1
|
Zhang X, Song M, Jiang W, Lu Y, Chu C, Li W, Wang H, Shi W, Lan Y, Jiang T. Evolution of the Rich Club Properties in Mouse, Macaque, and Human Brain Networks: A Study of Functional Integration, Segregation, and Balance. Neurosci Bull 2025:10.1007/s12264-025-01393-5. [PMID: 40221944 DOI: 10.1007/s12264-025-01393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 04/15/2025] Open
Abstract
The rich club, as a community of highly interconnected nodes, serves as the topological center of the network. However, the similarities and differences in how the rich club supports functional integration and segregation in the brain across different species remain unknown. In this study, we first detected and validated the rich club in the structural networks of mouse, monkey, and human brains using neuronal tracing or diffusion magnetic resonance imaging data. Further, we assessed the role of rich clubs in functional integration, segregation, and balance using quantitative metrics. Our results indicate that the presence of a rich club facilitates whole-brain functional integration in all three species, with the functional networks of higher species exhibiting greater integration. These findings are expected to help to understand the relationship between brain structure and function from the perspective of brain evolution.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Ming Song
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China.
| | - Wentao Jiang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuheng Lu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Congying Chu
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen Li
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haiyan Wang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3001, Leuven, Belgium
| | - Weiyang Shi
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Tianzi Jiang
- Brainnetome Center, Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of the Chinese Academy of Sciences, Beijing, 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China
| |
Collapse
|
2
|
Zhang S, Zhang T, Cao G, Zhou J, He Z, Li X, Ren Y, Liu T, Jiang X, Guo L, Han J, Liu T. Species -shared and -unique gyral peaks on human and macaque brains. eLife 2024; 12:RP90182. [PMID: 38635322 PMCID: PMC11026093 DOI: 10.7554/elife.90182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Jingchao Zhou
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Zhibin He
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Xiao Li
- School of Information Technology, Northwest UniversityXi'anChina
| | - Yudan Ren
- School of Information Technology, Northwest UniversityXi'anChina
| | - Tao Liu
- College of Science, North China University of Science and TechnologyTangshanChina
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Lei Guo
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Junwei Han
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of GeorgiaAthensUnited States
| |
Collapse
|
3
|
Zhang S, Zhang T, Cao G, Zhou J, He Z, Li X, Ren Y, Liu T, Jiang X, Guo L, Han J, Liu T. Species -Shared and -Unique Gyral Peaks on Human and Macaque Brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550760. [PMID: 37546923 PMCID: PMC10402126 DOI: 10.1101/2023.07.26.550760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, we defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. In this study, we identified shared and unique gyral peaks in human and macaque, and investigated the similarities and differences in the spatial distribution, anatomical morphology, and functional connectivity of them.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Jingchao Zhou
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xiao Li
- School of Information Technology, Northwest University, Xi’an, China
| | - Yudan Ren
- School of Information Technology, Northwest University, Xi’an, China
| | - Tao Liu
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
The brainstem connectome database. Sci Data 2022; 9:168. [PMID: 35414055 PMCID: PMC9005652 DOI: 10.1038/s41597-022-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Connectivity data of the nervous system and subdivisions, such as the brainstem, cerebral cortex and subcortical nuclei, are necessary to understand connectional structures, predict effects of connectional disorders and simulate network dynamics. For that purpose, a database was built and analyzed which comprises all known directed and weighted connections within the rat brainstem. A longterm metastudy of original research publications describing tract tracing results form the foundation of the brainstem connectome (BC) database which can be analyzed directly in the framework neuroVIISAS. The BC database can be accessed directly by connectivity tables, a web-based tool and the framework. Analysis of global and local network properties, a motif analysis, and a community analysis of the brainstem connectome provides insight into its network organization. For example, we found that BC is a scale-free network with a small-world connectivity. The Louvain modularity and weighted stochastic block matching resulted in partially matching of functions and connectivity. BC modeling was performed to demonstrate signal propagation through the somatosensory pathway which is affected in Multiple sclerosis. Measurement(s) | brainstem | Technology Type(s) | tract tracing metastudy | Factor Type(s) | brain region | Sample Characteristic - Organism | Rattus rattus | Sample Characteristic - Environment | Experimental setup | Sample Characteristic - Location | Germany |
Collapse
|
5
|
The hidden community architecture of human brain networks. Sci Rep 2022; 12:3540. [PMID: 35241755 PMCID: PMC8894465 DOI: 10.1038/s41598-022-07570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
The organizational principles of the community architecture of human brain networks are still mostly unknown. Here, we found that brain networks have a moderate degree of community segregation but are specifically organized to achieve high community overlap while maintaining their segregated community structures. These properties are distinct from other real-world complex networks. Additionally, we found that human subjects with a higher degree of community overlap in their brain networks show greater dynamic reconfiguration and cognitive flexibility.
Collapse
|
6
|
Nunes RV, Reyes MB, Mejias JF, de Camargo RY. Directed functional and structural connectivity in a large-scale model for the mouse cortex. Netw Neurosci 2022; 5:874-889. [PMID: 35024534 PMCID: PMC8746117 DOI: 10.1162/netn_a_00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Inferring the structural connectivity from electrophysiological measurements is a fundamental challenge in systems neuroscience. Directed functional connectivity measures, such as the generalized partial directed coherence (GPDC), provide estimates of the causal influence between areas. However, the relation between causality estimates and structural connectivity is still not clear. We analyzed this problem by evaluating the effectiveness of GPDC to estimate the connectivity of a ground-truth, data-constrained computational model of a large-scale network model of the mouse cortex. The model contains 19 cortical areas composed of spiking neurons, with areas connected by long-range projections with weights obtained from a tract-tracing cortical connectome. We show that GPDC values provide a reasonable estimate of structural connectivity, with an average Pearson correlation over simulations of 0.74. Moreover, even in a typical electrophysiological recording scenario containing five areas, the mean correlation was above 0.6. These results suggest that it may be possible to empirically estimate structural connectivity from functional connectivity even when detailed whole-brain recordings are not achievable. We analyzed the relationship between structural and directed functional connectivity by evaluating the effectiveness of generalized partial directed coherence (GPDC) to estimate the connectivity of a ground-truth, data-constrained computational model of a large-scale network model of the mouse cortex. We show that GPDC values provide a reasonable estimate of structural connectivity even in a typical electrophysiological recording scenario containing few areas. These results suggest that it may be possible to empirically estimate structural connectivity from functional connectivity even when detailed whole-brain recordings are not achievable.
Collapse
Affiliation(s)
- Ronaldo V Nunes
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Marcelo B Reyes
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Jorge F Mejias
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Raphael Y de Camargo
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
7
|
Ardesch DJ, Scholtens LH, de Lange SC, Roumazeilles L, Khrapitchev AA, Preuss TM, Rilling JK, Mars RB, van den Heuvel MP. Scaling Principles of White Matter Connectivity in the Human and Nonhuman Primate Brain. Cereb Cortex 2021; 32:2831-2842. [PMID: 34849623 PMCID: PMC9247419 DOI: 10.1093/cercor/bhab384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/14/2022] Open
Abstract
Brains come in many shapes and sizes. Nature has endowed big-brained primate species like humans with a proportionally large cerebral cortex. Comparative studies have suggested, however, that the total volume allocated to white matter connectivity-the brain's infrastructure for long-range interregional communication-does not keep pace with the cortex. We investigated the consequences of this allometric scaling on brain connectivity and network organization. We collated structural and diffusion magnetic resonance imaging data across 14 primate species, describing a comprehensive 350-fold range in brain size across species. We show volumetric scaling relationships that indeed point toward a restriction of macroscale connectivity in bigger brains. We report cortical surface area to outpace white matter volume, with larger brains showing lower levels of overall connectedness particularly through sparser long-range connectivity. We show that these constraints on white matter connectivity are associated with longer communication paths, higher local network clustering, and higher levels of asymmetry in connectivity patterns between homologous areas across the left and right hemispheres. Our findings reveal conserved scaling relationships of major brain components and show consequences for macroscale brain circuitry, providing insights into the connectome architecture that could be expected in larger brains such as the human brain.
Collapse
Affiliation(s)
- Dirk Jan Ardesch
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| | - Siemon C de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands.,Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Alexandre A Khrapitchev
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - James K Rilling
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA.,Department of Anthropology, Emory University, Atlanta, GA 30322, USA.,Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, AJ 6525, Nijmegen, the Netherlands.,Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands.,Department of Child Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Mancini M, Tian Q, Fan Q, Cercignani M, Huang SY. Dissecting whole-brain conduction delays through MRI microstructural measures. Brain Struct Funct 2021; 226:2651-2663. [PMID: 34390416 PMCID: PMC8448685 DOI: 10.1007/s00429-021-02358-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 01/24/2023]
Abstract
Network models based on structural connectivity have been increasingly used as the blueprint for large-scale simulations of the human brain. As the nodes of this network are distributed through the cortex and interconnected by white matter pathways with different characteristics, modeling the associated conduction delays becomes important. The goal of this study is to estimate and characterize these delays directly from the brain structure. To achieve this, we leveraged microstructural measures from a combination of advanced magnetic resonance imaging acquisitions and computed the main determinants of conduction velocity, namely axonal diameter and myelin content. Using the model proposed by Rushton, we used these measures to calculate the conduction velocity and estimated the associated delays using tractography. We observed that both the axonal diameter and conduction velocity distributions presented a rather constant trend across different connection lengths, with resulting delays that scale linearly with the connection length. Relying on insights from graph theory and Kuramoto simulations, our results support the approximation of constant conduction velocity but also show path- and region-specific differences.
Collapse
Affiliation(s)
- Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK. .,Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK. .,NeuroPoly Lab, Polytechnique Montréal, Montréal, Canada.
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Mara Cercignani
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Woo JH, Honey CJ, Moon JY. Phase and amplitude dynamics of coupled oscillator systems on complex networks. CHAOS (WOODBURY, N.Y.) 2020; 30:121102. [PMID: 33380037 PMCID: PMC7714526 DOI: 10.1063/5.0031031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
We investigated locking behaviors of coupled limit-cycle oscillators with phase and amplitude dynamics. We focused on how the dynamics are affected by inhomogeneous coupling strength and by angular and radial shifts in coupling functions. We performed mean-field analyses of oscillator systems with inhomogeneous coupling strength, testing Gaussian, power-law, and brain-like degree distributions. Even for oscillators with identical intrinsic frequencies and intrinsic amplitudes, we found that the coupling strength distribution and the coupling function generated a wide repertoire of phase and amplitude dynamics. These included fully and partially locked states in which high-degree or low-degree nodes would phase-lead the network. The mean-field analytical findings were confirmed via numerical simulations. The results suggest that, in oscillator systems in which individual nodes can independently vary their amplitude over time, qualitatively different dynamics can be produced via shifts in the coupling strength distribution and the coupling form. Of particular relevance to information flows in oscillator networks, changes in the non-specific drive to individual nodes can make high-degree nodes phase-lag or phase-lead the rest of the network.
Collapse
Affiliation(s)
- Jae Hyung Woo
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Christopher J. Honey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joon-Young Moon
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
10
|
Kim DJ, Min BK. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J 2020; 18:1761-1773. [PMID: 32695269 PMCID: PMC7355726 DOI: 10.1016/j.csbj.2020.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions within the brain network, known as the brain’s cores or hubs. These regions require high energy cost but possess highly efficient neural information transfer in the brain’s network and are termed the rich-club. The rich-club of the brain network is essential as it directly regulates functional integration across multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent advances in rich-club organization to address the fundamental roles of the rich-club in the brain and discuss how these core brain regions affect brain development and disorders. We describe the concepts of the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight novel insights based on animal studies related to the rich-club and illustrate how human studies using neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant to the rich-club phenomenon in the brain network.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADHD, attention deficit hyperactivity disorder
- ASD, autism spectrum disorder
- BD, bipolar disorder
- Brain connectivity
- Brain network
- DTI, diffusion tensor imaging
- EEG, electroencephalography
- Graph theory
- MDD, major depressive disorder
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Neuroimaging
- Rich-club
- TBI, traumatic brain injury
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|