1
|
Schulze-Bonhage A, Antonio-Arce VS, Kalousios S, Martinez-Lizana E, Coenen VA, Hirsch M. Epicranial focal cortex stimulation for minimally invasive neuromodulation of the epileptogenic region: A review. Epilepsy Behav 2025; 168:110390. [PMID: 40184829 DOI: 10.1016/j.yebeh.2025.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Epicranial focal cortex stimulation (FCS) is a new type of neurostimulation for pharmacoresistant focal epilepsy, which has recently been CE-certified for treatment of European patients. Stimulation is performed via an epicranially placed five-contact electrode array, which applies high frequency stimulation and DC-like cathodal stimulation to the individual epileptogenic brain region. Stimulation at appropriate intensities is not perceived by patients, and first evidence from two prospective unblinded clinical trials suggests excellent tolerability of both, subgaleal implantation and transcranial stimulation. In epilepsies arising from the dorsolateral brain convexity, FCS resulted in a median seizure reduction of >50 % after 6 months which further increased to >60 % after 2 years. This compares favorably to more invasive neurostimulation approaches.
Collapse
Affiliation(s)
| | | | - Sotirios Kalousios
- Epilepsy Center, University Medical Center, University of Freiburg, Germany
| | | | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, University of Freiburg, Germany
| | - Martin Hirsch
- Epilepsy Center, University Medical Center, University of Freiburg, Germany
| |
Collapse
|
2
|
Schulze-Bonhage A, Hirsch M, Knake S, Mertens A, Rademacher M, Kaufmann E, Kegele J, Jenkner C, Coenen V, Glaser M, Groppa S, Winter Y. Two-year outcomes of epicranial focal cortex stimulation in pharmacoresistant focal epilepsy. Epilepsia 2025. [PMID: 40377414 DOI: 10.1111/epi.18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
OBJECTIVE This study was undertaken to report on the long-term safety and efficacy of epicranial focal cortex stimulation (FCS) using the EASEE device as adjunctive neuromodulatory therapy in improving seizure control in adults with pharmacoresistant epilepsy originating from one predominant epileptogenic zone. METHODS Prospective open-label follow-up of patients from the EASEE II and PIMIDES I clinical trials was done for a period of 2 years after the epicranial implantation of the EASEE electrode and stimulator device. RESULTS Thirty-three patients underwent device implantation, and stimulation was activated in 32 patients. Of these, 26 patients continued stimulation up to 2-year follow-up and provided seizure diary data for efficacy analysis. The 50% responder rate at 2-year follow-up was 65.4% (95% confidence interval = 44.3-82.8), corresponding to a median seizure frequency reduction of 68%. Patients reported improved health-related quality of life. Tolerability was excellent, and there were no severe adverse events considered to be related to implantation or stimulation, nor were adverse effects on mood or cognition reported. SIGNIFICANCE Results of the 2-year follow-up show that epicranial FCS is well tolerated by patients while providing improved seizure control in the long term. It thus offers a minimally invasive treatment option for patients with a predominant epileptic focus.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- NeuroModul Basic, University of Freiburg, Freiburg, Germany
- Bernstein Center of Computational Neuroscience, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE, Lyon, France
| | - Martin Hirsch
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Knake
- Neurology, University Hospital Marburg, Marburg, Germany
| | - Ann Mertens
- Neurology, University Hospital Gent, Ghent, Belgium
| | | | - Elisabeth Kaufmann
- Department of Neurology, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Carolin Jenkner
- Clinical Trials Unit, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Volker Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Glaser
- Department of Neurosurgery, University of Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Saarland University Medical Center, University of Saarland, Homburg, Germany
| | - Yaroslav Winter
- Neurology, University Hospital Marburg, Marburg, Germany
- Department of Neurology, Saarland University Medical Center, University of Saarland, Homburg, Germany
| |
Collapse
|
3
|
Vestring S, Wolf E, Dinkelacker J, Frase S, Hessling-Zeinen C, Insan S, Kumlehn MM, Feige B, Domschke K, Normann C, Frase L. Lasting effects of transcranial direct current stimulation on the inducibility of synaptic plasticity by paired-associative stimulation in humans. J Neuroeng Rehabil 2024; 21:162. [PMID: 39289746 PMCID: PMC11409632 DOI: 10.1186/s12984-024-01459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is capable of eliciting changes in cortical neuroplasticity. Increasing duration or repetition of tDCS during the after-effects of a first stimulation has been hypothesized to enhance efficacy. Computational models suggest sequential stimulation patterns with changing polarities to further enhance effects. Lasting tDCS effects on neural plasticity are of great importance for clinical applications. OBJECTIVE The study systematically examined the influence of different tDCS paradigms on long term potentiation (LTP)-like plasticity in humans, focusing on stimulation duration, repetition frequency and sequential combinations of changing polarities as the underlying characteristics. METHODS Amplitude changes of motor evoked potentials (MEP) were measured in response to paired associative stimulation (PAS) 6 h after application of different tDCS protocols. In total, 36 healthy participants completed the study, randomised into three groups with different stimulation protocols (N = 12 each). RESULTS tDCS was able to display lasting modulatory effects on the inducibility of LTP-like plasticity in the human motor cortex 6 h after stimulation. TDCS with the anode on primary motor cortex significantly increased MEP amplitudes following PAS induction. Further analyses highlighted single stimulation block duration to be of higher importance than repetitive protocols for efficacy of effects. CONCLUSIONS tDCS is capable of inducing lasting changes in the brain's capability to interact with future stimuli. Especially, effects on the inducibility of LTP-like plasticity might only be detectable with specific tests such as PAS and might otherwise be overlooked. Refined tDCS protocols should focus on higher current and duration of single stimulations instead of implementing complex repetitive schedules.
Collapse
Affiliation(s)
- Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Elias Wolf
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Johanna Dinkelacker
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
- Faculty of Science and Engineering, BCN Research Master (C-Tracks), s375081, University of Groningen, Groningen, The Netherlands
| | - Sibylle Frase
- Department of Neurology and Neuroscience, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Carolin Hessling-Zeinen
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Shrabon Insan
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Maral M Kumlehn
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
- Center for Basics in Neuromodulation, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
- Center for Basics in Neuromodulation, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg-Faculty of Medicine, University of Freiburg, Hauptstrasse 8, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Chauhan K, Neiman AB, Tass PA. Synaptic reorganization of synchronized neuronal networks with synaptic weight and structural plasticity. PLoS Comput Biol 2024; 20:e1012261. [PMID: 38980898 PMCID: PMC11259284 DOI: 10.1371/journal.pcbi.1012261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/19/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Abnormally strong neural synchronization may impair brain function, as observed in several brain disorders. We computationally study how neuronal dynamics, synaptic weights, and network structure co-emerge, in particular, during (de)synchronization processes and how they are affected by external perturbation. To investigate the impact of different types of plasticity mechanisms, we combine a network of excitatory integrate-and-fire neurons with different synaptic weight and/or structural plasticity mechanisms: (i) only spike-timing-dependent plasticity (STDP), (ii) only homeostatic structural plasticity (hSP), i.e., without weight-dependent pruning and without STDP, (iii) a combination of STDP and hSP, i.e., without weight-dependent pruning, and (iv) a combination of STDP and structural plasticity (SP) that includes hSP and weight-dependent pruning. To accommodate the diverse time scales of neuronal firing, STDP, and SP, we introduce a simple stochastic SP model, enabling detailed numerical analyses. With tools from network theory, we reveal that structural reorganization may remarkably enhance the network's level of synchrony. When weaker contacts are preferentially eliminated by weight-dependent pruning, synchrony is achieved with significantly sparser connections than in randomly structured networks in the STDP-only model. In particular, the strengthening of contacts from neurons with higher natural firing rates to those with lower rates and the weakening of contacts in the opposite direction, followed by selective removal of weak contacts, allows for strong synchrony with fewer connections. This activity-led network reorganization results in the emergence of degree-frequency, degree-degree correlations, and a mixture of degree assortativity. We compare the stimulation-induced desynchronization of synchronized states in the STDP-only model (i) with the desynchronization of models (iii) and (iv). The latter require stimuli of significantly higher intensity to achieve long-term desynchronization. These findings may inform future pre-clinical and clinical studies with invasive or non-invasive stimulus modalities aiming at inducing long-lasting relief of symptoms, e.g., in Parkinson's disease.
Collapse
Affiliation(s)
- Kanishk Chauhan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| | - Alexander B. Neiman
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
5
|
Schulze-Bonhage A, Nitsche MA, Rotter S, Focke NK, Rao VR. Neurostimulation targeting the epileptic focus: Current understanding and perspectives for treatment. Seizure 2024; 117:183-192. [PMID: 38452614 DOI: 10.1016/j.seizure.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024] Open
Abstract
For the one third of people with epilepsy whose seizures are not controlled with medications, targeting the seizure focus with neurostimulation can be an effective therapeutic strategy. In this focused review, we summarize a discussion of targeted neurostimulation modalities during a workshop held in Frankfurt, Germany in September 2023. Topics covered include: available devices for seizure focus stimulation; alternating current (AC) and direct current (DC) stimulation to reduce focal cortical excitability; modeling approaches to simulate DC stimulation; reconciling the efficacy of focal stimulation with the network theory of epilepsy; and the emerging concept of 'neurostimulation zones,' which are defined as cortical regions where focal stimulation is most effective for reducing seizures and which may or may not directly involve the seizure onset zone. By combining experimental data, modeling results, and clinical outcome analysis, rational selection of target regions and stimulation parameters is increasingly feasible, paving the way for a broader use of neurostimulation for epilepsy in the future.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, University of Freiburg, Germany; European Reference Network EpiCare, Belgium; NeuroModul Basic, University of Freiburg, Freiburg, Germany.
| | - Michael A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Germany; German Center for Mental Health (DZPG), Germany
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Germany
| | - Niels K Focke
- Epilepsy Center, Clinic for Neurology, University Medical Center Göttingen, Germany
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, USA
| |
Collapse
|
6
|
Yang D, Ghafoor U, Eggebrecht AT, Hong KS. Effectiveness assessment of repetitive transcranial alternating current stimulation with concurrent EEG and fNIRS measurement. Health Inf Sci Syst 2023; 11:35. [PMID: 37545487 PMCID: PMC10397167 DOI: 10.1007/s13755-023-00233-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) exhibits the capability to interact with endogenous brain oscillations using an external low-intensity sinusoidal current and influences cerebral function. Despite its potential benefits, the physiological mechanisms and effectiveness of tACS are currently a subject of debate and disagreement. The aims of our study are to (i) evaluate the neurological and behavioral impact of tACS by conducting repetitive sham-controlled experiments and (ii) propose criteria to evaluate effectiveness, which can serve as a benchmark to determine optimal individual-based tACS protocols. In this study, 15 healthy adults participated in the experiment over two visiting: sham and tACS (i.e., 5 Hz, 1 mA). During each visit, we used multimodal recordings of the participants' brain, including simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), along with a working memory (WM) score to quantify neurological effects and cognitive changes immediately after each repetitive sham/tACS session. Our results indicate increased WM scores, hemodynamic response strength, and EEG power in theta and delta bands both during and after the tACS period. Additionally, the observed effects do not increase with prolonged stimulation time, as the effects plateau towards the end of the experiment. In conclusion, our proposed closed-loop scheme offers a promising advance for evaluating the effectiveness of tACS during the stimulation session. Specifically, the assessment criteria use participant-specific brain-based signals along with a behavioral output. Moreover, we propose a feedback efficacy score that can aid in determining the optimal stimulation duration based on a participant-specific brain state, thereby preventing the risk of overstimulation.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63100 USA
| | - Usman Ghafoor
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
| | - Adam Thomas Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63100 USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 USA
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, 46241 Republic of Korea
- Institute for Future, School of Automation, Qingdao University, Qingdao, 266071 Shandong China
| |
Collapse
|
7
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. PLoS Comput Biol 2023; 19:e1011027. [PMID: 37956202 PMCID: PMC10681319 DOI: 10.1371/journal.pcbi.1011027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms of long-term effects remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity among excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). Particularly, the feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced structural reorganization, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Schulze-Bonhage A, Hirsch M, Knake S, Kaufmann E, Kegele J, Rademacher M, Vonck K, Coenen VA, Glaser M, Jenkner C, Winter Y, Groppa S. Focal Cortex Stimulation With a Novel Implantable Device and Antiseizure Outcomes in 2 Prospective Multicenter Single-Arm Trials. JAMA Neurol 2023; 80:588-596. [PMID: 37010826 PMCID: PMC10071400 DOI: 10.1001/jamaneurol.2023.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 04/04/2023]
Abstract
Importance For the large population of people with drug-refractory epilepsy, alternative treatment approaches are needed. Clinical trial outcomes of a novel stimulation device, which is newly available in Europe for the treatment of patients with a predominant seizure focus, are reported for the first time. Objective To perform a pooled analysis of the results of 2 prospective, multicenter, single-arm trials, A Pilot Study to Assess the Feasibility of Neurostimulation With the EASEE System to Treat Medically Refractory Focal Epilepsy (EASEE II) and A Pilot Study to Assess the Feasibility of Patient-Controlled Neurostimulation With the EASEE System to Treat Medically Refractory Focal Epilepsy (PIMIDES I), assessing the safety and efficacy of epicranial focal cortex stimulation (FCS) with a novel implantable device (EASEE [Precisis]) as adjunctive treatment for adult patients with drug-refractory focal epilepsy. Design, Setting, and Participants This study was a pooled analysis of 2 nonrandomized uncontrolled trials, EASEE II and PIMIDES I, which began on January 15, 2019, and January 14, 2020, respectively, and ended on July 28, 2021. EASEE II and PIMIDES I were the first in-human, prospective, single-arm trials with an 8-month evaluation period. Patients were recruited at 7 European epilepsy centers. Consecutive participants with drug-refractory focal epilepsy were enrolled. Study data were analyzed from September 29, 2021, to February 2, 2022. Interventions After a 1-month prospective baseline period, patients were implanted with the neurostimulation device. After a 1-month postimplantation recovery period, unblinded FCS was activated using both high-frequency and direct current (DC)-like components performed via electrode arrays placed epicranially above the individual epileptic focus region. Main Outcomes and Measures Efficacy was prospectively assessed by the responder rate in the sixth month of stimulation compared with baseline; safety and additional end points were assessed after device implantation and during the stimulation period. Results Of the 34 adult patients enrolled at 6 German and 1 Belgian investigational site, 33 (mean [SD] age, 34.6 [13.5] years; 18 male patients [54.5%]) received the neurostimulation device implant. A total of 32 patients underwent combined high-frequency direct current-like stimulation at least until the 8-month postimplant follow-up visit. After 6 months of stimulation, 17 of 32 patients (53.1%) were responders to treatment with at least a 50% reduction in seizure frequency compared with baseline, corresponding to a significant median seizure reduction by 52% (95% CI, 0.37%-0.76%; P < .001). No device- or procedure-related serious adverse events were reported (0; 95% CI, 0%-10.58%). There were no significant alterations in cognition, mood, or overall quality of life. Conclusions and Relevance Results of this pooled analysis of 2 nonrandomized uncontrolled trials suggest that FCS with a novel neurostimulation device was associated with an effective reduction in seizure frequency in patients with drug-refractory focal epilepsy and may offer a promising treatment option for patients with a predominant epileptic focus. Trial Registration German Clinical Trials Register: DRKS00015918 and DRKS00017833, respectively, and jointly under PROSPERO: CRD42021266440.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, Neurocenter, University Medical Center, University of Freiburg, Freiburg, Germany
- NeuroModul Basic, University of Freiburg, Freiburg, Germany
- Bernstein Center of Computational Neuroscience, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCare
| | - Martin Hirsch
- Epilepsy Center, Neurocenter, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Knake
- Neurology, University Hospital Marburg, Marburg, Germany
| | - Elisabeth Kaufmann
- Department of Neurology, University Hospital, Ludwig-Maximilan’s University, Munich, Germany
| | - Josua Kegele
- Hertie Institute for Clinical Brain Research, Department of Neurology and Epileptology, University of Tübingen, Tübingen, Germany
| | | | - Kristl Vonck
- Neurology, University Hospital Ghent, Ghent, Belgium
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg, Germany
- Medical Faculty of the University of Freiburg, Frieburg im Breisgau, Germany
- Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Freiburg, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Carolin Jenkner
- Study Center, University Medical Center, University of Freiburg, Freiburg, Germany
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Yaroslav Winter
- Neurology, University Hospital Marburg, Marburg, Germany
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sergiu Groppa
- Neurology, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
9
|
Boscutti A, Murphy N, Cho R, Selvaraj S. Noninvasive Brain Stimulation Techniques for Treatment-Resistant Depression: Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation. Psychiatr Clin North Am 2023; 46:307-329. [PMID: 37149347 DOI: 10.1016/j.psc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transcranial magnetic stimulation is a safe, effective, and well-tolerated intervention for depression; it is currently approved for treatment-resistant depression. This article summarizes the mechanism of action, evidence of clinical efficacy, and the clinical aspects of this intervention, including patient evaluation, stimulation parameters selection, and safety considerations. Transcranial direct current stimulation is another neuromodulation treatment for depression; although promising, the technique is not currently approved for clinical use in the United States. The final section outlines the open challenges and future directions of the field.
Collapse
Affiliation(s)
- Andrea Boscutti
- Louis. A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicholas Murphy
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Raymond Cho
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Sudhakar Selvaraj
- Louis. A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Aloi D, Jalali R, Calzolari S, Lafanechere M, Miall RC, Fernández-Espejo D. Multi-session tDCS paired with passive mobilisation of the thumb modulates thalamo-cortical coupling during command following in the healthy brain. Neuroimage 2023; 274:120145. [PMID: 37121374 DOI: 10.1016/j.neuroimage.2023.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
Therapeutic options to restore responsiveness in patients with prolonged disorder of consciousness (PDOC) are limited. We have recently shown that a single session of tDCS over M1 delivered at rest can reduce thalamic self-inhibition during motor command following. Here, we build upon this by exploring whether pairing tDCS with a concurrent passive mobilisation protocol can further influence thalamo-M1 dynamics and whether these changes are enhanced after multiple stimulation sessions. Specifically, we used Dynamic Causal Modelling (DCM) of functional magnetic resonance imaging (fMRI) data from 22 healthy participants to assess changes on effective connectivity within the motor network during active thumb movements after 1 or 5 sessions of tDCS paired with passive mobilisations of the thumb. We found that a single anodal tDCS session (paired with passive mobilisation of the thumb) decreased self-inhibition in M1, with five sessions further enhancing this effect. In addition, anodal tDCS increased thalamo-M1 excitation as compared to cathodal stimulation, with the effects maintained after 5 sessions. Together, our results suggest that pairing anodal tDCS with passive mobilisation across multiple sessions may facilitate thalamo-cortical dynamics that are relevant for behavioural responsiveness in PDOC. More broadly, they offer a mechanistic window into the neural underpinnings of the cumulative effects of multi-session tDCS.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Roya Jalali
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Sara Calzolari
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Melanie Lafanechere
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | | | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham.
| |
Collapse
|
11
|
Calzolari S, Jalali R, Fernández-Espejo D. Characterising stationary and dynamic effective connectivity changes in the motor network during and after tDCS. Neuroimage 2023; 269:119915. [PMID: 36736717 DOI: 10.1016/j.neuroimage.2023.119915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The exact mechanisms behind the effects of transcranial direct current stimulation (tDCS) at a network level are still poorly understood, with most studies to date focusing on local (cortical) effects and changes in motor-evoked potentials or BOLD signal. Here, we explored stationary and dynamic effective connectivity across the motor network at rest in two experiments where we applied tDCS over the primary motor cortex (M1-tDCS) or the cerebellum (cb-tDCS) respectively. Two cohorts of healthy volunteers (n = 21 and n = 22) received anodal, cathodal, and sham tDCS sessions (counterbalanced) during 20 min of resting-state functional magnetic resonance imaging (fMRI). We used spectral Dynamic Causal Modelling (DCM) and hierarchical Parametrical Empirical Bayes (PEB) to analyze data after (compared to a pre-tDCS baseline) and during stimulation. We also implemented a novel dynamic (sliding windows) DCM/PEB approach to model the nature of network reorganisation across time. In both experiments we found widespread effects of tDCS that extended beyond the targeted area and modulated effective connectivity between cortex, thalamus, and cerebellum. These changes were characterised by unique nonlinear temporal fingerprints across connections and polarities. Our results support growing research challenging the classic notion of anodal and cathodal tDCS as excitatory and inhibitory respectively, as well as the idea of a cumulative effect of tDCS over time. Instead, they described a rich set of changes with specific spatial and temporal patterns. Our work provides a starting point for advancing our understanding of network-level tDCS effects and may guide future work to optimise its cognitive and clinical applications.
Collapse
Affiliation(s)
- Sara Calzolari
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Roya Jalali
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, UK
| | - Davinia Fernández-Espejo
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK; School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
12
|
A microfluidic perspective on conventional in vitro transcranial direct current stimulation methods. J Neurosci Methods 2023; 385:109761. [PMID: 36470469 PMCID: PMC9884911 DOI: 10.1016/j.jneumeth.2022.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.
Collapse
|
13
|
Miehl C, Onasch S, Festa D, Gjorgjieva J. Formation and computational implications of assemblies in neural circuits. J Physiol 2022. [PMID: 36068723 DOI: 10.1113/jp282750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
In the brain, patterns of neural activity represent sensory information and store it in non-random synaptic connectivity. A prominent theoretical hypothesis states that assemblies, groups of neurons that are strongly connected to each other, are the key computational units underlying perception and memory formation. Compatible with these hypothesised assemblies, experiments have revealed groups of neurons that display synchronous activity, either spontaneously or upon stimulus presentation, and exhibit behavioural relevance. While it remains unclear how assemblies form in the brain, theoretical work has vastly contributed to the understanding of various interacting mechanisms in this process. Here, we review the recent theoretical literature on assembly formation by categorising the involved mechanisms into four components: synaptic plasticity, symmetry breaking, competition and stability. We highlight different approaches and assumptions behind assembly formation and discuss recent ideas of assemblies as the key computational unit in the brain. Abstract figure legend Assembly Formation. Assemblies are groups of strongly connected neurons formed by the interaction of multiple mechanisms and with vast computational implications. Four interacting components are thought to drive assembly formation: synaptic plasticity, symmetry breaking, competition and stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christoph Miehl
- Computation in Neural Circuits, Max Planck Institute for Brain Research, 60438, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Sebastian Onasch
- Computation in Neural Circuits, Max Planck Institute for Brain Research, 60438, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Dylan Festa
- Computation in Neural Circuits, Max Planck Institute for Brain Research, 60438, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Julijana Gjorgjieva
- Computation in Neural Circuits, Max Planck Institute for Brain Research, 60438, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
14
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
15
|
Gallinaro JV, Gašparović N, Rotter S. Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams. PLoS Comput Biol 2022; 18:e1009836. [PMID: 35143489 PMCID: PMC8865699 DOI: 10.1371/journal.pcbi.1009836] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/23/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Brain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation of stable memories. We analyze this phenomenon using a new theory of network remodeling, combined with numerical simulations of recurrent spiking neural networks that exhibit structural plasticity based on firing rate homeostasis. These networks are able to store repeatedly presented patterns and recall them upon the presentation of incomplete cues. Storage is fast, governed by the homeostatic drift. In contrast, forgetting is slow, driven by a diffusion process. Joint stimulation of neurons induces the growth of associative connections between them, leading to the formation of memory engrams. These memories are stored in a distributed fashion throughout connectivity matrix, and individual synaptic connections have only a small influence. Although memory-specific connections are increased in number, the total number of inputs and outputs of neurons undergo only small changes during stimulation. We find that homeostatic structural plasticity induces a specific type of "silent memories", different from conventional attractor states.
Collapse
Affiliation(s)
- Júlia V. Gallinaro
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Nebojša Gašparović
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Sadeh S, Clopath C. Excitatory-inhibitory balance modulates the formation and dynamics of neuronal assemblies in cortical networks. SCIENCE ADVANCES 2021; 7:eabg8411. [PMID: 34731002 PMCID: PMC8565910 DOI: 10.1126/sciadv.abg8411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/14/2021] [Indexed: 05/20/2023]
Abstract
Repetitive activation of subpopulations of neurons leads to the formation of neuronal assemblies, which can guide learning and behavior. Recent technological advances have made the artificial induction of these assemblies feasible, yet how various parameters of induction can be optimized is not clear. Here, we studied this question in large-scale cortical network models with excitatory-inhibitory balance. We found that the background network in which assemblies are embedded can strongly modulate their dynamics and formation. Networks with dominant excitatory interactions enabled a fast formation of assemblies, but this was accompanied by recruitment of other non-perturbed neurons, leading to some degree of nonspecific induction. On the other hand, networks with strong excitatory-inhibitory interactions ensured that the formation of assemblies remained constrained to the perturbed neurons, but slowed down the induction. Our results suggest that these two regimes can be suitable for computational and cognitive tasks with different trade-offs between speed and specificity.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
17
|
Gallinaro JV, Clopath C. Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity. PLoS Comput Biol 2021; 17:e1009593. [PMID: 34762644 PMCID: PMC8610285 DOI: 10.1371/journal.pcbi.1009593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022] Open
Abstract
Cell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have previously shown that assemblies can be formed in networks with multiple types of plasticity. But how exactly they are formed and how they encode information is yet to be fully understood. One possibility is that memories are stored in silent assemblies. Here we used a computational model to study the formation of silent assemblies in a network of spiking neurons with excitatory and inhibitory plasticity. We found that even though the formed assemblies were silent in terms of mean firing rate, they had an increased coefficient of variation of inter-spike intervals. We also found that this spiking irregularity could be read out with support of short-term plasticity, and that it could contribute to the longevity of memories.
Collapse
Affiliation(s)
- Júlia V. Gallinaro
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Lu H, Gallinaro JV, Normann C, Rotter S, Yalcin I. Time Course of Homeostatic Structural Plasticity in Response to Optogenetic Stimulation in Mouse Anterior Cingulate Cortex. Cereb Cortex 2021; 32:1574-1592. [PMID: 34607362 DOI: 10.1093/cercor/bhab281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Plasticity is the mechanistic basis of development, aging, learning, and memory, both in healthy and pathological brains. Structural plasticity is rarely accounted for in computational network models due to a lack of insight into the underlying neuronal mechanisms and processes. Little is known about how the rewiring of networks is dynamically regulated. To inform such models, we characterized the time course of neural activity, the expression of synaptic proteins, and neural morphology employing an in vivo optogenetic mouse model. We stimulated pyramidal neurons in the anterior cingulate cortex of mice and harvested their brains at 1.5 h, 24 h, and $48\,\mathrm{h}$ after stimulation. Stimulus-induced cortical hyperactivity persisted up to 1.5 h and decayed to baseline after $24\,\mathrm{h}$ indicated by c-Fos expression. The synaptic proteins VGLUT1 and PSD-95, in contrast, were upregulated at $24\,\mathrm{h}$ and downregulated at $48\,\mathrm{h}$, respectively. Spine density and spine head volume were also increased at $24\,\mathrm{h}$ and decreased at $48\,\mathrm{h}$. This specific sequence of events reflects a continuous joint evolution of activity and connectivity that is characteristic of the model of homeostatic structural plasticity. Our computer simulations thus corroborate the observed empirical evidence from our animal experiments.
Collapse
Affiliation(s)
- Han Lu
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg 67000, France.,Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Júlia V Gallinaro
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.,Bioengineering Department, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg 67000, France.,Department of Psychiatry and Neuroscience, Université Laval, Québec QC G1V 0A6, Canada
| |
Collapse
|
19
|
Lahogue C, Pinault D. Frontoparietal anodal tDCS reduces ketamine-induced oscillopathies. Transl Neurosci 2021; 12:282-296. [PMID: 34239718 PMCID: PMC8240415 DOI: 10.1515/tnsci-2020-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
During the prodromal phase of schizophrenia with its complex and insidious clinical picture, electroencephalographic recordings detect widespread oscillation disturbances (or oscillopathies) during the wake-sleep cycle. Neural oscillations are electrobiomarkers of the connectivity state within systems. A single-systemic administration of ketamine, a non-competitive NMDA glutamate receptor antagonist, transiently reproduces the oscillopathies with a clinical picture reminiscent of the psychosis prodrome. This acute pharmacological model may help the research and development of innovative treatments against psychotic transition. Transcranial electrical stimulation is recognized as an appropriate non-invasive therapeutic modality since it can increase cognitive performance and modulate neural oscillations with little or no side effects. Therefore, our objective was to set up, in the sedated adult rat, a stimulation method that is able to normalize ketamine-induced increase in gamma-frequency (30-80 Hz) oscillations and decrease in sigma-frequency (10-17 Hz) oscillations. Unilateral and bipolar frontoparietal (FP), transcranial anodal stimulation by direct current (<+1 mA) was applied in ketamine-treated rats. A concomitant bilateral electroencephalographic recording of the parietal cortex measured the stimulation effects on its spontaneously occurring oscillations. A 5 min FP anodal tDCS immediately and quickly reduced, significantly with an intensity-effect relationship, the ketamine-induced gamma hyperactivity, and sigma hypoactivity at least in the bilateral parietal cortex. A duration effect was also recorded. The tDCS also tended to diminish the ketamine-induced delta hypoactivity. These preliminary neurophysiological findings are promising for developing a therapeutic proof-of-concept against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Caroline Lahogue
- Université de Strasbourg, Strasbourg, France
- INSERM U1114, Neuropsychologie Cognitive et Physiopathologie de la Schizophrénie, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de médecine, Strasbourg, France
| | - Didier Pinault
- Université de Strasbourg, Strasbourg, France
- INSERM U1114, Neuropsychologie Cognitive et Physiopathologie de la Schizophrénie, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de médecine, Strasbourg, France
| |
Collapse
|
20
|
Farahani F, Kronberg G, FallahRad M, Oviedo HV, Parra LC. Effects of direct current stimulation on synaptic plasticity in a single neuron. Brain Stimul 2021; 14:588-597. [PMID: 33766677 DOI: 10.1016/j.brs.2021.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (DCS) has lasting effects that may be explained by a boost in synaptic long-term potentiation (LTP). We hypothesized that this boost is the result of a modulation of somatic spiking in the postsynaptic neuron, as opposed to indirect network effects. To test this directly we record somatic spiking in a postsynaptic neuron during LTP induction with concurrent DCS. METHODS We performed rodent in-vitro patch-clamp recordings at the soma of individual CA1 pyramidal neurons. LTP was induced with theta-burst stimulation (TBS) applied concurrently with DCS. To test the causal role of somatic polarization, we manipulated polarization via current injections. We also used a computational multi-compartment neuron model that captures the effect of electric fields on membrane polarization and activity-dependent synaptic plasticity. RESULTS TBS-induced LTP was enhanced when paired with anodal DCS as well as depolarizing current injections. In both cases, somatic spiking during the TBS was increased, suggesting that evoked somatic activity is the primary factor affecting LTP modulation. However, the boost of LTP with DCS was less than expected given the increase in spiking activity alone. In some cells, we also observed DCS-induced spiking, suggesting DCS also modulates LTP via induced network activity. The computational model reproduces these results and suggests that they are driven by both direct changes in postsynaptic spiking and indirect changes due to network activity. CONCLUSION DCS enhances synaptic plasticity by increasing postsynaptic somatic spiking, but we also find that an increase in network activity may boost but also limit this enhancement.
Collapse
Affiliation(s)
- Forouzan Farahani
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Greg Kronberg
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Mohamad FallahRad
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Hysell V Oviedo
- Biology Department, The City College of New York, New York, NY, USA; CUNY Graduate Center, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
21
|
Tanaka T, Isomura Y, Kobayashi K, Hanakawa T, Tanaka S, Honda M. Electrophysiological Effects of Transcranial Direct Current Stimulation on Neural Activity in the Rat Motor Cortex. Front Neurosci 2020; 14:495. [PMID: 32714126 PMCID: PMC7340144 DOI: 10.3389/fnins.2020.00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/20/2020] [Indexed: 02/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the neuronal membrane potential. We have previously documented a sustainable increase in extracellular dopamine levels in the rat striatum of cathodal tDCS, suggesting that cathodal tDCS enhances the neuronal excitability of the cortex. In the present study, we investigated changes in neuronal activity in the cerebral cortex induced by tDCS at the point beneath the stimulus electrode in anesthetized rats in vivo. Multiunit recordings were performed to examine changes in neuronal activity before and after the application of tDCS. In the cathodal tDCS group, multiunit activity (indicating the collective firing rate of recorded neuronal populations) increased in the cerebral cortex. Both anodal and cathodal tDCS increased the firing rate of isolated single units in the cerebral cortex. Significant differences in activity were observed immediately following stimulation and persisted for more than an hour after stimulation. The primary finding of this study was that both anodal and cathodal tDCS increased in vivo neuronal activity in the rat cerebral cortex underneath the stimulus electrode.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan.,Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshikazu Isomura
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Hanakawa
- Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Centre, National Centre of Neurology and Psychiatry, Kodaira, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Manabu Honda
- Department of Information Medicine, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
22
|
Peyser A, Diaz Pier S, Klijn W, Morrison A, Triesch J. Editorial: Linking experimental and computational connectomics. Netw Neurosci 2019; 3:902-904. [PMID: 31637330 PMCID: PMC6777942 DOI: 10.1162/netn_e_00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 11/04/2022] Open
Abstract
Large-scale in silico experimentation depends on the generation of connectomes beyond available anatomical structure. We suggest that linking research across the fields of experimental connectomics, theoretical neuroscience, and high-performance computing can enable a new generation of models bridging the gap between biophysical detail and global function. This Focus Feature on "Linking Experimental and Computational Connectomics" aims to bring together some examples from these domains as a step toward the development of more comprehensive generative models of multiscale connectomes.
Collapse
Affiliation(s)
- Alexander Peyser
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sandra Diaz Pier
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wouter Klijn
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Abigail Morrison
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Neuroscience and Medicine, Institute for Advanced Simulation, JARA Institute Brain Structure-Function Relationships, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|