1
|
Fekonja LS, Forkel SJ, Aydogan DB, Lioumis P, Cacciola A, Lucas CW, Tournier JD, Vergani F, Ritter P, Schenk R, Shams B, Engelhardt MJ, Picht T. Translational network neuroscience: Nine roadblocks and possible solutions. Netw Neurosci 2025; 9:352-370. [PMID: 40161983 PMCID: PMC11949582 DOI: 10.1162/netn_a_00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/13/2024] [Indexed: 04/02/2025] Open
Abstract
Translational network neuroscience aims to integrate advanced neuroimaging and data analysis techniques into clinical practice to better understand and treat neurological disorders. Despite the promise of technologies such as functional MRI and diffusion MRI combined with network analysis tools, the field faces several challenges that hinder its swift clinical translation. We have identified nine key roadblocks that impede this process: (a) theoretical and basic science foundations; (b) network construction, data interpretation, and validation; (c) MRI access, data variability, and protocol standardization; (d) data sharing; (e) computational resources and expertise; (f) interdisciplinary collaboration; (g) industry collaboration and commercialization; (h) operational efficiency, integration, and training; and (i) ethical and legal considerations. To address these challenges, we propose several possible solution strategies. By aligning scientific goals with clinical realities and establishing a sound ethical framework, translational network neuroscience can achieve meaningful advances in personalized medicine and ultimately improve patient care. We advocate for an interdisciplinary commitment to overcoming translational hurdles in network neuroscience and integrating advanced technologies into routine clinical practice.
Collapse
Affiliation(s)
- Lucius S. Fekonja
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| | - Stephanie J. Forkel
- Donders Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, United Kingdom
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, 75006, France
- Max Planck Institute for Psycholinguistics, Wundtlaan 4, Nijmegen, the Netherlands
| | - Dogu Baran Aydogan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Carolin Weiß Lucas
- University Hospital and Medical Faculty of the University of Cologne, Center for Neurosurgery, Cologne, Germany
| | - Jacques-Donald Tournier
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, United Kingdom
| | - Petra Ritter
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany
| | - Robert Schenk
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
| | - Boshra Shams
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| | - Melina Julia Engelhardt
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Badr M, Bröhl T, Dissouky N, Helmstaedter C, Lehnertz K. Stable Yet Destabilised: Towards Understanding Brain Network Dynamics in Psychogenic Disorders. J Clin Med 2025; 14:666. [PMID: 39941337 PMCID: PMC11818738 DOI: 10.3390/jcm14030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Psychogenic non-epileptic seizures (PNES) are seizure-like episodes that resemble behavioral aspects observed for epileptic seizures but are without the abnormal electrical activity typically seen in epilepsy. The lack of an etiologic model for PNES as well as limitations of available diagnostic methods largely hinders a clear-cut distinction from epilepsy and from a normal functioning brain. Methods: In this study, we investigate the brain dynamics of people with PNES and people with epilepsy during phases far-off seizures and seizure-like events as well as the brain dynamics of a control group. Probing for differences between these groups, we utilise the network ansatz and explore local and global characteristics of time-evolving functional brain networks. We observe subject-specific differences in local network characteristics across the groups, highlighting the physiological functioning of specific brain regions. Furthermore, we observe significant differences in global network characteristics-relating to communication, robustness, and stability aspects of the brain. Conclusions: Our findings may provide new insights into the mechanisms underlying PNES and offer a promising diagnostic approach to differentiate them from epilepsy.
Collapse
Affiliation(s)
- Mostafa Badr
- Department of Epileptology, University of Bonn Medical Center, Venusberg Campus 1, 53127 Bonn, Germany; (M.B.); (T.B.); (N.D.)
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Center, Venusberg Campus 1, 53127 Bonn, Germany; (M.B.); (T.B.); (N.D.)
- Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14–16, 53115 Bonn, Germany
| | - Nayrin Dissouky
- Department of Epileptology, University of Bonn Medical Center, Venusberg Campus 1, 53127 Bonn, Germany; (M.B.); (T.B.); (N.D.)
| | - Christoph Helmstaedter
- Department of Epileptology, University of Bonn Medical Center, Venusberg Campus 1, 53127 Bonn, Germany; (M.B.); (T.B.); (N.D.)
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Center, Venusberg Campus 1, 53127 Bonn, Germany; (M.B.); (T.B.); (N.D.)
- Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14–16, 53115 Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany
| |
Collapse
|
3
|
Mithani K, Suresh H, Ibrahim GM. Graph Theory and Modeling of Network Topology in Clinical Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:107-122. [PMID: 39523262 DOI: 10.1007/978-3-031-64892-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The last several decades have seen a shift in understanding many neurological disorders as abnormalities in brain networks rather than specific brain regions. This conceptual revolution, coupled with advancements in computing capabilities and resources, has enabled a wealth of research on delineating and treating aberrant brain networks. One approach to network neuroscience, graph theory, involves modeling network topologies as mathematical graphs and computing various metrics that describe its characteristics. Using graph theory, researchers have derived new insights into the pathophysiology of many neuropsychiatric disorders and even developed treatments targeted at restoring network disturbances. In this chapter, we provide an overview of the principles of graph theory and how to implement it, specific applications of graph theory within clinical neurosurgery, and a discussion on the advantages and limitations of these approaches.
Collapse
Affiliation(s)
- Karim Mithani
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Baruzzi V, Lodi M, Sorrentino F, Storace M. Bridging functional and anatomical neural connectivity through cluster synchronization. Sci Rep 2023; 13:22430. [PMID: 38104227 PMCID: PMC10725511 DOI: 10.1038/s41598-023-49746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The dynamics of the brain results from the complex interplay of several neural populations and is affected by both the individual dynamics of these areas and their connection structure. Hence, a fundamental challenge is to derive models of the brain that reproduce both structural and functional features measured experimentally. Our work combines neuroimaging data, such as dMRI, which provides information on the structure of the anatomical connectomes, and fMRI, which detects patterns of approximate synchronous activity between brain areas. We employ cluster synchronization as a tool to integrate the imaging data of a subject into a coherent model, which reconciles structural and dynamic information. By using data-driven and model-based approaches, we refine the structural connectivity matrix in agreement with experimentally observed clusters of brain areas that display coherent activity. The proposed approach leverages the assumption of homogeneous brain areas; we show the robustness of this approach when heterogeneity between the brain areas is introduced in the form of noise, parameter mismatches, and connection delays. As a proof of concept, we apply this approach to MRI data of a healthy adult at resting state.
Collapse
Affiliation(s)
| | - Matteo Lodi
- DITEN, University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy
| | - Francesco Sorrentino
- Mechanical Engineering Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marco Storace
- DITEN, University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy.
| |
Collapse
|
5
|
Boelts J, Harth P, Gao R, Udvary D, Yáñez F, Baum D, Hege HC, Oberlaender M, Macke JH. Simulation-based inference for efficient identification of generative models in computational connectomics. PLoS Comput Biol 2023; 19:e1011406. [PMID: 37738260 PMCID: PMC10550169 DOI: 10.1371/journal.pcbi.1011406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/04/2023] [Accepted: 08/01/2023] [Indexed: 09/24/2023] Open
Abstract
Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the 'posterior distribution over parameters conditioned on the data') that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data.
Collapse
Affiliation(s)
- Jan Boelts
- Machine Learning in Science, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Philipp Harth
- Department of Visual and Data-centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Richard Gao
- Machine Learning in Science, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Daniel Udvary
- In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
| | - Felipe Yáñez
- In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
| | - Daniel Baum
- Department of Visual and Data-centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Hans-Christian Hege
- Department of Visual and Data-centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Free University Amsterdam, Amsterdam, Netherlands
| | - Jakob H. Macke
- Machine Learning in Science, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
- Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| |
Collapse
|
6
|
Chiarion G, Sparacino L, Antonacci Y, Faes L, Mesin L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering (Basel) 2023; 10:bioengineering10030372. [PMID: 36978763 PMCID: PMC10044923 DOI: 10.3390/bioengineering10030372] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks.
Collapse
Affiliation(s)
- Giovanni Chiarion
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Laura Sparacino
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Yuri Antonacci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luca Mesin
- Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
7
|
Gray JP, Manuello J, Alexander-Bloch AF, Leonardo C, Franklin C, Choi KS, Cauda F, Costa T, Blangero J, Glahn DC, Mayberg HS, Fox PT. Co-alteration Network Architecture of Major Depressive Disorder: A Multi-modal Neuroimaging Assessment of Large-scale Disease Effects. Neuroinformatics 2022; 21:443-455. [PMID: 36469193 DOI: 10.1007/s12021-022-09614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) exhibits diverse symptomology and neuroimaging studies report widespread disruption of key brain areas. Numerous theories underpinning the network degeneration hypothesis (NDH) posit that neuropsychiatric diseases selectively target brain areas via meaningful network mechanisms rather than as indistinct disease effects. The present study tests the hypothesis that MDD is a network-based disorder, both structurally and functionally. Coordinate-based meta-analysis and Activation Likelihood Estimation (CBMA-ALE) were used to assess the convergence of findings from 92 previously published studies in depression. An extension of CBMA-ALE was then used to generate a node-and-edge network model representing the co-alteration of brain areas impacted by MDD. Standardized measures of graph theoretical network architecture were assessed. Co-alteration patterns among the meta-analytic MDD nodes were then tested in independent, clinical T1-weighted structural magnetic resonance imaging (MRI) and resting-state functional (rs-fMRI) data. Differences in co-alteration profiles between MDD patients and healthy controls, as well as between controls and clinical subgroups of MDD patients, were assessed. A 65-node 144-edge co-alteration network model was derived for MDD. Testing of co-alteration profiles in replication data using the MDD nodes provided distinction between MDD and healthy controls in structural data. However, co-alteration profiles were not distinguished between patients and controls in rs-fMRI data. Improved distinction between patients and healthy controls was observed in clinically homogenous MDD subgroups in T1 data. MDD abnormalities demonstrated both structural and functional network architecture, though only structural networks exhibited between-groups differences. Our findings suggest improved utility of structural co-alteration networks for ongoing biomarker development.
Collapse
|
8
|
Camasio A, Panzeri E, Mancuso L, Costa T, Manuello J, Ferraro M, Duca S, Cauda F, Liloia D. Linking neuroanatomical abnormalities in autism spectrum disorder with gene expression of candidate ASD genes: A meta-analytic and network-oriented approach. PLoS One 2022; 17:e0277466. [PMID: 36441779 PMCID: PMC9704678 DOI: 10.1371/journal.pone.0277466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a set of developmental conditions with widespread neuroanatomical abnormalities and a strong genetic basis. Although neuroimaging studies have indicated anatomical changes in grey matter (GM) morphometry, their associations with gene expression remain elusive. METHODS Here, we aim to understand how gene expression correlates with neuroanatomical atypicalities in ASD. To do so, we performed a coordinate-based meta-analysis to determine the common GM variation pattern in the autistic brain. From the Allen Human Brain Atlas, we selected eight genes from the SHANK, NRXN, NLGN family and MECP2, which have been implicated with ASD, particularly in regards to altered synaptic transmission and plasticity. The gene expression maps for each gene were built. We then assessed the correlation between the gene expression maps and the GM alteration maps. Lastly, we projected the obtained clusters of GM alteration-gene correlations on top of the canonical resting state networks, in order to provide a functional characterization of the structural evidence. RESULTS We found that gene expression of most genes correlated with GM alteration (both increase and decrease) in regions located in the default mode network. Decreased GM was also correlated with gene expression of some ASD genes in areas associated with the dorsal attention and cerebellar network. Lastly, single genes were found to be significantly correlated with increased GM in areas located in the somatomotor, limbic and ganglia/thalamus networks. CONCLUSIONS This approach allowed us to combine the well beaten path of genetic and brain imaging in a novel way, to specifically investigate the relation between gene expression and brain with structural damage, and individuate genes of potential interest for further investigation in the functional domain.
Collapse
Affiliation(s)
- Alessia Camasio
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Physics, University of Turin, Turin, Italy
| | - Elisa Panzeri
- School of Biological Sciences, University of Leicester, Leicester, United Kingdom
| | - Lorenzo Mancuso
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Mario Ferraro
- Department of Physics, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
10
|
Allard A, Serrano MÁ. Navigable maps of structural brain networks across species. PLoS Comput Biol 2020; 16:e1007584. [PMID: 32012151 PMCID: PMC7018228 DOI: 10.1371/journal.pcbi.1007584] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/13/2020] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Connectomes are spatially embedded networks whose architecture has been shaped by physical constraints and communication needs throughout evolution. Using a decentralized navigation protocol, we investigate the relationship between the structure of the connectomes of different species and their spatial layout. As a navigation strategy, we use greedy routing where nearest neighbors, in terms of geometric distance, are visited. We measure the fraction of successful greedy paths and their length as compared to shortest paths in the topology of connectomes. In Euclidean space, we find a striking difference between the navigability properties of mammalian and non-mammalian species, which implies the inability of Euclidean distances to fully explain the structural organization of their connectomes. In contrast, we find that hyperbolic space, the effective geometry of complex networks, provides almost perfectly navigable maps of connectomes for all species, meaning that hyperbolic distances are exceptionally congruent with the structure of connectomes. Hyperbolic maps therefore offer a quantitative meaningful representation of connectomes that suggests a new cartography of the brain based on the combination of its connectivity with its effective geometry rather than on its anatomy only. Hyperbolic maps also provide a universal framework to study decentralized communication processes in connectomes of different species and at different scales on an equal footing.
Collapse
Affiliation(s)
- Antoine Allard
- Département de physique, de génie physique et d’optique, Université Laval, Québec, Canada
- Centre interdisciplinaire de modélisation mathématique, Université Laval, Québec, Canada
| | - M. Ángeles Serrano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
11
|
Abdallah CG, Averill CL, Ramage AE, Averill LA, Alkin E, Nemati S, Krystal JH, Roache JD, Resick P, Young-McCaughan S, Peterson AL, Fox P. Reduced Salience and Enhanced Central Executive Connectivity Following PTSD Treatment. CHRONIC STRESS 2019; 3. [PMID: 31008419 PMCID: PMC6469713 DOI: 10.1177/2470547019838971] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background In soldiers with posttraumatic stress disorder, symptom provocation was found
to induce increased connectivity within the salience network, as measured by
functional magnetic resonance imaging and global brain connectivity with
global signal regression (GBCr). However, it is unknown whether these GBCr
disturbances would normalize following effective posttraumatic stress
disorder treatment. Methods Sixty-nine US Army soldiers with (n = 42) and without posttraumatic stress
disorder (n = 27) completed functional magnetic resonance imaging at rest
and during symptom provocation using subject-specific script imagery. Then,
participants with posttraumatic stress disorder received six weeks (12
sessions) of group cognitive processing therapy or present-centered therapy.
At week 8, all participants repeated the functional magnetic resonance
imaging scans. The primary analysis used a region-of-interest approach to
determine the effect of treatment on salience GBCr. A secondary analysis was
conducted to explore the pattern of GBCr alterations posttreatment in
posttraumatic stress disorder participants compared to controls. Results Over the treatment period, present-centered therapy significantly reduced
salience GBCr (p = .02). Compared to controls, salience
GBCr was high pretreatment (present-centered therapy,
p = .01; cognitive processing therapy,
p = .03) and normalized post-present-centered therapy
(p = .53) but not postcognitive processing therapy
(p = .006). Whole-brain secondary analysis found high
GBCr within the central executive network in posttraumatic stress disorder
participants compared to controls. Post hoc exploratory analyses showed
significant increases in executive GBCr following cognitive processing
therapy treatment (p = .01). Conclusion The results support previous models relating cognitive processing therapy to
central executive network and enhanced cognitive control while unraveling a
previously unknown neurobiological mechanism of present-centered therapy
treatment, demonstrating treatment-specific reduction in salience
connectivity during trauma recollection.
Collapse
Affiliation(s)
- Chadi G Abdallah
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher L Averill
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Amy E Ramage
- Department of Communication Sciences and Disorders, University of New Hampshire, Durham, New Hampshire
| | - Lynnette A Averill
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Evelyn Alkin
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Samaneh Nemati
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - John H Krystal
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - John D Roache
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Patricia Resick
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Stacey Young-McCaughan
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alan L Peterson
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Research and Development Service, South Texas Veterans Health Care System, San Antonio, Texas.,Department of Psychology, University of Texas at San Antonio, San Antonio, Texas
| | - Peter Fox
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Research and Development Service, South Texas Veterans Health Care System, San Antonio, Texas.,Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | |
Collapse
|