1
|
Lin CJ, Siddique S. Parasitic nematodes: dietary habits and their implications. Trends Parasitol 2024; 40:230-240. [PMID: 38262837 DOI: 10.1016/j.pt.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Nematodes, a diverse group of roundworms, exhibit a wide range of dietary habits, including parasitism of animals and plants. These parasites cause substantial economic losses in agriculture and pose significant health challenges to humans and animals. This review explores the unique adaptations of parasitic nematodes, emphasizing their nutritional requirements and metabolic dependencies. Recent research has identified cross-kingdom compartmentalization of vitamin B5 biosynthesis in some parasitic nematodes, shedding light on coevolutionary dynamics and potential targets for control strategies. Several open questions remain regarding the complexity of nematode nutrition, host manipulation, evolutionary adaptations, and the influence of environmental factors on their metabolic processes. Understanding these aspects offers promising avenues for targeted interventions to manage and control these economically and medically important parasites.
Collapse
Affiliation(s)
- Ching-Jung Lin
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Matuszkiewicz M, Sobczak M. Syncytium Induced by Plant-Parasitic Nematodes. Results Probl Cell Differ 2024; 71:371-403. [PMID: 37996687 DOI: 10.1007/978-3-031-37936-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
3
|
Abstract
Resistance to the soybean cyst nematode (SCN) is a topic incorporating multiple mechanisms and multiple types of science. It is also a topic of substantial agricultural importance, as SCN is estimated to cause more yield damage than any other pathogen of soybean, one of the world's main food crops. Both soybean and SCN have experienced jumps in experimental tractability in the past decade, and significant advances have been made. The rhg1-b locus, deployed on millions of farm acres, has been durable and will remain important, but local SCN populations are gradually evolving to overcome rhg1-b. Multiple other SCN resistance quantitative trait loci (QTL) of proven value are now in play with soybean breeders. QTL causal gene discovery and mechanistic insights into SCN resistance are contributing to both basic and applied disciplines. Additional understanding of SCN and other cyst nematodes will also grow in importance and lead to novel disease control strategies.
Collapse
Affiliation(s)
- Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
4
|
Price JA, Coyne D, Blok VC, Jones JT. Potato cyst nematodes Globodera rostochiensis and G. pallida. MOLECULAR PLANT PATHOLOGY 2021; 22:495-507. [PMID: 33709540 PMCID: PMC8035638 DOI: 10.1111/mpp.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 05/12/2023]
Abstract
TAXONOMY Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES Genomic information for PCN is accessible through WormBase ParaSite.
Collapse
Affiliation(s)
- James A. Price
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | - Vivian C. Blok
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - John T. Jones
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
5
|
Gartner U, Hein I, Brown LH, Chen X, Mantelin S, Sharma SK, Dandurand LM, Kuhl JC, Jones JT, Bryan GJ, Blok VC. Resisting Potato Cyst Nematodes With Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:661194. [PMID: 33841485 PMCID: PMC8027921 DOI: 10.3389/fpls.2021.661194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/03/2021] [Indexed: 05/17/2023]
Abstract
Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle-commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.
Collapse
Affiliation(s)
- Ulrike Gartner
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lynn H. Brown
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Xinwei Chen
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sophie Mantelin
- INRAE UMR Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Sanjeev K. Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Louise-Marie Dandurand
- Entomology, Plant Pathology and Nematology Department, University of Idaho, Moscow, ID, United States
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - John T. Jones
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Vivian C. Blok
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Vivian C. Blok,
| |
Collapse
|
6
|
The Genomic Impact of Selection for Virulence against Resistance in the Potato Cyst Nematode, Globodera pallida. Genes (Basel) 2020; 11:genes11121429. [PMID: 33260722 PMCID: PMC7760817 DOI: 10.3390/genes11121429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Although the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) Globodera pallida, the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, GpaV (from Solanum vernei) and H3 from S. tuberosum ssp. andigena CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry. However, the use of resistant cultivars may drive strong selection towards virulence, which allows the increase in frequency of virulent alleles in the population and therefore, the emergence of highly virulent nematode lineages. This study aimed to identify Avirulence (Avr) genes in G. pallida populations selected for virulence on the above resistance sources, and the genomic impact of selection processes on the nematode. The selection drive in the populations was found to be specific to their genetic background. At the genomic level, 11 genes were found that represent candidate Avr genes. Most of the variant calls determining selection were associated with H3-selected populations, while many of them seem to be organised in genomic islands facilitating selection evolution. These phenotypic and genomic findings combined with histological studies performed revealed potential mechanisms underlying selection in G. pallida.
Collapse
|
7
|
Hajji-Hedfi L, Rebai E, Larayedh A, Regaieg H, Horrigue-Raouani N. Biological control of Meloidogyne javanica on tomato with Dazitol® and soil solarization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17278-17282. [PMID: 29651727 DOI: 10.1007/s11356-018-1962-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Pot and greenhouse trials were conducted for the management of root-knot nematode, Meloidogyne javanica, infestation in tomato. Growth parameters, gall index, soil, and root nematode populations were measured to assess the effect of a novel bio-pesticide (Dazitol®), made from mustard oil and oleoresin of Capsicum, on plant growth and nematode reproduction. Data generated within the pot experiment showed that the tested bio-pesticide did not improve plant growth, but it reduced significantly root-knot nematode damage resulting in a decrease in gall index and root (91%) and soil (62%) population of M. javanica compared with untreated plants. The greenhouse experiment showed that Mocap® and Dazitol® decreased nematode incidence significantly (P < 0.05) on tomato. The result of this study suggested that the best nematode control was obtained by combining soil solarization with chemical or botanical nematicides as an integrated pest management approach.
Collapse
Affiliation(s)
- Lobna Hajji-Hedfi
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia.
| | - Emna Rebai
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Asma Larayedh
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Hajer Regaieg
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia
| | - Najet Horrigue-Raouani
- Department of Biological Sciences and Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, Sousse, Tunisia
| |
Collapse
|
8
|
Lilley CJ, Maqbool A, Wu D, Yusup HB, Jones LM, Birch PRJ, Banfield MJ, Urwin PE, Eves-van den Akker S. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLoS Genet 2018; 14:e1007310. [PMID: 29641602 PMCID: PMC5919673 DOI: 10.1371/journal.pgen.1007310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/26/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.
Collapse
Affiliation(s)
- Catherine J. Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Abbas Maqbool
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Duqing Wu
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazijah B. Yusup
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Laura M. Jones
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul R. J. Birch
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark J. Banfield
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sebastian Eves-van den Akker
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
9
|
Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Grégoire JC, Jaques Miret JA, MacLeod A, Navajas Navarro M, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Kaluski T, Niere B. Pest categorisation of Nacobbus aberrans. EFSA J 2018; 16:e05249. [PMID: 32625881 PMCID: PMC7009736 DOI: 10.2903/j.efsa.2018.5249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Plant Health performed a pest categorisation of Nacobbus aberrans (Nematoda: Pratylenchidae), the false root‐knot nematode, for the EU. The nematode was originally described from the American continent. Due to differences in host range as well as molecular variability among populations, N. aberrans should be regarded as a species complex (N. aberrans sensu lato). All populations belonging to this species complex are pests of important host plants in the EU. N. aberrans had been detected indoors in the EU in the 1950s and 1960s but is no longer reported to be present in the EU. It is regulated by Council Directive 2000/29/EC, listed in Annex IAI as N. aberrans (Thorne) Thorne and Allen. Species within the N. aberrans complex are endoparasitic with migratory and sedentary stages. They are highly polyphagous attacking many plant species. They are also found in soil where they can survive dry conditions and freezing temperatures. Plants for planting and soil are potential pathways for this nematode. Climatic conditions in the EU are similar to those found in the countries where the pest is present. Hosts of the nematode from which high‐yield losses have been reported include potato, sugar beet, tomato and beans. The nematode only moves short distances (around 1m) but may be spread with plants and soil moving activities. Measures are available to inhibit EU entry via potatoes and soil as such but not all host plants are covered by current legislation. Entry of the nematode with plants and soil attached to plants for planting that are not regulated is therefore possible. N. aberrans does satisfy all the criteria that are within the remit of EFSA to assess to be regarded as a Union quarantine pest.
Collapse
|
10
|
Smant G, Helder J, Goverse A. Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:686-702. [PMID: 29277939 DOI: 10.1111/tpj.13811] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
Parallel adaptations enabling the use of plant cells as the primary food source have occurred multiple times in distinct nematode clades. The hallmark of all extant obligate and facultative plant-feeding nematodes is the presence of an oral stylet, which is required for penetration of plant cell walls, delivery of pharyngeal gland secretions into host cells and selective uptake of plant assimilates. Plant parasites from different clades, and even within a single clade, display a large diversity in feeding behaviours ranging from short feeding cycles on single cells to prolonged feeding on highly sophisticated host cell complexes. Despite these differences, feeding of nematodes frequently (but certainly not always) induces common responses in host cells (e.g. endopolyploidization and cellular hypertrophy). It is thought that these host cell responses are brought about by the interplay of effectors and other biological active compounds in stylet secretions of feeding nematodes, but this has only been studied for the most advanced sedentary plant parasites. In fact, these responses are thought to be fundamental for prolonged feeding of sedentary plant parasites on host cells. However, as we discuss in this review, some of these common plant responses to independent lineages of plant parasitic nematodes might also be generic reactions to cell stress and as such their onset may not require specific inputs from plant parasitic nematodes. Sedentary plant parasitic nematodes may utilize effectors and their ability to synthesize other biologically active compounds to tailor these common responses for prolonged feeding on host cells.
Collapse
Affiliation(s)
- Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|