1
|
Menesse G, Torres JJ. Information dynamics of in silico EEG Brain Waves: Insights into oscillations and functions. PLoS Comput Biol 2024; 20:e1012369. [PMID: 39236071 PMCID: PMC11407780 DOI: 10.1371/journal.pcbi.1012369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/17/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
The relation between electroencephalography (EEG) rhythms, brain functions, and behavioral correlates is well-established. Some physiological mechanisms underlying rhythm generation are understood, enabling the replication of brain rhythms in silico. This offers a pathway to explore connections between neural oscillations and specific neuronal circuits, potentially yielding fundamental insights into the functional properties of brain waves. Information theory frameworks, such as Integrated Information Decomposition (Φ-ID), relate dynamical regimes with informational properties, providing deeper insights into neuronal dynamic functions. Here, we investigate wave emergence in an excitatory/inhibitory (E/I) balanced network of integrate and fire neurons with short-term synaptic plasticity. This model produces a diverse range of EEG-like rhythms, from low δ waves to high-frequency oscillations. Through Φ-ID, we analyze the network's information dynamics and its relation with different emergent rhythms, elucidating the system's suitability for functions such as robust information transfer, storage, and parallel operation. Furthermore, our study helps to identify regimes that may resemble pathological states due to poor informational properties and high randomness. We found, e.g., that in silico β and δ waves are associated with maximum information transfer in inhibitory and excitatory neuron populations, respectively, and that the coexistence of excitatory θ, α, and β waves is associated to information storage. Additionally, we observed that high-frequency oscillations can exhibit either high or poor informational properties, potentially shedding light on ongoing discussions regarding physiological versus pathological high-frequency oscillations. In summary, our study demonstrates that dynamical regimes with similar oscillations may exhibit vastly different information dynamics. Characterizing information dynamics within these regimes serves as a potent tool for gaining insights into the functions of complex neuronal networks. Finally, our findings suggest that the use of information dynamics in both model and experimental data analysis, could help discriminate between oscillations associated with cognitive functions and those linked to neuronal disorders.
Collapse
Affiliation(s)
- Gustavo Menesse
- Department of Electromagnetism and Physics of the Matter & Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Joaquín J Torres
- Department of Electromagnetism and Physics of the Matter & Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Do Q, Hasselmo ME. Neural circuits and symbolic processing. Neurobiol Learn Mem 2021; 186:107552. [PMID: 34763073 PMCID: PMC10121157 DOI: 10.1016/j.nlm.2021.107552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
The ability to use symbols is a defining feature of human intelligence. However, neuroscience has yet to explain the fundamental neural circuit mechanisms for flexibly representing and manipulating abstract concepts. This article will review the research on neural models for symbolic processing. The review first focuses on the question of how symbols could possibly be represented in neural circuits. The review then addresses how neural symbolic representations could be flexibly combined to meet a wide range of reasoning demands. Finally, the review assesses the research on program synthesis and proposes that the most flexible neural representation of symbolic processing would involve the capacity to rapidly synthesize neural operations analogous to lambda calculus to solve complex cognitive tasks.
Collapse
Affiliation(s)
- Quan Do
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, United States.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, United States.
| |
Collapse
|
3
|
Millán AP, Torres JJ, Marro J. How Memory Conforms to Brain Development. Front Comput Neurosci 2019; 13:22. [PMID: 31057385 PMCID: PMC6477510 DOI: 10.3389/fncom.2019.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Nature exhibits countless examples of adaptive networks, whose topology evolves constantly coupled with the activity due to its function. The brain is an illustrative example of a system in which a dynamic complex network develops by the generation and pruning of synaptic contacts between neurons while memories are acquired and consolidated. Here, we consider a recently proposed brain developing model to study how mechanisms responsible for the evolution of brain structure affect and are affected by memory storage processes. Following recent experimental observations, we assume that the basic rules for adding and removing synapses depend on local synaptic currents at the respective neurons in addition to global mechanisms depending on the mean connectivity. In this way a feedback loop between "form" and "function" spontaneously emerges that influences the ability of the system to optimally store and retrieve sensory information in patterns of brain activity or memories. In particular, we report here that, as a consequence of such a feedback-loop, oscillations in the activity of the system among the memorized patterns can occur, depending on parameters, reminding mind dynamical processes. Such oscillations have their origin in the destabilization of memory attractors due to the pruning dynamics, which induces a kind of structural disorder or noise in the system at a long-term scale. This constantly modifies the synaptic disorder induced by the interference among the many patterns of activity memorized in the system. Such new intriguing oscillatory behavior is to be associated only to long-term synaptic mechanisms during the network evolution dynamics, and it does not depend on short-term synaptic processes, as assumed in other studies, that are not present in our model.
Collapse
Affiliation(s)
| | - Joaquín J. Torres
- Institute “Carlos I” for Theoretical and Computational Physics, University of Granada, Granada, Spain
| | | |
Collapse
|
4
|
Aguilar C, Chossat P, Krupa M, Lavigne F. Latching dynamics in neural networks with synaptic depression. PLoS One 2017; 12:e0183710. [PMID: 28846727 PMCID: PMC5573234 DOI: 10.1371/journal.pone.0183710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/09/2017] [Indexed: 12/02/2022] Open
Abstract
Prediction is the ability of the brain to quickly activate a target concept in response to a related stimulus (prime). Experiments point to the existence of an overlap between the populations of the neurons coding for different stimuli, and other experiments show that prime-target relations arise in the process of long term memory formation. The classical modelling paradigm is that long term memories correspond to stable steady states of a Hopfield network with Hebbian connectivity. Experiments show that short term synaptic depression plays an important role in the processing of memories. This leads naturally to a computational model of priming, called latching dynamics; a stable state (prime) can become unstable and the system may converge to another transiently stable steady state (target). Hopfield network models of latching dynamics have been studied by means of numerical simulation, however the conditions for the existence of this dynamics have not been elucidated. In this work we use a combination of analytic and numerical approaches to confirm that latching dynamics can exist in the context of a symmetric Hebbian learning rule, however lacks robustness and imposes a number of biologically unrealistic restrictions on the model. In particular our work shows that the symmetry of the Hebbian rule is not an obstruction to the existence of latching dynamics, however fine tuning of the parameters of the model is needed.
Collapse
Affiliation(s)
- Carlos Aguilar
- Bases, Corpus, Langage, UMR 7320 CNRS, Université de Nice - Sophia Antipolis, 06357 Nice, France
| | - Pascal Chossat
- Laboratoire J.A.Dieudonné UMR CNRS-UNS 7351, Université de Nice - Sophia Antipolis, 06108 Nice, France
- MathNeuro team, Inria Sophia Antipolis, 06902 Valbonne-Sophia Antipolis, France
| | - Martin Krupa
- Laboratoire J.A.Dieudonné UMR CNRS-UNS 7351, Université de Nice - Sophia Antipolis, 06108 Nice, France
- MathNeuro team, Inria Sophia Antipolis, 06902 Valbonne-Sophia Antipolis, France
- Department of Applied Mathematics, University College Cork, Cork, Ireland
| | - Frédéric Lavigne
- Bases, Corpus, Langage, UMR 7320 CNRS, Université de Nice - Sophia Antipolis, 06357 Nice, France
| |
Collapse
|
5
|
Sase T, Katori Y, Komuro M, Aihara K. Bifurcation Analysis on Phase-Amplitude Cross-Frequency Coupling in Neural Networks with Dynamic Synapses. Front Comput Neurosci 2017; 11:18. [PMID: 28424606 PMCID: PMC5371682 DOI: 10.3389/fncom.2017.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
We investigate a discrete-time network model composed of excitatory and inhibitory neurons and dynamic synapses with the aim at revealing dynamical properties behind oscillatory phenomena possibly related to brain functions. We use a stochastic neural network model to derive the corresponding macroscopic mean field dynamics, and subsequently analyze the dynamical properties of the network. In addition to slow and fast oscillations arising from excitatory and inhibitory networks, respectively, we show that the interaction between these two networks generates phase-amplitude cross-frequency coupling (CFC), in which multiple different frequency components coexist and the amplitude of the fast oscillation is modulated by the phase of the slow oscillation. Furthermore, we clarify the detailed properties of the oscillatory phenomena by applying the bifurcation analysis to the mean field model, and accordingly show that the intermittent and the continuous CFCs can be characterized by an aperiodic orbit on a closed curve and one on a torus, respectively. These two CFC modes switch depending on the coupling strength from the excitatory to inhibitory networks, via the saddle-node cycle bifurcation of a one-dimensional torus in map (MT1SNC), and may be associated with the function of multi-item representation. We believe that the present model might have potential for studying possible functional roles of phase-amplitude CFC in the cerebral cortex.
Collapse
Affiliation(s)
- Takumi Sase
- Graduate School of Information Science and Technology, The University of TokyoTokyo, Japan
| | - Yuichi Katori
- Institute of Industrial Science, The University of TokyoTokyo, Japan.,The School of Systems Information Science, Future University HakodateHokkaido, Japan
| | - Motomasa Komuro
- Center for Fundamental Education, Teikyo University of ScienceYamanashi, Japan
| | - Kazuyuki Aihara
- Graduate School of Information Science and Technology, The University of TokyoTokyo, Japan.,Institute of Industrial Science, The University of TokyoTokyo, Japan
| |
Collapse
|
6
|
Uzuntarla M, Torres JJ, So P, Ozer M, Barreto E. Double inverse stochastic resonance with dynamic synapses. Phys Rev E 2017; 95:012404. [PMID: 28208458 DOI: 10.1103/physreve.95.012404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 06/06/2023]
Abstract
We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare this to the case with dynamic synapses that feature short-term synaptic plasticity and show that the interval of presynaptic firing rate over which ISR exists can be extended or diminished. We consider both short-term depression and facilitation. Interestingly, we find that a double inverse stochastic resonance (DISR), with two distinct wells centered at different presynaptic firing rates, can appear.
Collapse
Affiliation(s)
- Muhammet Uzuntarla
- Department of Biomedical Engineering, Bulent Ecevit University, 67100 Zonguldak, Turkey
| | - Joaquin J Torres
- Department of Electromagnetism and Physics of the Matter and Institute Carlos I for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| | - Paul So
- Department of Physics and Astronomy and the Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Mahmut Ozer
- Department of Electrical and Electronics Engineering, Bulent Ecevit University, 67100 Zonguldak, Turkey
| | - Ernest Barreto
- Department of Physics and Astronomy and the Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
7
|
Recio I, Torres J. Emergence of low noise frustrated states in E/I balanced neural networks. Neural Netw 2016; 84:91-101. [DOI: 10.1016/j.neunet.2016.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/24/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
|
8
|
Latorre R, Torres JJ, Varona P. Interplay between Subthreshold Oscillations and Depressing Synapses in Single Neurons. PLoS One 2016; 11:e0145830. [PMID: 26730737 PMCID: PMC4701431 DOI: 10.1371/journal.pone.0145830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/03/2015] [Indexed: 11/25/2022] Open
Abstract
In this paper we analyze the interplay between the subthreshold oscillations of a single neuron conductance-based model and the short-term plasticity of a dynamic synapse with a depressing mechanism. In previous research, the computational properties of subthreshold oscillations and dynamic synapses have been studied separately. Our results show that dynamic synapses can influence different aspects of the dynamics of neuronal subthreshold oscillations. Factors such as maximum hyperpolarization level, oscillation amplitude and frequency or the resulting firing threshold are modulated by synaptic depression, which can even make subthreshold oscillations disappear. This influence reshapes the postsynaptic neuron’s resonant properties arising from subthreshold oscillations and leads to specific input/output relations. We also study the neuron’s response to another simultaneous input in the context of this modulation, and show a distinct contextual processing as a function of the depression, in particular for detection of signals through weak synapses. Intrinsic oscillations dynamics can be combined with the characteristic time scale of the modulatory input received by a dynamic synapse to build cost-effective cell/channel-specific information discrimination mechanisms, beyond simple resonances. In this regard, we discuss the functional implications of synaptic depression modulation on intrinsic subthreshold dynamics.
Collapse
Affiliation(s)
- Roberto Latorre
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- * E-mail:
| | - Joaquín J. Torres
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
9
|
Uzuntarla M, Ozer M, Ileri U, Calim A, Torres JJ. Effects of dynamic synapses on noise-delayed response latency of a single neuron. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062710. [PMID: 26764730 DOI: 10.1103/physreve.92.062710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 06/05/2023]
Abstract
The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f. This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.
Collapse
Affiliation(s)
- M Uzuntarla
- Department of Biomedical Engineering, Bulent Ecevit University, Engineering Faculty, 67100 Zonguldak, Turkey
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - M Ozer
- Department of Electrical and Electronics Engineering, Bulent Ecevit University, Engineering Faculty, 67100 Zonguldak, Turkey
| | - U Ileri
- Department of Biomedical Engineering, Bulent Ecevit University, Engineering Faculty, 67100 Zonguldak, Turkey
| | - A Calim
- Department of Biomedical Engineering, Bulent Ecevit University, Engineering Faculty, 67100 Zonguldak, Turkey
| | - J J Torres
- Department of Electromagnetism and Physics of the Matter and Institute "Carlos I" for Theoretical and Computational Physics, University of Granada, Granada E-18071, Spain
| |
Collapse
|
10
|
Torres JJ, Elices I, Marro J. Efficient transmission of subthreshold signals in complex networks of spiking neurons. PLoS One 2015; 10:e0121156. [PMID: 25799449 PMCID: PMC4409401 DOI: 10.1371/journal.pone.0121156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances--that naturally balances the network with excitatory and inhibitory synapses--and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.
Collapse
Affiliation(s)
- Joaquin J. Torres
- Department of Electromagnetism and Physics of the Matter, University of Granada, Granada, Spain
- * E-mail:
| | - Irene Elices
- Department of Electromagnetism and Physics of the Matter, University of Granada, Granada, Spain
| | - J. Marro
- Department of Electromagnetism and Physics of the Matter, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Torres JJ, Kappen HJ. Emerging phenomena in neural networks with dynamic synapses and their computational implications. Front Comput Neurosci 2013; 7:30. [PMID: 23637657 PMCID: PMC3617396 DOI: 10.3389/fncom.2013.00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/20/2013] [Indexed: 11/29/2022] Open
Abstract
In this paper we review our research on the effect and computational role of dynamical synapses on feed-forward and recurrent neural networks. Among others, we report on the appearance of a new class of dynamical memories which result from the destabilization of learned memory attractors. This has important consequences for dynamic information processing allowing the system to sequentially access the information stored in the memories under changing stimuli. Although storage capacity of stable memories also decreases, our study demonstrated the positive effect of synaptic facilitation to recover maximum storage capacity and to enlarge the capacity of the system for memory recall in noisy conditions. Possibly, the new dynamical behavior can be associated with the voltage transitions between up and down states observed in cortical areas in the brain. We investigated the conditions for which the permanence times in the up state are power-law distributed, which is a sign for criticality, and concluded that the experimentally observed large variability of permanence times could be explained as the result of noisy dynamic synapses with large recovery times. Finally, we report how short-term synaptic processes can transmit weak signals throughout more than one frequency range in noisy neural networks, displaying a kind of stochastic multi-resonance. This effect is due to competition between activity-dependent synaptic fluctuations (due to dynamic synapses) and the existence of neuron firing threshold which adapts to the incoming mean synaptic input.
Collapse
Affiliation(s)
- Joaquin J. Torres
- Granada Neurophysics Group at Institute “Carlos I” for Theoretical and Computational Physics, University of GranadaGranada, Spain
| | - Hilbert J. Kappen
- Donders Institute for Brain Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
12
|
Pinamonti G, Marro J, Torres JJ. Stochastic resonance crossovers in complex networks. PLoS One 2012; 7:e51170. [PMID: 23272090 PMCID: PMC3522682 DOI: 10.1371/journal.pone.0051170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/30/2012] [Indexed: 11/30/2022] Open
Abstract
Here we numerically study the emergence of stochastic resonance as a mild phenomenon and how this transforms into an amazing enhancement of the signal-to-noise ratio at several levels of a disturbing ambient noise. The setting is a cooperative, interacting complex system modelled as an Ising-Hopfield network in which the intensity of mutual interactions or “synapses” varies with time in such a way that it accounts for, e.g., a kind of fatigue reported to occur in the cortex. This induces nonequilibrium phase transitions whose rising comes associated to various mechanisms producing two types of resonance. The model thus clarifies the details of the signal transmission and the causes of correlation among noise and signal. We also describe short-time persistent memory states, and conclude on the limited relevance of the network wiring topology. Our results, in qualitative agreement with the observation of excellent transmission of weak signals in the brain when competing with both intrinsic and external noise, are expected to be of wide validity and may have technological application. We also present here a first contact between the model behavior and psychotechnical data.
Collapse
Affiliation(s)
- Giovanni Pinamonti
- Institute “Carlos I” for Theoretical and Computational Physics, and Department of Electromagnetism and Matter Physics, University of Granada, Granada, Spain
| | - J. Marro
- Institute “Carlos I” for Theoretical and Computational Physics, and Department of Electromagnetism and Matter Physics, University of Granada, Granada, Spain
| | - Joaquín J. Torres
- Institute “Carlos I” for Theoretical and Computational Physics, and Department of Electromagnetism and Matter Physics, University of Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
13
|
Stroffek J, Marsalek P. Short-term potentiation effect on pattern recall in sparsely coded neural network. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2011.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Fung CCA, Wong KYM, Wang H, Wu S. Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility. Neural Comput 2012; 24:1147-85. [PMID: 22295986 DOI: 10.1162/neco_a_00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity: short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning and may serve as substrates for neural systems manipulating temporal information on relevant timescales. This study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors: the network that is initially being stimulated to an active state decays to a silent state very slowly on the timescale of STD rather than on that of neuralsignaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.
Collapse
Affiliation(s)
- C C Alan Fung
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
| | | | | | | |
Collapse
|
15
|
Mejias JF, Torres JJ. Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity. PLoS One 2011; 6:e17255. [PMID: 21408148 PMCID: PMC3050837 DOI: 10.1371/journal.pone.0017255] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/25/2011] [Indexed: 11/18/2022] Open
Abstract
In this work we study the detection of weak stimuli by spiking (integrate-and-fire) neurons in the presence of certain level of noisy background neural activity. Our study has focused in the realistic assumption that the synapses in the network present activity-dependent processes, such as short-term synaptic depression and facilitation. Employing mean-field techniques as well as numerical simulations, we found that there are two possible noise levels which optimize signal transmission. This new finding is in contrast with the classical theory of stochastic resonance which is able to predict only one optimal level of noise. We found that the complex interplay between adaptive neuron threshold and activity-dependent synaptic mechanisms is responsible for this new phenomenology. Our main results are confirmed by employing a more realistic FitzHugh-Nagumo neuron model, which displays threshold variability, as well as by considering more realistic stochastic synaptic models and realistic signals such as poissonian spike trains.
Collapse
Affiliation(s)
- Jorge F Mejias
- Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
16
|
de Franciscis S, Johnson S, Torres JJ. Enhancing neural-network performance via assortativity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:036114. [PMID: 21517565 DOI: 10.1103/physreve.83.036114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/27/2011] [Indexed: 05/30/2023]
Abstract
The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations--assortativity--on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.
Collapse
Affiliation(s)
- Sebastiano de Franciscis
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, and Facultad de Ciencias, University of Granada, E-18071 Granada, Spain.
| | | | | |
Collapse
|
17
|
Mejias JF, Kappen HJ, Torres JJ. Irregular dynamics in up and down cortical states. PLoS One 2010; 5:e13651. [PMID: 21079740 PMCID: PMC2975677 DOI: 10.1371/journal.pone.0013651] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/02/2010] [Indexed: 11/19/2022] Open
Abstract
Complex coherent dynamics is present in a wide variety of neural systems. A typical example is the voltage transitions between up and down states observed in cortical areas in the brain. In this work, we study this phenomenon via a biologically motivated stochastic model of up and down transitions. The model is constituted by a simple bistable rate dynamics, where the synaptic current is modulated by short-term synaptic processes which introduce stochasticity and temporal correlations. A complete analysis of our model, both with mean-field approaches and numerical simulations, shows the appearance of complex transitions between high (up) and low (down) neural activity states, driven by the synaptic noise, with permanence times in the up state distributed according to a power-law. We show that the experimentally observed large fluctuation in up and down permanence times can be explained as the result of sufficiently noisy dynamical synapses with sufficiently large recovery times. Static synapses cannot account for this behavior, nor can dynamical synapses in the absence of noise.
Collapse
Affiliation(s)
- Jorge F Mejias
- Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
18
|
Mayr C, Partzsch J, Schüffny R. Transient responses of activity-dependent synapses to modulated pulse trains. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2009.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
On the relation between bursts and dynamic synapse properties: a modulation-based ansatz. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2009:658474. [PMID: 19584940 PMCID: PMC2703876 DOI: 10.1155/2009/658474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 01/31/2009] [Accepted: 03/11/2009] [Indexed: 11/21/2022]
Abstract
When entering a synapse, presynaptic pulse trains are filtered according to the recent pulse history at the synapse and also with respect to their own pulse time course. Various behavioral models have tried to reproduce these complex filtering properties. In particular, the quantal model of neurotransmitter release has been shown to be highly
selective for particular presynaptic pulse patterns. However, since the original, pulse-iterative quantal model does not lend itself to mathematical analysis, investigations have only been carried out via simulations. In contrast, we derive a comprehensive explicit expression for the quantal model. We show the correlation between the parameters of this explicit
expression and the preferred spike train pattern of the synapse. In particular, our analysis of the transmission of modulated pulse trains across a dynamic synapse links the original parameters of the quantal model to the transmission efficacy of two major spiking regimes, that is, bursting and constant-rate ones.
Collapse
|
20
|
Mejias JF, Torres JJ. Maximum Memory Capacity on Neural Networks with Short-Term Synaptic Depression and Facilitation. Neural Comput 2009; 21:851-71. [DOI: 10.1162/neco.2008.02-08-719] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In this work, we study, analytically and employing Monte Carlo simulations, the influence of the competition between several activity-dependent synaptic processes, such as short-term synaptic facilitation and depression, on the maximum memory storage capacity in a neural network. In contrast to the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve “static” activity patterns, synaptic facilitation enhances the storage capacity in different contexts. In particular, we found optimal values of the relevant synaptic parameters (such as the neurotransmitter release probability or the characteristic facilitation time constant) for which the storage capacity can be maximal and similar to the one obtained with static synapses, that is, without activity-dependent processes. We conclude that depressing synapses with a certain level of facilitation allow recovering the good retrieval properties of networks with static synapses while maintaining the nonlinear characteristics of dynamic synapses, convenient for information processing and coding.
Collapse
Affiliation(s)
- Jorge F. Mejias
- Department of Electromagnetism and Matter Physics and Institute Carlos I for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| | - Joaquín J. Torres
- Department of Electromagnetism and Matter Physics and Institute Carlos I for Theoretical and Computational Physics, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
21
|
Torres JJ, Marro J, Cortes JM, Wemmenhove B. Instabilities in attractor networks with fast synaptic fluctuations and partial updating of the neurons activity. Neural Netw 2008; 21:1272-7. [PMID: 18701255 DOI: 10.1016/j.neunet.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/15/2008] [Accepted: 07/19/2008] [Indexed: 11/24/2022]
Abstract
We present and study a probabilistic neural automaton in which the fraction of simultaneously-updated neurons is a parameter, rhoin(0,1). For small rho, there is relaxation towards one of the attractors and a great sensibility to external stimuli and, for rho > or = rho(c), itinerancy among attractors. Tuning rho in this regime, oscillations may abruptly change from regular to chaotic and vice versa, which allows one to control the efficiency of the searching process. We argue on the similarity of the model behavior with recent observations, and on the possible role of chaos in neurobiology.
Collapse
Affiliation(s)
- J J Torres
- Institute "Carlos I" for Theoretical and Computational Physics, and Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, E-18071, Granada, Spain.
| | | | | | | |
Collapse
|
22
|
Mejías JF, Torres JJ. The role of synaptic facilitation in spike coincidence detection. J Comput Neurosci 2007; 24:222-34. [PMID: 17674172 DOI: 10.1007/s10827-007-0052-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/15/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Using a realistic model of activity dependent dynamical synapse, which includes both depressing and facilitating mechanisms, we study the conditions in which a postsynaptic neuron efficiently detects temporal coincidences of spikes which arrive from N different presynaptic neurons at certain frequency f. A numerical and analytical treatment of that system shows that: (1) facilitation enhances the detection of correlated signals arriving from a subset of presynaptic excitatory neurons, and (2) the presence of facilitation yields to a better detection of firing rate changes in the presynaptic activity. We also observed that facilitation determines the existence of an optimal input frequency which allows the best performance for a wide (maximum) range of the neuron firing threshold. This optimal frequency can be controlled by means of facilitation parameters. Finally, we show that these results are robust even for very noisy signals and in the presence of synaptic fluctuations produced by the stochastic release of neurotransmitters.
Collapse
Affiliation(s)
- Jorge F Mejías
- Department of Electromagnetism and Physics of the Matter and Institute Carlos I for Theoretical and Computational Physics, University of Granada, 18071 Granada, Spain.
| | | |
Collapse
|