1
|
Moore DD, MacLean JN, Walker JD, Hatsopoulos NG. A dynamic subset of network interactions underlies tuning to natural movements in marmoset sensorimotor cortex. Nat Commun 2024; 15:10517. [PMID: 39627212 PMCID: PMC11615226 DOI: 10.1038/s41467-024-54343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Mechanisms of computation in sensorimotor cortex must be flexible and robust to support skilled motor behavior. Patterns of neuronal coactivity emerge as a result of computational processes. Pairwise spike-time statistical relationships, across the population, can be summarized as a functional network (FN) which retains single-unit properties. We record populations of single-unit neural activity in marmoset forelimb sensorimotor cortex during prey capture and spontaneous behavior and use an encoding model incorporating kinematic trajectories and network features to predict single-unit activity during forelimb movements. The contribution of network features depends on structured connectivity within strongly connected functional groups. We identify a context-specific functional group that is highly tuned to kinematics and reorganizes its connectivity between spontaneous and prey capture movements. In the remaining context-invariant group, interactions are comparatively stable across behaviors and units are less tuned to kinematics. This suggests different roles in producing natural forelimb movements and contextualizes single-unit tuning properties within population dynamics.
Collapse
Affiliation(s)
- Dalton D Moore
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Jason N MacLean
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, 60637, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL, 60637, USA
| | - Jeffrey D Walker
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, 60637, USA.
- University of Chicago Neuroscience Institute, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Jiang H, Hu R, Wang YJ, Xie X. Predicting depression in patients with heart failure based on a stacking model. World J Clin Cases 2024; 12:4661-4672. [PMID: 39070824 PMCID: PMC11235518 DOI: 10.12998/wjcc.v12.i21.4661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure (HF). AIM To create a stacking model for predicting depression in patients with HF. METHODS This study analyzed data on 1084 HF patients from the National Health and Nutrition Examination Survey database spanning from 2005 to 2018. Through univariate analysis and the use of an artificial neural network algorithm, predictors significantly linked to depression were identified. These predictors were utilized to create a stacking model employing tree-based learners. The performances of both the individual models and the stacking model were assessed by using the test dataset. Furthermore, the SHapley additive exPlanations (SHAP) model was applied to interpret the stacking model. RESULTS The models included five predictors. Among these models, the stacking model demonstrated the highest performance, achieving an area under the curve of 0.77 (95%CI: 0.71-0.84), a sensitivity of 0.71, and a specificity of 0.68. The calibration curve supported the reliability of the models, and decision curve analysis confirmed their clinical value. The SHAP plot demonstrated that age had the most significant impact on the stacking model's output. CONCLUSION The stacking model demonstrated strong predictive performance. Clinicians can utilize this model to identify high-risk depression patients with HF, thus enabling early provision of psychological interventions.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Rui Hu
- Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Yu-Jie Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xiang Xie
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
3
|
Donner C, Bartram J, Hornauer P, Kim T, Roqueiro D, Hierlemann A, Obozinski G, Schröter M. Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains. PLoS Comput Biol 2024; 20:e1011964. [PMID: 38683881 PMCID: PMC11081509 DOI: 10.1371/journal.pcbi.1011964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/09/2024] [Accepted: 03/02/2024] [Indexed: 05/02/2024] Open
Abstract
Probing the architecture of neuronal circuits and the principles that underlie their functional organization remains an important challenge of modern neurosciences. This holds true, in particular, for the inference of neuronal connectivity from large-scale extracellular recordings. Despite the popularity of this approach and a number of elaborate methods to reconstruct networks, the degree to which synaptic connections can be reconstructed from spike-train recordings alone remains controversial. Here, we provide a framework to probe and compare connectivity inference algorithms, using a combination of synthetic ground-truth and in vitro data sets, where the connectivity labels were obtained from simultaneous high-density microelectrode array (HD-MEA) and patch-clamp recordings. We find that reconstruction performance critically depends on the regularity of the recorded spontaneous activity, i.e., their dynamical regime, the type of connectivity, and the amount of available spike-train data. We therefore introduce an ensemble artificial neural network (eANN) to improve connectivity inference. We train the eANN on the validated outputs of six established inference algorithms and show how it improves network reconstruction accuracy and robustness. Overall, the eANN demonstrated strong performance across different dynamical regimes, worked well on smaller datasets, and improved the detection of synaptic connectivity, especially inhibitory connections. Results indicated that the eANN also improved the topological characterization of neuronal networks. The presented methodology contributes to advancing the performance of inference algorithms and facilitates our understanding of how neuronal activity relates to synaptic connectivity.
Collapse
Affiliation(s)
- Christian Donner
- Swiss Data Science Center, ETH Zürich & EPFL, Zürich & Lausanne, Switzerland
| | - Julian Bartram
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Philipp Hornauer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Taehoon Kim
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Damian Roqueiro
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Guillaume Obozinski
- Swiss Data Science Center, ETH Zürich & EPFL, Zürich & Lausanne, Switzerland
| | - Manuel Schröter
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
4
|
Hatsopoulos N, Moore D, MacLean J, Walker J. A dynamic subset of network interactions underlies tuning to natural movements in marmoset sensorimotor cortex. RESEARCH SQUARE 2023:rs.3.rs-3750312. [PMID: 38234779 PMCID: PMC10793486 DOI: 10.21203/rs.3.rs-3750312/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mechanisms of computation in sensorimotor cortex must be flexible and robust to support skilled motor behavior. Patterns of neuronal coactivity emerge as a result of computational processes. Pairwise spike-time statistical relationships, across the population, can be summarized as a functional network (FN) which retains single-unit properties. We record populations of single-unit neural activity in forelimb sensorimotor cortex during prey-capture and spontaneous behavior and use an encoding model incorporating kinematic trajectories and network features to predict single-unit activity during forelimb movements. The contribution of network features depends on structured connectivity within strongly connected functional groups. We identify a context-specific functional group that is highly tuned to kinematics and reorganizes its connectivity between spontaneous and prey-capture movements. In the remaining context-invariant group, interactions are comparatively stable across behaviors and units are less tuned to kinematics. This suggests different roles in producing natural forelimb movements and contextualizes single-unit tuning properties within population dynamics.
Collapse
|
5
|
Sundiang M, Hatsopoulos NG, MacLean JN. Dynamic structure of motor cortical neuron coactivity carries behaviorally relevant information. Netw Neurosci 2023; 7:661-678. [PMID: 37397877 PMCID: PMC10312288 DOI: 10.1162/netn_a_00298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/02/2022] [Indexed: 01/28/2024] Open
Abstract
Skillful, voluntary movements are underpinned by computations performed by networks of interconnected neurons in the primary motor cortex (M1). Computations are reflected by patterns of coactivity between neurons. Using pairwise spike time statistics, coactivity can be summarized as a functional network (FN). Here, we show that the structure of FNs constructed from an instructed-delay reach task in nonhuman primates is behaviorally specific: Low-dimensional embedding and graph alignment scores show that FNs constructed from closer target reach directions are also closer in network space. Using short intervals across a trial, we constructed temporal FNs and found that temporal FNs traverse a low-dimensional subspace in a reach-specific trajectory. Alignment scores show that FNs become separable and correspondingly decodable shortly after the Instruction cue. Finally, we observe that reciprocal connections in FNs transiently decrease following the Instruction cue, consistent with the hypothesis that information external to the recorded population temporarily alters the structure of the network at this moment.
Collapse
Affiliation(s)
- Marina Sundiang
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Nicholas G. Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Jason N. MacLean
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Bojanek K, Zhu Y, MacLean J. Cyclic transitions between higher order motifs underlie sustained asynchronous spiking in sparse recurrent networks. PLoS Comput Biol 2020; 16:e1007409. [PMID: 32997658 PMCID: PMC7549833 DOI: 10.1371/journal.pcbi.1007409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
A basic—yet nontrivial—function which neocortical circuitry must satisfy is the ability to maintain stable spiking activity over time. Stable neocortical activity is asynchronous, critical, and low rate, and these features of spiking dynamics contribute to efficient computation and optimal information propagation. However, it remains unclear how neocortex maintains this asynchronous spiking regime. Here we algorithmically construct spiking neural network models, each composed of 5000 neurons. Network construction synthesized topological statistics from neocortex with a set of objective functions identifying naturalistic low-rate, asynchronous, and critical activity. We find that simulations run on the same topology exhibit sustained asynchronous activity under certain sets of initial membrane voltages but truncated activity under others. Synchrony, rate, and criticality do not provide a full explanation of this dichotomy. Consequently, in order to achieve mechanistic understanding of sustained asynchronous activity, we summarized activity as functional graphs where edges between units are defined by pairwise spike dependencies. We then analyzed the intersection between functional edges and synaptic connectivity- i.e. recruitment networks. Higher-order patterns, such as triplet or triangle motifs, have been tied to cooperativity and integration. We find, over time in each sustained simulation, low-variance periodic transitions between isomorphic triangle motifs in the recruitment networks. We quantify the phenomenon as a Markov process and discover that if the network fails to engage this stereotyped regime of motif dominance “cycling”, spiking activity truncates early. Cycling of motif dominance generalized across manipulations of synaptic weights and topologies, demonstrating the robustness of this regime for maintenance of network activity. Our results point to the crucial role of excitatory higher-order patterns in sustaining asynchronous activity in sparse recurrent networks. They also provide a possible explanation why such connectivity and activity patterns have been prominently reported in neocortex. Neocortical spiking activity tends to be low-rate and non-rhythmic, and to operate near the critical point of a phase transition. It remains unclear how this kind of spiking activity can be maintained within a neuronal network. Neurons are leaky and individual synaptic connections are sparse and weak, making the maintenance of an asynchronous regime a nontrivial problem. Higher order patterns involving more than two units abound in neocortex, and several lines of evidence suggest that they may be instrumental for brain function. For example, stable activity in vivo displays elevated clustering dominated by specific three-node (triplet) motifs. In this study we demonstrate a link between the maintenance of asynchronous activity and triplet motifs. We algorithmically build spiking neural network models to mimic the topology of neocortex and the spiking statistics that characterize wakefulness. We show that higher order coordination of synapses is always present during sustained asynchronous activity. Coordination takes the form of transitions in time between specific triangle motifs. These motifs summarize the way spikes traverse the underlying synaptic topology. The results of our model are consistent with numerous experimental observations, and their generalizability to other weakly and sparsely connected networks is predicted.
Collapse
Affiliation(s)
- Kyle Bojanek
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Yuqing Zhu
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Jason MacLean
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|