. Paradoxically, people sometimes report contextual information as familiar but without recollecting details, which is not easily accounted for by existing theories. We tested a combination of item recognition confidence and source memory, focusing upon 'item-only hits with source unknown' ('item familiarity'), 'low-confidence hits with correct source memory' ('context familiarity'), and 'high-confidence hits with correct source memory' ('recollection'). Results across multiple within-subjects (trial-wise) and between subjects (individual variability) levels indicated these were behaviorally and physiologically distinct. Behaviorally, a crossover interaction was evident in response times, with context familiarity being slower than each condition during item recognition, but faster during source memory. Electrophysiologically, a Condition x Time x Location triple dissociation was evident in event-related potentials (ERPs), which was then independently replicated. Context familiarity exhibited an independent negative central effect from 800-1200 ms, differentiated from positive ERPs for item-familiarity (400 to 600 ms) and recollection (600 to 900 ms). These three conditions thus reflect mutually exclusive, fundamentally different processes of episodic memory. Context familiarity is a third distinct process of episodic memory. Summary Memory for past events is widely believed to operate through two different processes: one called 'recollection' when retrieving confident, specific details of a memory, and another called 'familiarity' when only having an unsure but conscious awareness that an item was experienced before. When people successfully retrieve details such as the source or context of a prior event, it has been assumed to reflect recollection. We demonstrate that familiarity of context is functionally distinct from familiarity of items and recollection and offer a new, tri-component model of memory. The three memory responses were differentiated across multiple behavioral and brain wave measures. What has traditionally been thought to be two kinds of memory processes are actually three, becoming evident when using sensitive enough multi-measures. Results are independently replicated across studies from different labs. These data reveal that context familiarity is a third process of human episodic memory.
Collapse
|
7
|
Ellsay AC, Winston GP. Advances in MRI-based diagnosis of temporal lobe epilepsy: Correlating hippocampal subfield volumes with histopathology. J Neuroimaging 2024; 34:515-526. [PMID: 39092876 DOI: 10.1111/jon.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Epilepsy, affecting 0.5%-1% of the global population, presents a significant challenge with 30% of patients resistant to medical treatment. Temporal lobe epilepsy, a common cause of medically refractory epilepsy, is often caused by hippocampal sclerosis (HS). HS can be divided further by subtype, as defined by the International League Against Epilepsy (ILAE). Type 1 HS, the most prevalent form (60%-80% of all cases), is characterized by cell loss and gliosis predominantly in the subfields cornu ammonis (CA1) and CA4. Type 2 HS features cell loss and gliosis primarily in the CA1 sector, and type 3 HS features cell loss and gliosis predominantly in the CA4 subfield. This literature review evaluates studies on hippocampal subfields, exploring whether observable atrophy patterns from in vivo and ex vivo magnetic resonance imaging (MRI) scans correlate with histopathological examinations with manual or automated segmentation techniques. Our findings suggest only ex vivo 1.5 Tesla (T) or 3T MRI with manual segmentation or in vivo 7T MRI with manual or automated segmentations can consistently correlate subfield patterns with histopathologically derived ILAE-HS subtypes. In conclusion, manual and automated segmentation methods offer advantages and limitations in diagnosing ILAE-HS subtypes, with ongoing research crucial for refining hippocampal subfield segmentation techniques and enhancing clinical applicability.
Collapse
Affiliation(s)
- Andrea C Ellsay
- Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Gavin P Winston
- Centre for Neuroscience Studies, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
8
|
Chen J, Wang J, Duan K, Li X, Pan Z, Zhang J, Qin X, Hu Y, Lyu H. Selective vulnerability of hippocampal sub-regions in patients with subcortical vascular mild cognitive impairment. Brain Imaging Behav 2024; 18:922-929. [PMID: 38642314 PMCID: PMC11364596 DOI: 10.1007/s11682-024-00881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
Early diagnosis of subcortical vascular mild cognitive impairment (svMCI) is clinically essential because it is the most reversible subtype of all cognitive impairments. Since structural alterations of hippocampal sub-regions have been well studied in neurodegenerative diseases with pathophysiological cognitive impairments, we were eager to determine whether there is a selective vulnerability of hippocampal sub-fields in patients with svMCI. Our study included 34 svMCI patients and 34 normal controls (NCs), with analysis of T1 images and Montreal Cognitive Assessment (MoCA) scores. Gray matter volume (GMV) of hippocampal sub-regions was quantified and compared between the groups, adjusting for age, sex, and education. Additionally, we explored correlations between altered GMV in hippocampal sub-fields and MoCA scores in svMCI patients. Patients with svMCI exhibited selectively reduced GMV in several left hippocampal sub-regions, such as the hippocampal tail, hippocampal fissure, CA1 head, ML-HP head, CA4 head, and CA3 head, as well as decreased GMV in the right hippocampal tail. Specifically, GMV in the left CA3 head was inversely correlated with MoCA scores in svMCI patients. Our findings indicate that the atrophy pattern of patients with svMCI was predominantly located in the left hippocampal sub-regions. The left CA3 might be a crucial area underlying the distinct pathophysiological mechanisms of cognitive impairments with subcortical vascular origins.
Collapse
Affiliation(s)
- Jianxiang Chen
- Department of Radiology, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianjun Wang
- Department of Neurology and Psychology, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ke Duan
- Department of Radiology, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinbei Li
- Department of Radiology, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhongxian Pan
- Department of Radiology, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinhuan Zhang
- Department of Acupuncture and Moxibustion, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiude Qin
- Department of Neurology and Psychology, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.
| | - Yuanming Hu
- Department of Radiology, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.
| | - Hanqing Lyu
- Department of Radiology, The Fourth Clinical Medical College, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
9
|
Long Y, Xie X, Wang Y, Xu J, Gao Z, Fang X, Xu T, Zhang N, Lv D, Wu T. Atrophy patterns in hippocampal subregions and their relationship with cognitive function in fibromyalgia patients with mild cognitive impairment. Front Neurosci 2024; 18:1380121. [PMID: 38846715 PMCID: PMC11153790 DOI: 10.3389/fnins.2024.1380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Objectives Fibromyalgia (FM) has been associated with decreased hippocampal volume; however, the atrophy patterns of hippocampal subregions have not yet been identified. We therefore aimed to evaluate the volumes of hippocampal subregions in FM patients with mild cognitive impairment (MCI), and to explore the relationship between different subregional alterations and cognitive function. Methods The study included 35 FM patients (21 with MCI and 14 without MCI) and 35 healthy subjects. All subjects performed the Montreal Cognitive Assessment (MoCA) to assess cognitive function. FreeSurfer V.7.3.2 was used to calculate hippocampal subregion volumes. We then compared hippocampal subregion volumes between the groups, and analyzed the relationship between hippocampal subregion volume and cognitive function using a partial correlation analysis method. Results Compared with the healthy subjects, FM patients with MCI had smaller hippocampal volumes in the left and right CA1 head, Molecular layer head, GC-DG head, and CA4 head, and in the left Presubiculum head. Poorer executive function, naming ability, and attention were associated with left CA1 head and left Molecular layer head atrophy. By contrast, hippocampal subregion volumes in the FM patients without MCI were slightly larger than or similar to those in the healthy subjects, and were not significantly correlated with cognitive function. Conclusion Smaller volumes of left CA1 head and left Molecular layer head were associated with poorer executive function, naming ability, and attention in FM patients with MCI. However, these results were not observed in the FM patients without MCI. These findings suggest that the hippocampal subregions of FM patients might present compensatory mechanisms before cognitive decline occurs.
Collapse
Affiliation(s)
- Yingming Long
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyan Xie
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingwei Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinping Xu
- Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Ziyi Gao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaokun Fang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Zhang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongling Lv
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Wu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Hoang KN, Huang Y, Fujiwara E, Malykhin N. Effects of healthy aging and mnemonic strategies on verbal memory performance across the adult lifespan: Mediating role of posterior hippocampus. Hippocampus 2024; 34:100-122. [PMID: 38145465 DOI: 10.1002/hipo.23592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
In this study, we aimed to understand the contributions of hippocampal anteroposterior subregions (head, body, tail) and subfields (cornu ammonis 1-3 [CA1-3], dentate gyrus [DG], and subiculum [Sub]) and encoding strategies to the age-related verbal memory decline. Healthy participants were administered the California Verbal Learning Test-II to evaluate verbal memory performance and encoding strategies and underwent 4.7 T magnetic resonance imaging brain scan with subsequent hippocampal subregions and subfields manual segmentation. While total hippocampal volume was not associated with verbal memory performance, we found the volumes of the posterior hippocampus (body) and Sub showed significant effects on verbal memory performance. Additionally, the age-related volume decline in hippocampal body volume contributed to lower use of semantic clustering, resulting in lower verbal memory performance. The effect of Sub on verbal memory was statistically independent of encoding strategies. While total CA1-3 and DG volumes did not show direct or indirect effects on verbal memory, exploratory analyses with DG and CA1-3 volumes within the hippocampal body subregion suggested an indirect effect of age-related volumetric reduction on verbal memory performance through semantic clustering. As semantic clustering is sensitive to age-related hippocampal volumetric decline but not to the direct effect of age, further investigation of mechanisms supporting semantic clustering can have implications for early detection of cognitive impairments and decline.
Collapse
Affiliation(s)
- Kim Ngan Hoang
- Neuroscience and Mental Health Institute, Edmonton, Canada
| | - Yushan Huang
- Neuroscience and Mental Health Institute, Edmonton, Canada
| | - Esther Fujiwara
- Neuroscience and Mental Health Institute, Edmonton, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Nikolai Malykhin
- Neuroscience and Mental Health Institute, Edmonton, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Malykhin N, Pietrasik W, Hoang KN, Huang Y. Contributions of hippocampal subfields and subregions to episodic memory performance in healthy cognitive aging. Neurobiol Aging 2024; 133:51-66. [PMID: 37913626 DOI: 10.1016/j.neurobiolaging.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
In the present study we investigated whether hippocampal subfield (cornu ammonis 1-3, dentate gyrus, and subiculum) and anteroposterior hippocampal subregion (head,body, and tail) volumes can predict episodic memory function using high-field high resolution structural magnetic resonance imaging (MRI). We recruited 126 healthy participants (18-85 years). MRI datasets were collected on a 4.7 T system. Participants were administered the Wechsler Memory Scale (WMS-IV) to evaluate episodic memory function. Structural equation modeling was used to test the relationship between studied variables. We found that the volume of the dentate gyrus subfield and posterior hippocampus (body) showed a significant direct effect on visuospatial memory performance; additionally, an indirect effect of age on visuospatial memory mediated through these hippocampal subfield/subregion was significant. Logical and verbal memory were not significantly associated with hippocampal subfield or subregion volumes.
Collapse
Affiliation(s)
- Nikolai Malykhin
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Wojciech Pietrasik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kim Ngan Hoang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yushan Huang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Chang WL, Hen R. Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization. ADVANCES IN NEUROBIOLOGY 2024; 38:163-193. [PMID: 39008016 DOI: 10.1007/978-3-031-62983-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, the subgranular zone of the dentate gyrus is one of two brain regions (with the subventricular zone of the olfactory bulb) that continues to generate new neurons throughout adulthood, a phenomenon known as adult hippocampal neurogenesis (AHN) (Eriksson et al., Nat Med 4:1313-1317, 1998; García-Verdugo et al., J Neurobiol 36:234-248, 1998). The integration of these new neurons into the dentate gyrus (DG) has implications for memory encoding, with unique firing and wiring properties of immature neurons that affect how the hippocampal network encodes and stores attributes of memory. In this chapter, we will describe the process of AHN and properties of adult-born cells as they integrate into the hippocampal circuit and mature. Then, we will discuss some methodological considerations before we review evidence for the role of AHN in two major processes supporting memory that are performed by the DG. First, we will discuss encoding of contextual information for episodic memories and how this is facilitated by AHN. Second, will discuss pattern separation, a major role of the DG that reduces interference for the formation of new memories. Finally, we will review clinical and translational considerations, suggesting that stimulation of AHN may help decrease overgeneralization-a common endophenotype of mood, anxiety, trauma-related, and age-related disorders.
Collapse
Affiliation(s)
- Wei-Li Chang
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Rene Hen
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
13
|
Woodcock EA, Greenwald MK, Chen I, Feng D, Cohn JA, Lundahl LH. HIV chronicity as a predictor of hippocampal memory deficits in daily cannabis users living with HIV. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 9:100189. [PMID: 37736522 PMCID: PMC10509297 DOI: 10.1016/j.dadr.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Background Antiretroviral medications have increased the lifespan of persons living with HIV (PLWH) thereby unmasking memory decline that may be attributed to chronological age, HIV symptomatology, HIV disease chronicity, and/or substance use (especially cannabis use which is common among PLWH). To date, few studies have attempted to disentangle these effects. In a sample of daily cannabis-using PLWH, we investigated whether hippocampal memory function, assessed via an object-location associative learning task, was associated with age, HIV chronicity and symptom severity, or substance use. Methods 48 PLWH (12.9 ± 9.6 years since HIV diagnosis), who were 44 years old on average (range: 24-64 years; 58 % male) and reported daily cannabis use (recent use confirmed by urinalysis) completed the study. We assessed each participant's demographics, substance use, medical history, current HIV symptoms, and hippocampal memory function via a well-validated object-location associative learning task. Results Multiple regression analyses found that living more years since HIV+ diagnosis predicted significantly worse associative learning total score (r=-0.40) and learning rate (r=-0.34) whereas chronological age, cannabis-use characteristics, and recent HIV symptom severity were not significantly related to hippocampal memory function. Conclusions In daily cannabis-using PLWH, HIV chronicity was related to worse hippocampal memory function independent from cannabis use, age, and HIV symptomatology. Object-location associative learning performance could serve as an 'early-warning' metric of cognitive decline among PLWH. Future research should examine longitudinal changes in associative learning proficiency and evaluate interventions to prevent hippocampal memory decline among PLWH. ClinicalTrials.gov: NCT01536899.
Collapse
Affiliation(s)
- Eric A. Woodcock
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI USA
| | - Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
| | - Irene Chen
- Wayne State University School of Medicine, Detroit, MI USA
| | - Danni Feng
- Wayne State University School of Medicine, Detroit, MI USA
| | - Jonathan A. Cohn
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI USA
| | - Leslie H. Lundahl
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
14
|
Zhao W, Zhao L, Chang X, Lu X, Tu Y. Elevated dementia risk, cognitive decline, and hippocampal atrophy in multisite chronic pain. Proc Natl Acad Sci U S A 2023; 120:e2215192120. [PMID: 36802440 PMCID: PMC9992778 DOI: 10.1073/pnas.2215192120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Numerous studies have investigated the impacts of common types of chronic pain (CP) on patients' cognitive function and observed that CP was associated with later dementia. More recently, there is a growing recognition that CP conditions frequently coexist at multiple body sites and may bring more burdens on patients' overall health. However, whether and how multisite CP (MCP) contributes to an increased risk of dementia, compared to single-site CP (SCP) and pain-free (PF), is largely unclear. In the current study, utilizing the UK Biobank cohort, we first investigated dementia risk in individuals (n = 354,943) with different numbers of coexisting CP sites using Cox proportional hazards regression models. We then applied generalized additive models to investigate whether MCP leads to excessive deterioration of participants' (n = 19,116) cognition and brain structure. We found that individuals with MCP were associated with significantly higher dementia risk, broader and faster cognitive impairment, and greater hippocampal atrophy than both PF individuals and those with SCP. Moreover, the detrimental effects of MCP on dementia risk and hippocampal volume aggravated along with the number of coexisting CP sites. Mediation analyses further revealed that the decline of fluid intelligence in MCP individuals was partially mediated by hippocampal atrophy. Our results suggested that cognitive decline and hippocampal atrophy interact biologically and may underlie the increased risk of dementia associated with MCP.
Collapse
Affiliation(s)
- Wenhui Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Chang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Sabot D, Baumann O. Neuroimaging Correlates of Cognitive Behavioral Therapy for Insomnia (CBT-I): A Systematic Literature Review. J Cogn Psychother 2023; 37:82-101. [PMID: 36787999 DOI: 10.1891/jcpsy-d-21-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cognitive behavioral therapy for insomnia (CBT-I) is the gold-standard non-pharmacological treatment for insomnia, a complex disorder that comprises psychological, behavioral, and physiological components. This systematic literature review aimed to evaluate a growing body of exploratory studies that have examined CBT-I treatment effects using neuroimaging assessment. Nine studies met current review selection criteria, of which six studies compared insomnia groups with good sleepers, waitlist, and/or control groups. CBT-I administration varied in treatment length and duration across the studies, as did neuroimaging assessment, which included task-based and resting-state functional magnetic resonance imaging (fMRI), and structural magnetic resonance imaging (MRI). Functional connectivity abnormalities were observed in participants, including reduced engagement in task-related brain regions and apparent difficulties in regulating default mode brain areas that appeared to reverse following CBT-I treatment. Taken together, the neuroimaging results complement behavioral measures of treatment efficacy, indicating support for the effectiveness of CBT-I treatment in the recovery of brain function and structure.
Collapse
Affiliation(s)
- Debbie Sabot
- School of Psychology, Bond University, Robina QLD 4226 Australia
| | | |
Collapse
|
16
|
Dimsdale-Zucker HR, Montchal ME, Reagh ZM, Wang SF, Libby LA, Ranganath C. Representations of Complex Contexts: A Role for Hippocampus. J Cogn Neurosci 2023; 35:90-110. [PMID: 36166300 PMCID: PMC9832373 DOI: 10.1162/jocn_a_01919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hippocampus plays a critical role in supporting episodic memory, in large part by binding together experiences and items with surrounding contextual information. At present, however, little is known about the roles of different hippocampal subfields in supporting this item-context binding. To address this question, we constructed a task in which items were affiliated with differing types of context-cognitive associations that vary at the local, item level and membership in temporally organized lists that linked items together at a global level. Participants made item recognition judgments while undergoing high-resolution fMRI. We performed voxel pattern similarity analyses to answer the question of how human hippocampal subfields represent retrieved information about cognitive states and the time at which a past event took place. As participants recollected previously presented items, activity patterns in the CA23DG subregion carried information about prior cognitive states associated with these items. We found no evidence to suggest reinstatement of information about temporal context at the level of list membership, but exploratory analyses revealed representations of temporal context at a coarse level in conjunction with representations of cognitive contexts. Results are consistent with characterizations of CA23DG as a critical site for binding together items and contexts in the service of memory retrieval.
Collapse
|
17
|
Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy DHD, Shima A, Sawamoto N, Oishi N, Zhang Z, Funaki T, Nakamoto Y, Murai T, Miyamoto S, Takahashi R, Isa T. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg 2022; 12:3406-3435. [PMID: 35655840 PMCID: PMC9131333 DOI: 10.21037/qims-21-969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 01/26/2024]
Abstract
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dinh H. D. Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medial Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
OUP accepted manuscript. Arch Clin Neuropsychol 2022; 37:1502-1514. [DOI: 10.1093/arclin/acac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
|
19
|
Willems T, Henke K. Imaging human engrams using 7 Tesla magnetic resonance imaging. Hippocampus 2021; 31:1257-1270. [PMID: 34739173 PMCID: PMC9298259 DOI: 10.1002/hipo.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The investigation of the physical traces of memories (engrams) has made significant progress in the last decade due to optogenetics and fluorescent cell tagging applied in rodents. Engram cells were identified. The ablation of engram cells led to the loss of the associated memory, silent memories were reactivated, and artificial memories were implanted in the brain. Human engram research lags behind engram research in rodents due to methodological and ethical constraints. However, advances in multivariate analysis techniques of functional magnetic resonance imaging (fMRI) data and machine learning algorithms allowed the identification of stable engram patterns in humans. In addition, MRI scanners with an ultrahigh field strength of 7 Tesla (T) have left their prototype state and became more common around the world to assist human engram research. Although most engram research in humans is still being performed with a field strength of 3T, fMRI at 7T will push engram research. Here, we summarize the current state and findings of human engram research and discuss the advantages and disadvantages of applying 7 versus 3T fMRI to image human memory traces.
Collapse
Affiliation(s)
- Tom Willems
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Henin S, Shankar A, Borges H, Flinker A, Doyle W, Friedman D, Devinsky O, Buzsáki G, Liu A. Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. Brain 2021; 144:1590-1602. [PMID: 33889945 DOI: 10.1093/brain/awab044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
We describe the spatiotemporal course of cortical high-gamma activity, hippocampal ripple activity and interictal epileptiform discharges during an associative memory task in 15 epilepsy patients undergoing invasive EEG. Successful encoding trials manifested significantly greater high-gamma activity in hippocampus and frontal regions. Successful cued recall trials manifested sustained high-gamma activity in hippocampus compared to failed responses. Hippocampal ripple rates were greater during successful encoding and retrieval trials. Interictal epileptiform discharges during encoding were associated with 15% decreased odds of remembering in hippocampus (95% confidence interval 6-23%). Hippocampal interictal epileptiform discharges during retrieval predicted 25% decreased odds of remembering (15-33%). Odds of remembering were reduced by 25-52% if interictal epileptiform discharges occurred during the 500-2000 ms window of encoding or by 41% during retrieval. During encoding and retrieval, hippocampal interictal epileptiform discharges were followed by a transient decrease in ripple rate. We hypothesize that interictal epileptiform discharges impair associative memory in a regionally and temporally specific manner by decreasing physiological hippocampal ripples necessary for effective encoding and recall. Because dynamic memory impairment arises from pathological interictal epileptiform discharge events competing with physiological ripples, interictal epileptiform discharges represent a promising therapeutic target for memory remediation in patients with epilepsy.
Collapse
Affiliation(s)
- Simon Henin
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Anita Shankar
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Helen Borges
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Adeen Flinker
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Werner Doyle
- NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA.,NYU Langone Health, Department of Neurosurgery, New York, NY 10016, USA
| | - Daniel Friedman
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Orrin Devinsky
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - György Buzsáki
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,New York University, Neuroscience Institute, New York, NY 10016, USA
| | - Anli Liu
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA.,New York University, Neuroscience Institute, New York, NY 10016, USA
| |
Collapse
|
21
|
Sex differences in the neuroanatomy of alcohol dependence: hippocampus and amygdala subregions in a sample of 966 people from the ENIGMA Addiction Working Group. Transl Psychiatry 2021; 11:156. [PMID: 33664226 PMCID: PMC7933136 DOI: 10.1038/s41398-021-01204-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Males and females with alcohol dependence have distinct mental health and cognitive problems. Animal models of addiction postulate that the underlying neurobiological mechanisms are partially distinct, but there is little evidence of sex differences in humans with alcohol dependence as most neuroimaging studies have been conducted in males. We examined hippocampal and amygdala subregions in a large sample of 966 people from the ENIGMA Addiction Working Group. This comprised 643 people with alcohol dependence (225 females), and a comparison group of 323 people without alcohol dependence (98 females). Males with alcohol dependence had smaller volumes of the total amygdala and its basolateral nucleus than male controls, that exacerbated with alcohol dose. Alcohol dependence was also associated with smaller volumes of the hippocampus and its CA1 and subiculum subfield volumes in both males and females. In summary, hippocampal and amygdalar subregions may be sensitive to both shared and distinct mechanisms in alcohol-dependent males and females.
Collapse
|
22
|
Baumann O, Mattingley JB. Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus 2021; 31:640-657. [DOI: 10.1002/hipo.23313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver Baumann
- School of Psychology Bond University Robina Queensland Australia
| | - Jason B. Mattingley
- Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- School of Psychology The University of Queensland Brisbane Queensland Australia
- Canadian Institute for Advanced Research (CIFAR) Toronto Ontario Canada
| |
Collapse
|
23
|
Walker JM, Richardson TE, Farrell K, Iida MA, Foong C, Shang P, Attems J, Ayalon G, Beach TG, Bigio EH, Budson A, Cairns NJ, Corrada M, Cortes E, Dickson DW, Fischer P, Flanagan ME, Franklin E, Gearing M, Glass J, Hansen LA, Haroutunian V, Hof PR, Honig L, Kawas C, Keene CD, Kofler J, Kovacs GG, Lee EB, Lutz MI, Mao Q, Masliah E, McKee AC, McMillan CT, Mesulam MM, Murray M, Nelson PT, Perrin R, Pham T, Poon W, Purohit DP, Rissman RA, Sakai K, Sano M, Schneider JA, Stein TD, Teich AF, Trojanowski JQ, Troncoso JC, Vonsattel JP, Weintraub S, Wolk DA, Woltjer RL, Yamada M, Yu L, White CL, Crary JF. Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. J Neuropathol Exp Neurol 2021; 80:102-111. [PMID: 33367843 PMCID: PMC8453611 DOI: 10.1093/jnen/nlaa153] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative entity defined as Alzheimer-type neurofibrillary degeneration primarily affecting the medial temporal lobe with minimal to absent amyloid-β (Aβ) plaque deposition. The extent to which PART can be differentiated pathoanatomically from Alzheimer disease (AD) is unclear. Here, we examined the regional distribution of tau pathology in a large cohort of postmortem brains (n = 914). We found an early vulnerability of the CA2 subregion of the hippocampus to neurofibrillary degeneration in PART, and semiquantitative assessment of neurofibrillary degeneration in CA2 was significantly greater than in CA1 in PART. In contrast, subjects harboring intermediate-to-high AD neuropathologic change (ADNC) displayed relative sparing of CA2 until later stages of their disease course. In addition, the CA2/CA1 ratio of neurofibrillary degeneration in PART was significantly higher than in subjects with intermediate-to-high ADNC burden. Furthermore, the distribution of tau pathology in PART diverges from the Braak NFT staging system and Braak stage does not correlate with cognitive function in PART as it does in individuals with intermediate-to-high ADNC. These findings highlight the need for a better understanding of the contribution of PART to cognitive impairment and how neurofibrillary degeneration interacts with Aβ pathology in AD and PART.
Collapse
Affiliation(s)
- Jamie M Walker
- From the Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Timothy E Richardson
- From the Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Kurt Farrell
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chan Foong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ping Shang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johannes Attems
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gai Ayalon
- Department of Neuroscience, Genentech Inc., South San Francisco, California, USA
| | - Thomas G Beach
- Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Eileen H Bigio
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Budson
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - María Corrada
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, California, USA
| | - Etty Cortes
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter Fischer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, and Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Ontario, Canada
| | - Margaret E Flanagan
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erin Franklin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jonathan Glass
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lawrence A Hansen
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, California, USA
| | - Vahram Haroutunian
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lawrence Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Claudia Kawas
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, California, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, and Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Ontario, Canada
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Qinwen Mao
- Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, California, USA
| | - Ann C McKee
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, Massachusetts, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Marsel Mesulam
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Melissa Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Richard Perrin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thao Pham
- Department of Pathology, Oregon Health Sciences University, Portland, Oregon, USA
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, California, USA
| | - Dushyant P Purohit
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert A Rissman
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, California, USA
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mary Sano
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julie A Schneider
- Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Thor D Stein
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew F Teich
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean-Paul Vonsattel
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| | - Sandra Weintraub
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, Oregon, USA
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Lei Yu
- Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
24
|
Brown SSG, Mak E, Zaman S. Multi-Modal Imaging in Down's Syndrome: Maximizing Utility Through Innovative Neuroimaging Approaches. Front Neurol 2021; 11:629463. [PMID: 33488507 PMCID: PMC7817620 DOI: 10.3389/fneur.2020.629463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
In recent decades, the field of neuroimaging has experienced a surge of popularity and innovation which has led to significant advancements in the understanding of neurological disease, if not immediate clinical translation. In the case of Down's syndrome, a complex interplay of neurodevelopmental and neurodegenerative processes occur as a result of the trisomy of chromosome 21. The substantial potential impact of improved clinical intervention and the limited research under-taken to date make it a prime candidate for longitudinal neuroimaging-based study. However, as with a multitude of other multifaceted brain-based disorders, singular utilization of lone modality imaging has limited interpretability and applicability. Indeed, a present challenge facing the neuroimaging community as a whole is the methodological integration of multi-modal imaging to enhance clinical understanding. This review therefore aims to assess the current literature in Down's syndrome utilizing a multi-modal approach with regards to improvement upon consideration of a single modality. Additionally, we discuss potential avenues of future research that may effectively combine structural, functional and molecular-based imaging techniques for the significant benefit of the understanding of Down's syndrome pathology.
Collapse
Affiliation(s)
- Stephanie S. G. Brown
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Elijah Mak
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Paquola C, Benkarim O, DeKraker J, Larivière S, Frässle S, Royer J, Tavakol S, Valk S, Bernasconi A, Bernasconi N, Khan A, Evans AC, Razi A, Smallwood J, Bernhardt BC. Convergence of cortical types and functional motifs in the human mesiotemporal lobe. eLife 2020; 9:e60673. [PMID: 33146610 PMCID: PMC7671688 DOI: 10.7554/elife.60673] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/03/2020] [Indexed: 01/24/2023] Open
Abstract
The mesiotemporal lobe (MTL) is implicated in many cognitive processes, is compromised in numerous brain disorders, and exhibits a gradual cytoarchitectural transition from six-layered parahippocampal isocortex to three-layered hippocampal allocortex. Leveraging an ultra-high-resolution histological reconstruction of a human brain, our study showed that the dominant axis of MTL cytoarchitectural differentiation follows the iso-to-allocortical transition and depth-specific variations in neuronal density. Projecting the histology-derived MTL model to in-vivo functional MRI, we furthermore determined how its cytoarchitecture underpins its intrinsic effective connectivity and association to large-scale networks. Here, the cytoarchitectural gradient was found to underpin intrinsic effective connectivity of the MTL, but patterns differed along the anterior-posterior axis. Moreover, while the iso-to-allocortical gradient parametrically represented the multiple-demand relative to task-negative networks, anterior-posterior gradients represented transmodal versus unimodal networks. Our findings establish that the combination of micro- and macrostructural features allow the MTL to represent dominant motifs of whole-brain functional organisation.
Collapse
Affiliation(s)
- Casey Paquola
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Jordan DeKraker
- Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Stefan Frässle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH ZurichZurichSwitzerland
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Sofie Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andrea Bernasconi
- Neuroimaging Of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Neda Bernasconi
- Neuroimaging Of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Ali Khan
- Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- McGill Centre for Integrative Neuroscience, McGill UniversityMontrealCanada
| | | | | | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
26
|
Genetic Alzheimer’s Disease Risk Affects the Neural Mechanisms of Pattern Separation in Hippocampal Subfields. Curr Biol 2020; 30:4201-4212.e3. [DOI: 10.1016/j.cub.2020.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
|
27
|
Lim YY, Baker JE, Bruns L, Mills A, Fowler C, Fripp J, Rainey-Smith SR, Ames D, Masters CL, Maruff P. Association of deficits in short-term learning and Aβ and hippocampal volume in cognitively normal adults. Neurology 2020; 95:e2577-e2585. [PMID: 32887774 DOI: 10.1212/wnl.0000000000010728] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the extent to which deficits in learning over 6 days are associated with β-amyloid-positive (Aβ+) and hippocampal volume in cognitively normal (CN) adults. METHODS Eighty CN older adults who had undergone PET neuroimaging to determine Aβ status (n = 42 Aβ- and 38 Aβ+), MRI to determine hippocampal and ventricular volume, and repeated assessment of memory were recruited from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Participants completed the Online Repeatable Cognitive Assessment-Language Learning Test (ORCA-LLT), which required they learn associations between 50 Chinese characters and their English language equivalents over 6 days. ORCA-LLT assessments were supervised on the first day and were completed remotely online for all remaining days. RESULTS Learning curves in the Aβ+ CN participants were significantly worse than those in matched Aβ- CN participants, with the magnitude of this difference very large (d [95% confidence interval (CI)] 2.22 [1.64-2.75], p < 0.001), and greater than differences between these groups for memory decline since their enrollment in AIBL (d [95% CI] 0.52 [0.07-0.96], p = 0.021), or memory impairment at their most recent visit. In Aβ+ CN adults, slower rates of learning were associated with smaller hippocampal and larger ventricular volumes. CONCLUSIONS These results suggest that in CN participants, Aβ+ is associated more strongly with a deficit in learning than any aspect of memory dysfunction. Slower rates of learning in Aβ+ CN participants were associated with hippocampal volume loss. Considered together, these data suggest that the primary cognitive consequence of Aβ+ is a failure to benefit from experience when exposed to novel stimuli, even over very short periods.
Collapse
Affiliation(s)
- Yen Ying Lim
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia.
| | - Jenalle E Baker
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| | - Loren Bruns
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| | - Andrea Mills
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| | - Christopher Fowler
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| | - Jurgen Fripp
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| | - Stephanie R Rainey-Smith
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| | - David Ames
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| | - Colin L Masters
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| | - Paul Maruff
- From Florey Institute of Neuroscience and Mental Health (Y.Y.L., J.E.B., A.M., C.F., C.L.M., P.M.), Parkville; Turner Institute for Brain and Mental Health (Y.Y.L., A.M.), School of Psychological Sciences, Monash University, Clayton; School of Computing and Information Systems (L.B.), The University of Melbourne, Parkville, Victoria; CSIRO Health and Biosecurity (J.F.), Australian e-Health Research Centre, Brisbane; Centre of Excellence for Alzheimer's Disease Research and Care (S.R.R.-S.), School of Medical Sciences, Edith Cowan University; Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital) (S.R.R.-S.), Perth; National Ageing Research Institute (D.A.), Parkville, Victoria; Academic Unit for Psychiatry of Old Age, Department of Psychiatry (D.A.), The University of Melbourne, St. George's Hospital, Kew; and Cogstate Ltd. (P.M.), Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Canjels LP, Backes WH, van Veenendaal TM, Vlooswijk MC, Hofman PA, Aldenkamp AP, Rouhl RP, Jansen JF. Volumetric and Functional Activity Lateralization in Healthy Subjects and Patients with Focal Epilepsy: Initial Findings in a 7T MRI Study. J Neuroimaging 2020; 30:666-673. [PMID: 32472965 PMCID: PMC7586826 DOI: 10.1111/jon.12739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE In 30% of the patients with focal epilepsy, an epileptogenic lesion cannot be visually detected with structural MRI. Ultra-high field MRI may be able to identify subtle pathology related to the epileptic focus. We set out to assess 7T MRI-derived volumetric and functional activity lateralization of the hippocampus, hippocampal subfields, temporal and frontal lobe in healthy subjects and MRI-negative patients with focal epilepsy. METHODS Twenty controls and 10 patients with MRI-negative temporal or frontal lobe epilepsy (TLE and FLE, respectively) underwent a 7T MRI exam. T1 -weigthed imaging and resting-state fMRI was performed. T1 -weighted images were segmented to yield volumes, while from fMRI data, the fractional amplitude of low frequency fluctuations was calculated. Subsequently, volumetric and functional lateralization was calculated from left-right asymmetry. RESULTS In controls, volumetric lateralization was symmetric, with a slight asymmetry of the hippocampus and subiculum, while functional lateralization consistently showed symmetry. Contrarily, in epilepsy patients, regions were less symmetric. In TLE patients with known focus, volumetric lateralization in the hippocampus and hippocampal subfields was indicative of smaller ipsilateral volumes. These patients also showed clear functional lateralization, though not consistently ipsilateral or contralateral to the epileptic focus. TLE patients with unknown focus showed an obvious volumetric lateralization, facilitating the localization of the epileptic focus. Lateralization results in the FLE patients were less consistent with the epileptic focus. CONCLUSION MRI-derived volume and fluctuation amplitude are highly symmetric in controls, whereas in TLE, volumetric and functional lateralization effects were observed. This highlights the potential of the technique.
Collapse
Affiliation(s)
- Lisanne P.W. Canjels
- Departments of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Walter H. Backes
- Departments of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- School for Cardiovascular DisordersMaastricht UniversityMaastrichtThe Netherlands
| | - Tamar M. van Veenendaal
- Departments of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Marielle C.G. Vlooswijk
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht UMC+MaastrichtThe Netherlands
| | - Paul A.M. Hofman
- Departments of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Albert P. Aldenkamp
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht UMC+MaastrichtThe Netherlands
| | - Rob P.W. Rouhl
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht UMC+MaastrichtThe Netherlands
| | - Jacobus F.A. Jansen
- Departments of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
29
|
Zhang Y, Zhu D, Zhang P, Li W, Qin W, Liu F, Xu J, Xu Q, Wang J, Ye Z, Yu C. Neural mechanisms of AVPR1A RS3-RS1 haplotypes that impact verbal learning and memory. Neuroimage 2020; 222:117283. [PMID: 32828928 DOI: 10.1016/j.neuroimage.2020.117283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 08/15/2020] [Indexed: 12/16/2022] Open
Abstract
Converging evidence from both human and animal studies has highlighted the pervasive role of the neuropeptide arginine vasopressin (AVP), which is mediated by arginine vasopressin receptor 1A (AVPR1A), in both social and nonsocial learning and memory. However, the effect of genetic variants in AVPR1A on verbal learning and memory is unknown. The hippocampus is a heterogeneous structure that consists of several anatomically and functionally distinct subfields, and it is the principal target structure for the memory-enhancing effect of AVP. We tested the hypothesis that genetic variants in the RS3 and RS1 repeat polymorphisms may influence verbal learning and memory performance evaluated by the California Verbal Learning Test-II (CVLT-II) by modulating the gray matter volume (GMV) and resting-state functional connectivity (rsFC) of whole hippocampus and its subfields in a large cohort of young healthy subjects (n = 1001). Using a short/long classification scheme for the repeat length of RS3 and RS1, we found that the individuals carrying more short alleles of RS3-RS1 haplotypes had poorer learning and memory performance compared to that of those carrying more long alleles. We also revealed that individuals carrying more short alleles exhibited a significantly smaller GMV in the left cornu ammonis (CA)2/3 and weaker rsFC of the left CA2/3-bilateral thalamic (primarily in medial prefrontal subfields) compared to those carrying more long alleles. Furthermore, multiple mediation analysis confirmed that these two hippocampal imaging measures jointly and fully mediated the relationship between the genetic variants in AVPR1A RS3-RS1 haplotypes and the individual differences in verbal learning and memory performance. Our results suggest that genetic variants in AVPR1A RS3-RS1 haplotypes may affect verbal learning and memory performance in part by modulating the left hippocampal CA2/3 structure and its rsFC with the thalamus.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
30
|
Vilor-Tejedor N, Operto G, Evans TE, Falcon C, Crous-Bou M, Minguillón C, Cacciaglia R, Milà-Alomà M, Grau-Rivera O, Suárez-Calvet M, Garrido-Martín D, Morán S, Esteller M, Adams HH, Molinuevo JL, Guigó R, Gispert JD. Effect of BDNF Val66Met on hippocampal subfields volumes and compensatory interaction with APOE-ε4 in middle-age cognitively unimpaired individuals from the ALFA study. Brain Struct Funct 2020; 225:2331-2345. [PMID: 32804326 PMCID: PMC7544723 DOI: 10.1007/s00429-020-02125-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/30/2020] [Indexed: 11/08/2022]
Abstract
Background Current evidence supports the involvement of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and the ε4 allele of APOE gene in hippocampal-dependent functions. Previous studies on the association of Val66Met with whole hippocampal volume included patients of a variety of disorders. However, it remains to be elucidated whether there is an impact of BDNF Val66Met polymorphism on the volumes of the hippocampal subfield volumes (HSv) in cognitively unimpaired (CU) individuals, and the interactive effect with the APOE-ε4 status. Methods BDNF Val66Met and APOE genotypes were determined in a sample of 430 CU late/middle-aged participants from the ALFA study (ALzheimer and FAmilies). Participants underwent a brain 3D-T1-weighted MRI scan, and volumes of the HSv were determined using Freesurfer (v6.0). The effects of the BDNF Val66Met genotype on the HSv were assessed using general linear models corrected by age, gender, education, number of APOE-ε4 alleles and total intracranial volume. We also investigated whether the association between APOE-ε4 allele and HSv were modified by BDNF Val66Met genotypes. Results BDNF Val66Met carriers showed larger bilateral volumes of the subiculum subfield. In addition, HSv reductions associated with APOE-ε4 allele were significantly moderated by BDNF Val66Met status. BDNF Met carriers who were also APOE-ε4 homozygous showed patterns of higher HSv than BDNF Val carriers. Conclusion To our knowledge, the present study is the first to show that carrying the BDNF Val66Met polymorphisms partially compensates the decreased on HSv associated with APOE-ε4 in middle-age cognitively unimpaired individuals. Electronic supplementary material The online version of this article (10.1007/s00429-020-02125-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Vilor-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C. Doctor Aiguader 88, Edif. PRBB, 08003, Barcelona, Spain. .,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain. .,Erasmus MC University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Tavia E Evans
- Erasmus MC University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Marta Crous-Bou
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Diego Garrido-Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C. Doctor Aiguader 88, Edif. PRBB, 08003, Barcelona, Spain
| | - Sebastián Morán
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Hieab H Adams
- Erasmus MC University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands.,Erasmus MC University Medical Center Rotterdam, Department of Epidemiology, Rotterdam, The Netherlands.,Erasmus MC University Medical Center Rotterdam, Department of Radiology, Rotterdam, The Netherlands
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, C. Doctor Aiguader 88, Edif. PRBB, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | | |
Collapse
|
31
|
Broadhouse KM, Mowszowski L, Duffy S, Leung I, Cross N, Valenzuela MJ, Naismith SL. Memory Performance Correlates of Hippocampal Subfield Volume in Mild Cognitive Impairment Subtype. Front Behav Neurosci 2019; 13:259. [PMID: 31849620 PMCID: PMC6897308 DOI: 10.3389/fnbeh.2019.00259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/05/2019] [Indexed: 01/02/2023] Open
Abstract
The increased understanding that neuropathology begins decades before symptom onset, has led to the conceptualization and widespread utilization of Mild Cognitive Impairment (MCI) as an important transitional state between healthy aging and dementia. Further subcategorization to MCI subtype has led to more distinct prognoses and it is widely considered that amnestic and non-amnestic MCI (aMCI, naMCI) likely have distinct pathophysiologies. Yet, accurately classification remains contentious. Here, we differentiate hippocampal subfield volume between subtypes, diagnosed according to stringent clinical consensus criteria, where aMCI is characterized based on deficits in delayed recall (rather than encoding). We then identify memory performance correlates to subfield volume and associations with long-term cognitive performance and outcome. 3D T1-weighted structural MRI was acquired in 142 participants recruited from the Healthy Brain Aging (HBA) Clinic and diagnosed with aMCI (n = 38), naMCI (n = 84) or subjective memory complaints (SMC; n = 20). T1-weighted datasets were processed with the cortical and hippocampal subfield processing streams in FreeSurfer (v6.0). Subfield volumes, and associations with baseline and longitudinal objective memory scores were then examined. Subfield volumes were found to differentiate clinical profiles: subiculum, CA1, CA4 and dentate gyrus volumes were significantly reduced in aMCI compared to both naMCI and SMC. CA1 subfield volume was shown to predict concurrent memory performance in aMCI, while dentate gyrus volume significantly predicted longitudinal verbal learning and memory decline in the entire cohort. Our findings demonstrate that using a more stringent diagnostic approach to characterizing aMCI is well justified, as delayed recall deficits are strongly linked to underlying volumetric subfield reductions in CA1, CA4 and the dentate gyrus, subfields known to be associated with mnemonic processes. Further research is now warranted to replicate these findings in other MCI samples.
Collapse
Affiliation(s)
- Kathryn M Broadhouse
- Sunshine Coast Mind and Neuroscience Thompson Institute, University of the Sunshine Coast, Sunshine Coast, QLD, Australia.,Regenerative Neuroscience Group, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Loren Mowszowski
- Healthy Brain Aging Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Shantel Duffy
- Healthy Brain Aging Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Isabella Leung
- Regenerative Neuroscience Group, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Healthy Brain Aging Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nathan Cross
- Healthy Brain Aging Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michael J Valenzuela
- Regenerative Neuroscience Group, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Aging Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Pattern Separation and Source Memory Engage Distinct Hippocampal and Neocortical Regions during Retrieval. J Neurosci 2019; 40:843-851. [PMID: 31748377 DOI: 10.1523/jneurosci.0564-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
Detailed representations of past events rely on the ability to form associations between items and their contextual features (i.e., source memory), as well as the ability to distinctly represent a new event from a similar one stored in memory (i.e., pattern separation). These processes are both known to engage the hippocampus, although whether they share similar mechanisms remains unclear. It is also unknown if, and in which region(s), activity related to these processes overlaps and/or interacts. Here, we used high-resolution fMRI to examine the contributions of hippocampal subfields and neocortical areas to pattern separation and source memory with an experimental paradigm that concurrently tested both. During encoding, male and female human subjects incidentally studied items in one of four quadrants on the screen. During test, they viewed repeated items (targets), similar items (lures), and new items (foils) and were asked to indicate whether each item was old, similar, or new. Following each item judgment, subjects were asked to indicate the quadrant in which the original stimulus was presented. Thus, each lure trial had a lure discrimination component (taxing pattern separation) and a location judgment (source memory). We found two main response profiles: (1) pattern separation-related signals in DG/CA3 and perirhinal cortex and (2) source memory signals in posterior CA1, parahippocampal cortex, and angular gyrus. Whole-brain voxelwise analysis revealed that activity related to lure discrimination and source memory was largely nonoverlapping. These findings suggest that distinct processes underlie the retrieval of pattern separated item representations and recollection of source information.SIGNIFICANCE STATEMENT Recalling past events with detail and accuracy depends on the ability to remember the contextual features of an event (i.e., source memory) as well as the ability to distinguish among similar events in memory (i.e., pattern separation). Previous work has shown that these processes are behaviorally dissociable (e.g., people can have clear memory for context but misidentify people or items). However, both processes engage the hippocampus, and it is unclear whether they rely on shared or distinct neural mechanisms. Here, we used high-resolution fMRI to concurrently assess hippocampal and neocortical activity related to source memory and pattern separation. We found that activity related to these processes was largely nonoverlapping, shedding light on two complementary but distinct mechanisms supporting episodic memory.
Collapse
|
33
|
Kyle CT, Stokes J, Bennett J, Meltzer J, Permenter MR, Vogt JA, Ekstrom A, Barnes CA. Cytoarchitectonically-driven MRI atlas of nonhuman primate hippocampus: Preservation of subfield volumes in aging. Hippocampus 2019; 29:409-421. [PMID: 29072793 PMCID: PMC5920786 DOI: 10.1002/hipo.22809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 11/12/2022]
Abstract
Identification of primate hippocampal subfields in vivo using structural MRI imaging relies on variable anatomical guidelines, signal intensity differences, and heuristics to differentiate between regions (Yushkevich et al., 2015a). Thus, a clear anatomically-driven basis for subfield demarcation is lacking. Recent work, however, has begun to develop methods to use ex vivo histology or ex vivo MRI (Adler et al., 2014; Iglesias et al., 2015) that have the potential to inform subfield demarcations of in vivo images. For optimal results, however, ex vivo and in vivo images should ideally be matched within the same healthy brains, with the goal to develop a neuroanatomically-driven basis for in vivo structural MRI images. Here, we address this issue in young and aging rhesus macaques (young n = 5 and old n = 5) using ex vivo Nissl-stained sections in which we identified the dentate gyrus, CA3, CA2, CA1, subiculum, presubiculum, and parasubiculum guided by morphological cell properties (30 μm thick sections spaced at 240 μm intervals and imaged at 161 nm/pixel). The histologically identified boundaries were merged with in vivo structural MRIs (0.625 × 0.625 × 1 mm) from the same subjects via iterative rigid and diffeomorphic registration resulting in probabilistic atlases of young and old rhesus macaques. Our results indicate stability in hippocampal subfield volumes over an age range of 13 to 32 years, consistent with previous results showing preserved whole hippocampal volume in aged macaques (Shamy et al., 2006). Together, our methods provide a novel approach for identifying hippocampal subfields in non-human primates and a potential 'ground truth' for more accurate identification of hippocampal subfield boundaries on in vivo MRIs. This could, in turn, have applications in humans where accurately identifying hippocampal subfields in vivo is a critical research goal.
Collapse
Affiliation(s)
- Colin T Kyle
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ
| | - Jared Stokes
- Department of Psychology, University of California, Davis, CA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Science and M.I.N.D. Institute, UC Davis, Sacramento, CA
| | - Jeri Meltzer
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Michele R Permenter
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Julie A Vogt
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Arne Ekstrom
- Department of Psychology, University of California, Davis, CA
- Center for Neuroscience, University of California, Davis, CA
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ
- Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ
| |
Collapse
|
34
|
Involvement of hippocampal subfields and anterior-posterior subregions in encoding and retrieval of item, spatial, and associative memories: Longitudinal versus transverse axis. Neuroimage 2019; 191:568-586. [DOI: 10.1016/j.neuroimage.2019.01.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 11/18/2022] Open
|
35
|
Zhao W, Wang X, Yin C, He M, Li S, Han Y. Trajectories of the Hippocampal Subfields Atrophy in the Alzheimer's Disease: A Structural Imaging Study. Front Neuroinform 2019; 13:13. [PMID: 30983985 PMCID: PMC6450438 DOI: 10.3389/fninf.2019.00013] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Background The hippocampus and hippocampal subfields have been found to be diversely affected in Alzheimer's Disease (AD) and early stages of Alzheimer's disease by neuroimaging studies. However, our knowledge is still lacking about the trajectories of the hippocampus and hippocampal subfields atrophy with the progression of Alzheimer's disease. Objective To identify which subfields of the hippocampus differ in the trajectories of Alzheimer's disease by magnetic resonance imaging (MRI) and to determine whether individual differences on memory could be explained by structural volumes of hippocampal subfields. Methods Four groups of participants including 41 AD patients, 43 amnestic mild cognitive impairment (aMCI) patients, 35 subjective cognitive decline (SCD) patients and 42 normal controls (NC) received their structural MRI brain scans. Structural MR images were processed by the FreeSurfer 6.0 image analysis suite to extract the hippocampus and its subfields. Furthermore, we investigated relationships between hippocampal subfield volumes and memory test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition) and the regression model analyses were controlled for age, gender, education and eTIV. Results CA1, subiculum, presubiculum, molecular layer and fimbria showed the trend toward significant volume reduction among four groups with the progression of Alzheimer's disease. Volume of left subiculum was most strongly and actively correlated with performance across AVLT measures. Conclusion The trend changes in the hippocampus subfields and further illustrates that SCD is the preclinical stage of AD earlier than aMCI. Future studies should aim to associate the atrophy of the hippocampal subfields in SCD with possible conversion to aMCI or AD with longitudinal design.
Collapse
Affiliation(s)
- Weina Zhao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Xuetong Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Changhao Yin
- Department of Neurology, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Mengfei He
- Department of Neurology, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, China
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Institute of Alzheimer Disease, Beijing Institute for Brain Disorders, Beijing, China.,Institute of Geriatrics, Beijing Hospital, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
36
|
Das T, Hwang JJ, Poston KL. Episodic recognition memory and the hippocampus in Parkinson's disease: A review. Cortex 2018; 113:191-209. [PMID: 30660957 DOI: 10.1016/j.cortex.2018.11.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of aging. The hallmark pathophysiology includes the development of neuronal Lewy bodies in the substantia nigra of the midbrain with subsequent loss of dopaminergic neurons. These neuronal losses lead to the characteristic motor symptoms of bradykinesia, rigidity, and rest tremor. In addition to these cardinal motor symptoms patients with PD experience a wide range of non-motor symptoms, the most important being cognitive impairments that in many circumstances lead to dementia. People with PD experience a wide range of cognitive impairments; in this review we will focus on memory impairment in PD and specifically episodic memory, which are memories of day-to-day events of life. Importantly, these memory impairments severely impact the lives of patients and caregivers alike. Traditionally episodic memory is considered to be markedly dependent on the hippocampus; therefore, it is important to understand the exact nature of PD episodic memory deficits in relation to hippocampal function and dysfunction. In this review, we discuss an aspect of episodic memory called recognition memory and its subcomponents called recollection and familiarity. Recognition memory is believed to be impaired in PD; thus, we discuss what aspects of the hippocampus are expected to be deficient in function as they relate to these recognition memory impairments. In addition to the hippocampus as a whole, we will discuss the role of hippocampal subfields in recognition memory impairments.
Collapse
Affiliation(s)
- Tanusree Das
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jaclyn J Hwang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neuroscience, University of Pittsburgh, USA.
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Haussmann R, Ganske S, Gruschwitz A, Werner A, Osterrath A, Lange J, Buthut M, Donix KL, Linn J, Donix M. Family History of Alzheimer's Disease and Subjective Memory Performance. Am J Alzheimers Dis Other Demen 2018; 33:458-462. [PMID: 29734820 PMCID: PMC10852425 DOI: 10.1177/1533317518775033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
People with a first-degree family history of Alzheimer's disease are at an increased risk of developing dementia. Subjective memory impairment among individuals with no measurable cognitive deficits may also indicate elevated dementia risk. It remains unclear whether nondemented people with a positive family history of Alzheimer's disease are more likely to experience cognitive deficits and whether such an association reflects underlying neuropathology. We therefore investigated subjective memory impairment and hippocampal cortical thickness in 40 healthy older adults and 35 patients with amnestic mild cognitive impairment. We found greater subjective memory impairment and left hemispheric hippocampal cortical thinning associated with a first-degree family history of Alzheimer's disease in healthy older adults. This suggests that subjective memory impairment could reflect preclinical stage neurodegeneration among individuals with the family history risk factor.
Collapse
Affiliation(s)
- Robert Haussmann
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffi Ganske
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antonia Gruschwitz
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Werner
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antje Osterrath
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Jan Lange
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maria Buthut
- Department of Neurology (Neustadt/Trachau), Städtisches Klinikum Dresden, Dresden, Germany
| | - Katharina L. Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Markus Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Dresden, Germany
| |
Collapse
|
38
|
Aslaksen PM, Bystad MK, Ørbo MC, Vangberg TR. The relation of hippocampal subfield volumes to verbal episodic memory measured by the California Verbal Learning Test II in healthy adults. Behav Brain Res 2018; 351:131-137. [DOI: 10.1016/j.bbr.2018.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 01/25/2023]
|
39
|
Evans TE, Adams HHH, Licher S, Wolters FJ, van der Lugt A, Ikram MK, O'Sullivan MJ, Vernooij MW, Ikram MA. Subregional volumes of the hippocampus in relation to cognitive function and risk of dementia. Neuroimage 2018; 178:129-135. [PMID: 29778641 DOI: 10.1016/j.neuroimage.2018.05.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Total hippocampal volume has been consistently linked to cognitive function and dementia. Yet, given its complex and parcellated internal structure, the role of subregions of the hippocampus in cognition and risk of dementia remains relatively underexplored. We studied subregions of the hippocampus in a large population-based cohort to further understand their role in cognitive impairment and dementia risk. METHODS We studied 5035 dementia- and stroke-free persons from the Rotterdam Study, aged over 45 years. All participants underwent magnetic resonance imaging (1.5 T) between 2005 and 2015. Automatic segmentation of the hippocampus and 12 of its subregions was performed using the FreeSurfer software (version 6.0). A cognitive test battery was performed, and participants were followed up for the development of dementia until 2015. Associations of hippocampal subregion volumes with cognition and incident dementia were examined using linear and Cox regression models, respectively. All analyses were adjusted for age, sex, education, and total hippocampal volume. RESULTS Mean age was 64.3 years (SD 10.6) with 56% women. Smaller volumes of the hippocampal fimbria, presubiculum and subiculum showed the strongest associations with poor performance on several cognitive domains, including executive function but not memory. During a mean follow-up of 5.5 years, 76 persons developed dementia. Smaller subiculum volume was associated with risk of dementia adjusted for total volume (hazard ratio per SD decrease in volume: 1.75, 95% confidence interval 1.35; 2.26). CONCLUSIONS In a community-dwelling non-demented population, we describe patterns of association between hippocampal subregions with cognition and risk of dementia. Specifically, the subiculum was associated with both poorer cognition and higher risk of dementia.
Collapse
Affiliation(s)
- Tavia E Evans
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands; Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RX, UK.
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.
| | - Silvan Licher
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.
| | - Frank J Wolters
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands; Department of Neurology, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.
| | - Michael J O'Sullivan
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RX, UK; Mater Centre for Neuroscience and Queensland Brain Institute, 79, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Wytemaweg 90, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Shah P, Bassett DS, Wisse LE, Detre JA, Stein JM, Yushkevich PA, Shinohara RT, Pluta JB, Valenciano E, Daffner M, Wolk DA, Elliott MA, Litt B, Davis KA, Das SR. Mapping the structural and functional network architecture of the medial temporal lobe using 7T MRI. Hum Brain Mapp 2018; 39:851-865. [PMID: 29159960 PMCID: PMC5764800 DOI: 10.1002/hbm.23887] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Medial temporal lobe (MTL) subregions play integral roles in memory function and are differentially affected in various neurological and psychiatric disorders. The ability to structurally and functionally characterize these subregions may be important to understanding MTL physiology and diagnosing diseases involving the MTL. In this study, we characterized network architecture of the MTL in healthy subjects (n = 31) using both resting state functional MRI and MTL-focused T2-weighted structural MRI at 7 tesla. Ten MTL subregions per hemisphere, including hippocampal subfields and cortical regions of the parahippocampal gyrus, were segmented for each subject using a multi-atlas algorithm. Both structural covariance matrices from correlations of subregion volumes across subjects, and functional connectivity matrices from correlations between subregion BOLD time series were generated. We found a moderate structural and strong functional inter-hemispheric symmetry. Several bilateral hippocampal subregions (CA1, dentate gyrus, and subiculum) emerged as functional network hubs. We also observed that the structural and functional networks naturally separated into two modules closely corresponding to (a) bilateral hippocampal formations, and (b) bilateral extra-hippocampal structures. Finally, we found a significant correlation in structural and functional connectivity (r = 0.25). Our findings represent a comprehensive analysis of network topology of the MTL at the subregion level. We share our data, methods, and findings as a reference for imaging methods and disease-based research.
Collapse
Affiliation(s)
- Preya Shah
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Danielle S. Bassett
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Department of Electrical & Systems EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Laura E.M. Wisse
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - John A. Detre
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Center for Functional Neuroimaging, University of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Joel M. Stein
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Paul A. Yushkevich
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Russell T. Shinohara
- Department of BiostatisticsEpidemiology and Informatics, University of PennsylvaniaPhiladelphiaPennsylvania19104
| | - John B. Pluta
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Elijah Valenciano
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Molly Daffner
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Penn Memory Center, University of PennsylvaniaPhiladelphiaPennsylvania19104
| | - David A. Wolk
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Penn Memory Center, University of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Mark A. Elliott
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Brian Litt
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Kathryn A. Davis
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| | - Sandhitsu R. Das
- Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104
| |
Collapse
|
41
|
Unfolding the hippocampus: An intrinsic coordinate system for subfield segmentations and quantitative mapping. Neuroimage 2018; 167:408-418. [DOI: 10.1016/j.neuroimage.2017.11.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022] Open
|
42
|
Li X, Ma X, Li L, Zhang Z, Zhang X, Tong Y, Wang L, Sen Song, Guo H. Dual-TRACER: High resolution fMRI with constrained evolution reconstruction. Neuroimage 2018; 164:172-182. [DOI: 10.1016/j.neuroimage.2017.02.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
|
43
|
Doxey CR, Hodges CB, Bodily TA, Muncy NM, Kirwan CB. The effects of sleep on the neural correlates of pattern separation. Hippocampus 2017; 28:108-120. [DOI: 10.1002/hipo.22814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/24/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Affiliation(s)
| | - Cooper B. Hodges
- Department of Psychology; Brigham Young University; Provo Utah 84602
| | - Ty A. Bodily
- Neuroscience Center, Brigham Young University; Provo Utah 84602
| | - Nathan M. Muncy
- Department of Psychology; Brigham Young University; Provo Utah 84602
| | - C. Brock Kirwan
- Neuroscience Center, Brigham Young University; Provo Utah 84602
- Department of Psychology; Brigham Young University; Provo Utah 84602
| |
Collapse
|
44
|
Insausti R, Muñoz-López M, Insausti AM, Artacho-Pérula E. The Human Periallocortex: Layer Pattern in Presubiculum, Parasubiculum and Entorhinal Cortex. A Review. Front Neuroanat 2017; 11:84. [PMID: 29046628 PMCID: PMC5632821 DOI: 10.3389/fnana.2017.00084] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/08/2017] [Indexed: 01/22/2023] Open
Abstract
The cortical mantle is not homogeneous, so that three types of cortex can be distinguished: allocortex, periallocortex and isocortex. The main distinction among those three types is based on morphological differences, in particular the number of layers, overall organization, appearance, etc., as well as its connectivity. Additionally, in the phylogenetic scale, this classification is conserved among different mammals. The most primitive and simple cortex is the allocortex, which is characterized by the presence of three layers, with one cellular main layer; it is continued by the periallocortex, which presents six layers, although with enough differences in the layer pattern to separate three different fields: presubiculum (PrS), parasubiculum (PaS), and entorhinal cortex (EC). The closest part to the allocortex (represented by the subiculum) is the PrS, which shows outer (layers I-III) and inner (V-VI) principal layers (lamina principalis externa and lamina principalis interna), both separated by a cell poor band, parallel to the pial surface (layer IV or lamina dissecans). This layer organization is present throughout the anterior-posterior axis. The PaS continues the PrS, but its rostrocaudal extent is shorter than the PrS. The organization of the PaS shows the layer pattern more clearly than in the PrS. Up to six layers are recognizable in the PaS, with layer IV as lamina dissecans between superficial (layers I-III) and deep (V-VI) layers, as in the PrS. The EC presents even more clearly the layer pattern along both mediolateral and rostrocaudal extent. The layer pattern is a thick layer I, layer II in islands, layer III medium pyramids, layer IV as lamina dissecans (not present throughout the EC extent), layer V with dark and big pyramids and a multiform layer VI. The EC borders laterally the proisocortex (incomplete type of isocortex). Variations in the appearance of its layers justify the distinction of subfields in the EC, in particular in human and nonhuman primates. EC layers are not similar to those in the neocortex. The transition between the periallocortical EC and isocortex is not sharp, so that the proisocortex forms an intervening cortex, which fills the gap between the periallocortex and the isocortex.
Collapse
Affiliation(s)
- Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Mónica Muñoz-López
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Ana M Insausti
- Department of Health Sciences, Physical Therapy School, Public University of Navarra, Tudela, Spain
| | - Emilio Artacho-Pérula
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
45
|
Effect of Threat on Right dlPFC Activity during Behavioral Pattern Separation. J Neurosci 2017; 37:9160-9171. [PMID: 28842415 DOI: 10.1523/jneurosci.0717-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 01/29/2023] Open
Abstract
It has long been established that individuals with anxiety disorders tend to overgeneralize attributes of fearful stimuli to nonfearful stimuli, but there is little mechanistic understanding of the neural system that supports overgeneralization. To address this gap in our knowledge, this study examined effect of experimentally induced anxiety in humans on generalization using the behavioral pattern separation (BPS) paradigm. Healthy subjects of both sexes encoded and retrieved novel objects during periods of safety and threat of unpredictable shocks while we recorded brain activity with fMRI. During retrieval, subjects were instructed to differentiate among new, old, and altered images. We hypothesized that the hippocampus and dorsolateral prefrontal cortex (dlPFC) would play a key role in the effect of anxiety on BPS. The dlPFC, but not the hippocampus, showed increased activity for altered images compared with old images when retrieval occurred during periods of threat compared with safety. In addition, accuracy for altered items retrieved during threat was correlated with dlPFC activity. Together, these results suggest that overgeneralization in anxiety patients may be mediated by an inability to recruit the dlPFC, which mediates the cognitive control needed to overcome anxiety and differentiate between old and altered items during periods of threat.SIGNIFICANCE STATEMENT Anxiety and posttraumatic stress disorder patients generalize fear to nonfearful fear stimuli, making it difficult to regulate anxiety. Understanding how anxiety affects generalization is key to understanding the overgeneralization experienced by these patients. We examined this relationship in healthy subjects by studying how threat of shock affects neural responses to previously encountered stimuli. Although previous studies point to hippocampal involvement, we found that threat affected activity in the dorsolateral prefrontal cortex (dlPFC), rather than the hippocampus, when subjects encountered slightly altered versions of the previously encountered items. Importantly, this dlPFC activity predicted performance for these items. Together, these results suggest that the dlPFC is important for discrimination during elevated anxiety and that overgeneralization may reflect a deficit in dlPFC-mediated cognitive control.
Collapse
|
46
|
Berron D, Vieweg P, Hochkeppler A, Pluta JB, Ding SL, Maass A, Luther A, Xie L, Das SR, Wolk DA, Wolbers T, Yushkevich PA, Düzel E, Wisse LEM. A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. Neuroimage Clin 2017; 15:466-482. [PMID: 28652965 PMCID: PMC5476466 DOI: 10.1016/j.nicl.2017.05.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022]
Abstract
Recent advances in MRI and increasing knowledge on the characterization and anatomical variability of medial temporal lobe (MTL) anatomy have paved the way for more specific subdivisions of the MTL in humans. In addition, recent studies suggest that early changes in many neurodegenerative and neuropsychiatric diseases are better detected in smaller subregions of the MTL rather than with whole structure analyses. Here, we developed a new protocol using 7 Tesla (T) MRI incorporating novel anatomical findings for the manual segmentation of entorhinal cortex (ErC), perirhinal cortex (PrC; divided into area 35 and 36), parahippocampal cortex (PhC), and hippocampus; which includes the subfields subiculum (Sub), CA1, CA2, as well as CA3 and dentate gyrus (DG) which are separated by the endfolial pathway covering most of the long axis of the hippocampus. We provide detailed instructions alongside slice-by-slice segmentations to ease learning for the untrained but also more experienced raters. Twenty-two subjects were scanned (19-32 yrs, mean age = 26 years, 12 females) with a turbo spin echo (TSE) T2-weighted MRI sequence with high-resolution oblique coronal slices oriented orthogonal to the long axis of the hippocampus (in-plane resolution 0.44 × 0.44 mm2) and 1.0 mm slice thickness. The scans were manually delineated by two experienced raters, to assess intra- and inter-rater reliability. The Dice Similarity Index (DSI) was above 0.78 for all regions and the Intraclass Correlation Coefficients (ICC) were between 0.76 to 0.99 both for intra- and inter-rater reliability. In conclusion, this study presents a fine-grained and comprehensive segmentation protocol for MTL structures at 7 T MRI that closely follows recent knowledge from anatomical studies. More specific subdivisions (e.g. area 35 and 36 in PrC, and the separation of DG and CA3) may pave the way for more precise delineations thereby enabling the detection of early volumetric changes in dementia and neuropsychiatric diseases.
Collapse
Key Words
- AG, Ambient Gyrus
- CA1, Cornu Ammonis 1
- CA2, Cornu Ammonis 2
- CA3, Cornu Ammonis 3
- CS, Collateral Sulcus
- CSF, Cerebrospinal Fluid
- CSa, anterior
- CSp, posterior
- CaS, Calcarine sulcus
- DG, Dentate Gyrus
- ErC, Entorhinal Cortex
- FG, Fusiform Gyrus
- HB, Hippocampal Body
- HH, Hippocampal Head
- HT, Hippocampal Tail
- MTL, Medial Temporal Lobe
- OTS, Occipito-temporal Sulcus
- PhC, Parahippocampal Cortex
- PhG, Parahippocampal Gyrus
- PrC, Perirhinal Cortex
- SRLM, Stratum radiatum lacunosum-moleculare
- SaS, Semiannular Sulcus
- Sub, Subiculum
Collapse
Affiliation(s)
- D Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany.
| | - P Vieweg
- German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany.
| | - A Hochkeppler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - J B Pluta
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S-L Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Institute of Neuroscience, School of Basic Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province 511436, China
| | - A Maass
- German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - A Luther
- German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany
| | - L Xie
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S R Das
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D A Wolk
- Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T Wolbers
- German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany
| | - P A Yushkevich
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany; University College London, Institute of Cognitive Neuroscience, London WC1N 3AR, United Kingdom
| | - L E M Wisse
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo 1H functional magnetic resonance spectroscopy. Neuroimage 2017; 153:189-197. [PMID: 28363835 DOI: 10.1016/j.neuroimage.2017.03.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/25/2022] Open
Abstract
fMRI has provided vibrant characterization of regional and network responses associated with associative learning and memory; however, their relationship to functional neurochemistry is unclear. Here, we introduce a novel application of in vivo proton functional magnetic resonance spectroscopy (1H fMRS) to investigate the dynamics of hippocampal glutamate during paired-associated learning and memory in healthy young adults. We show that the temporal dynamics of glutamate differed significantly during processes of memory consolidation and retrieval. Moreover, learning proficiency was predictive of the temporal dynamics of glutamate such that fast learners were characterized by a significant increase in glutamate levels early in learning, whereas this increase was only observed later in slow learners. The observed functional dynamics of glutamate provides a novel in vivo marker of brain function. Previously demonstrated N-methyl-D-aspartate (NMDA) receptor mediated synaptic plasticity during associative memory formation may be expressed in glutamate dynamics, which the novel application of 1H MRS is sensitive to. The novel application of 1H fMRS can provide highly innovative vistas for characterizing brain function in vivo, with significant implications for studying glutamatergic neurotransmission in health and disorders such as schizophrenia.
Collapse
|
48
|
Giuliano A, Donatelli G, Cosottini M, Tosetti M, Retico A, Fantacci ME. Hippocampal subfields at ultra high field MRI: An overview of segmentation and measurement methods. Hippocampus 2017; 27:481-494. [PMID: 28188659 PMCID: PMC5573987 DOI: 10.1002/hipo.22717] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
The hippocampus is one of the most interesting and studied brain regions because of its involvement in memory functions and its vulnerability in pathological conditions, such as neurodegenerative processes. In the recent years, the increasing availability of Magnetic Resonance Imaging (MRI) scanners that operate at ultra‐high field (UHF), that is, with static magnetic field strength ≥7T, has opened new research perspectives. Compared to conventional high‐field scanners, these systems can provide new contrasts, increased signal‐to‐noise ratio and higher spatial resolution, thus they may improve the visualization of very small structures of the brain, such as the hippocampal subfields. Studying the morphometry of the hippocampus is crucial in neuroimaging research because changes in volume and thickness of hippocampal subregions may be relevant in the early assessment of pathological cognitive decline and Alzheimer's Disease (AD). The present review provides an overview of the manual, semi‐automated and fully automated methods that allow the assessment of hippocampal subfield morphometry at UHF MRI, focusing on the different hippocampal segmentation produced. © 2017 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessia Giuliano
- Department of Physics, University of Pisa, Pisa, Italy.,National Institute of Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Graziella Donatelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy; Imago7 Foundation, Pisa, Italy
| | - Alessandra Retico
- National Institute of Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | | |
Collapse
|
49
|
Wisse LE, Daugherty AM, Olsen RK, Berron D, Carr VA, Stark CE, Amaral RS, Amunts K, Augustinack JC, Bender AR, Bernstein JD, Boccardi M, Bocchetta M, Burggren A, Chakravarty MM, Chupin M, Ekstrom A, de Flores R, Insausti R, Kanel P, Kedo O, Kennedy KM, Kerchner GA, LaRocque KF, Liu X, Maass A, Malykhin N, Mueller SG, Ofen N, Palombo DJ, Parekh MB, Pluta JB, Pruessner JC, Raz N, Rodrigue KM, Schoemaker D, Shafer AT, Steve TA, Suthana N, Wang L, Winterburn JL, Yassa MA, Yushkevich PA, la Joie R. A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals? Hippocampus 2017; 27:3-11. [PMID: 27862600 PMCID: PMC5167633 DOI: 10.1002/hipo.22671] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023]
Abstract
The advent of high-resolution magnetic resonance imaging (MRI) has enabled in vivo research in a variety of populations and diseases on the structure and function of hippocampal subfields and subdivisions of the parahippocampal gyrus. Because of the many extant and highly discrepant segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the Hippocampal Subfields Group was formed as an international collaboration with the aim of developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal subregions on high-resolution MRI. In this commentary we discuss the goals for this protocol and the associated key challenges involved in its development. These include differences among existing anatomical reference materials, striking the right balance between reliability of measurements and anatomical validity, and the development of a versatile protocol that can be adopted for the study of populations varying in age and health. The commentary outlines these key challenges, as well as the proposed solution of each, with concrete examples from our working plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is expected to impact the field by producing measurements that are quantitatively comparable across labs and by facilitating the synthesis of findings across different studies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura E.M. Wisse
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Ana M. Daugherty
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, USA
| | - Rosanna K. Olsen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Valerie A. Carr
- Department of Psychology, Stanford University, Palo Alto, USA
- Department of Psychology, San Jose State University, San Jose, USA
| | - Craig E.L. Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, USA
| | - Robert S.C. Amaral
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, INM-1, Research Center Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jean C. Augustinack
- AA Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, USA
| | - Andrew R. Bender
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Jeffrey D. Bernstein
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, USA
| | - Marina Boccardi
- LANVIE Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Alison Burggren
- Department of Psychiatry and Biobehavioural Sciences, University of California Los Angeles, Los Angeles, USA
| | - M. Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada
| | - Marie Chupin
- INSERM, CNRS, UMR-S975, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France
| | - Arne Ekstrom
- Center for Neuroscience, University of California Davis, Davis, USA
- Department of Psychology, University of California Davis, Davis, USA
| | - Robin de Flores
- INSERM U1077, Université de Caen Normandie, UMR-S1077, Ecole Pratique des Hautes Etudes, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory and C.R.I.B., School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Prabesh Kanel
- Department of Computer Science, Florida State University, Tallahassee, USA
| | - Olga Kedo
- Institute of Neuroscience and Medicine, INM-1, Research Center Jülich, Jülich, Germany
| | - Kristen M. Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, USA
| | - Geoffrey A. Kerchner
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, USA
| | | | - Xiuwen Liu
- Department of Computer Science, Florida State University, Tallahassee, USA
| | - Anne Maass
- School of Public Health and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, USA
| | - Nicolai Malykhin
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
- The Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Susanne G. Mueller
- Department of Radiology, University of California, San Francisco, USA
- Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, San Francisco, USA
| | - Noa Ofen
- Psychology Department, Wayne State University, Detroit, USA
- Institute of Gerontology, Wayne State University, Detroit, USA
| | | | - Mansi B. Parekh
- Department of Radiology, Stanford University, Palo Alto, USA
| | - John B. Pluta
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Jens C. Pruessner
- McGill Centre for Studies in Aging, Faculty of Medicine, McGill University, Montreal, Canada
- Department of Psychology, McGill University, Montreal, Canada
| | - Naftali Raz
- Psychology Department, Wayne State University, Detroit, USA
- Institute of Gerontology, Wayne State University, Detroit, USA
| | - Karen M. Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, USA
| | - Dorothee Schoemaker
- McGill Centre for Studies in Aging, Faculty of Medicine, McGill University, Montreal, Canada
- Department of Psychology, McGill University, Montreal, Canada
| | - Andrea T. Shafer
- Psychology Department, Wayne State University, Detroit, USA
- Institute of Gerontology, Wayne State University, Detroit, USA
| | - Trevor A. Steve
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioural Sciences, University of California Los Angeles, Los Angeles, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Lei Wang
- Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Julie L. Winterburn
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, USA
- Department of Neurology, University of California Irvine, Irvine, USA
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Renaud la Joie
- INSERM U1077, Université de Caen Normandie, UMR-S1077, Ecole Pratique des Hautes Etudes, Centre Hospitalier Universitaire de Caen, Caen, France
| | | |
Collapse
|
50
|
Attention promotes episodic encoding by stabilizing hippocampal representations. Proc Natl Acad Sci U S A 2016; 113:E420-9. [PMID: 26755611 DOI: 10.1073/pnas.1518931113] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Attention influences what is later remembered, but little is known about how this occurs in the brain. We hypothesized that behavioral goals modulate the attentional state of the hippocampus to prioritize goal-relevant aspects of experience for encoding. Participants viewed rooms with paintings, attending to room layouts or painting styles on different trials during high-resolution functional MRI. We identified template activity patterns in each hippocampal subfield that corresponded to the attentional state induced by each task. Participants then incidentally encoded new rooms with art while attending to the layout or painting style, and memory was subsequently tested. We found that when task-relevant information was better remembered, the hippocampus was more likely to have been in the correct attentional state during encoding. This effect was specific to the hippocampus, and not found in medial temporal lobe cortex, category-selective areas of the visual system, or elsewhere in the brain. These findings provide mechanistic insight into how attention transforms percepts into memories.
Collapse
|