1
|
Zong X, Luo W, Wen L, Shao S, Li L. Preparation of glucoamylase microcapsule beads and application in solid-state fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1793-1803. [PMID: 37867448 DOI: 10.1002/jsfa.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Baijiu brewing adopts the solid-state fermentation method, using starchy raw materials, Jiuqu as saccharifying fermenting agent, and distilled spirits made by digestion, saccharification, fermentation and distillation. In the late stages of solid-state fermentation of Baijiu, the reduced activity of glucoamylase leads to higher residual starch content in the Jiupei, which affects the liquor yield. The direct addition of exogenous glucoamylase leads to problems such as the temperature of the fermentation environment rising too quickly, seriously affecting the growth of microorganisms. RESULTS To solve the problem of reduced activity of glucoamylase in the late stage of solid-state fermentation of Baijiu, microcapsule beads (M-B) based on microcapsule emulsion were prepared and the effect of M-B on solid-state fermentation of Baijiu was investigated. The results showed that the release of M-B before and after drying was 53.27% and 25.77% in the liquid state (120 h) and 29.84% and 22.62% in the solid state (15 days), respectively. Adding M-B improved the alcohol by 0.33 %vol and reducing sugar content by 0.51%, reduced the residual starch content by 1.21% of the Jiupei, and had an insignificant effect on the moisture and acidity of the Jiupei. CONCLUSION M-B have excellent sustained-release properties. The addition of M-B in solid-state fermentation significantly increased the alcohol content, reduced the residual starch content of Jiupei, ultimately improving the starch utilization rate and liquor yield of Baijiu brewing. The preparation of M-B provides methods and approaches for applying other active substances and microorganisms in the brewing of Baijiu. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuyan Zong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, University of Science and Engineering, Yibin, China
| | - Wenli Luo
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, University of Science and Engineering, Yibin, China
| | - Lei Wen
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, University of Science and Engineering, Yibin, China
| | - Shujuan Shao
- Bureau of Administrative Approval Services, Heze, China
- Heze Institute of Food and Drug Inspection and Testing, Heze, China
| | - Li Li
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, University of Science and Engineering, Yibin, China
| |
Collapse
|
2
|
Chesneau C, Larue L, Belbekhouche S. Design of Tailor-Made Biopolymer-Based Capsules for Biological Application by Combining Porous Particles and Polysaccharide Assembly. Pharmaceutics 2023; 15:1718. [PMID: 37376165 DOI: 10.3390/pharmaceutics15061718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Various approaches have been described in the literature to demonstrate the possibility of designing biopolymer particles with well-defined characteristics, such as size, chemical composition or mechanical properties. From a biological point of view, the properties of particle have been related to their biodistribution and bioavailability. Among the reported core-shell nanoparticles, biopolymer-based capsules can be used as a versatile platform for drug delivery purposes. Among the known biopolymers, the present review focuses on polysaccharide-based capsules. We only report on biopolyelectrolyte capsules fabricated by combining porous particles as a template and using the layer-by-layer technique. The review focuses on the major steps of the capsule design, i.e., the fabrication and subsequent use of the sacrificial porous template, multilayer coating with polysaccharides, the removal of the porous template to obtain the capsules, capsule characterisation and the application of capsules in the biomedical field. In the last part, selected examples are presented to evidence the major benefits of using polysaccharide-based capsules for biological purposes.
Collapse
Affiliation(s)
- Cléa Chesneau
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laura Larue
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
3
|
Adamiak K, Sionkowska A. State of Innovation in Alginate-Based Materials. Mar Drugs 2023; 21:353. [PMID: 37367678 PMCID: PMC10302983 DOI: 10.3390/md21060353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
This review article presents past and current alginate-based materials in each application, showing the widest range of alginate's usage and development in the past and in recent years. The first segment emphasizes the unique characteristics of alginates and their origin. The second segment sets alginates according to their application based on their features and limitations. Alginate is a polysaccharide and generally occurs as water-soluble sodium alginate. It constitutes hydrophilic and anionic polysaccharides originally extracted from natural brown algae and bacteria. Due to its promising properties, such as gelling, moisture retention, and film-forming, it can be used in environmental protection, cosmetics, medicine, tissue engineering, and the food industry. The comparison of publications with alginate-based products in the field of environmental protection, medicine, food, and cosmetics in scientific articles showed that the greatest number was assigned to the environmental field (30,767) and medicine (24,279), whereas fewer publications were available in cosmetic (5692) and food industries (24,334). Data are provided from the Google Scholar database (including abstract, title, and keywords), accessed in May 2023. In this review, various materials based on alginate are described, showing detailed information on modified composites and their possible usage. Alginate's application in water remediation and its significant value are highlighted. In this study, existing knowledge is compared, and this paper concludes with its future prospects.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
- WellU sp.z.o.o., Wielkopolska 280, 81-531 Gdynia, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
4
|
Minkowicz L, Dagan A, Uvarov V, Benny O. Controlling Calcium Carbonate Particle Morphology, Size, and Molecular Order Using Silicate. MATERIALS 2021; 14:ma14133525. [PMID: 34202681 PMCID: PMC8269534 DOI: 10.3390/ma14133525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Calcium carbonate (CaCO3) is one of the most abundant substances on earth and has a large array of industrial applications. Considerable research has been conducted in an effort to synthesize calcium carbonate microparticles with controllable and specific morphologies and sizes. CaCO3 produced by a precipitation reaction of calcium nitrate and sodium carbonate solution was found to have high polymorphism and batch to batch variability. In this study, we investigated the polymorphism of the precipitated material and analyzed the chemical composition, particle morphology, and crystalline state revealing that the presence of silicon atoms in the precipitant is a key factor effecting particle shape and crystal state. An elemental analysis of single particles within a polymorphic sample, using energy-dispersive X-ray spectroscopy (EDS) conjugated microscopy, showed that only spherical particles, but not irregular shaped one, contained traces of silicon atoms. In agreement, silicon-containing additives lead to homogenous, amorphous nanosphere particles, verified by X-ray powder diffraction (XRD). Our findings provide important insights into the mechanism of calcium carbonate synthesis, as well as introducing a method to control the precipitants at the micro-scale for many diverse applications.
Collapse
Affiliation(s)
- Lior Minkowicz
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (L.M.); (A.D.)
| | - Arie Dagan
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (L.M.); (A.D.)
| | - Vladimir Uvarov
- The Center for Nanoscience and Nanotechnology, The Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Ofra Benny
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (L.M.); (A.D.)
- Correspondence:
| |
Collapse
|
5
|
Chang Y, Han H, Liu T, Yuan S, Chen S, Guo Y, Yang L, Ma X. Cell-tailored calcium carbonate particles with different crystal forms from nanoparticle to nano/microsphere. RSC Adv 2020; 10:43233-43241. [PMID: 35514929 PMCID: PMC9058178 DOI: 10.1039/d0ra07393h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
Inspired by biomineralization, the first synthesis of size-tunable calcium carbonates from nanoparticles (YC-CaCO3 NPs) to nano/microspheres (YC-CaCO3 N/MSs) with a porous structure was accomplished using a facile method under the mediation of the secretion from yeast cells (YCs). The biomolecules derived from the secretion of YCs were used as conditioning and stabilizing agents to control the biosynthesis of the YC-CaCO3 materials. The morphology and crystal forms of YC-CaCO3 materials can be affected by the biomolecules from the secretion of YCs. With increasing concentrations of biomolecules, the morphologies of the obtained CaCO3 materials changed from nanoparticles to nano/microspheres with a porous structure, while the crystal forms transformed from amorphous to calcite. Functional investigations showed that YC-CaCO3 NSs with a porous structure effectively acted as anticancer drug carriers with accurate and selective drug release in tumor tissue, which suggests that they have great potential to function as a therapeutic delivery system. These application features are mainly attributed to the satisfactory biocompatibility and biodegradability, high drug-loading capacity, and pH-dependent sustained drug release performance of the porous YC-CaCO3 NSs. The biomimetic synthesis strategy of YC-CaCO3 materials mediated by YC secretion not only helps to shed light on the biomineralization mechanism in organisms, but may also lead to a new means of biosynthesizing organic-inorganic nanocomposites.
Collapse
Affiliation(s)
- Yi Chang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huijuan Han
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang Henan 453007 P. R. China
| | - Tingting Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shibao Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Shuting Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Lin Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
6
|
Wang M, Zhang H, Shao H, Yang G. Preparation and Characterization of Sodium Alginate and Polyquaternium‐10 Hollow Microcapsules by a Layer‐by‐Layer Self‐Assembly Technique. ChemistrySelect 2020. [DOI: 10.1002/slct.202003193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Dong Hua University Shanghai 201620 PR China
- Kumho-Sunny Plastic Co. Ltd Shanghai 201107 PR China
| | - Huihui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Dong Hua University Shanghai 201620 PR China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Dong Hua University Shanghai 201620 PR China
| | - Gesheng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Dong Hua University Shanghai 201620 PR China
| |
Collapse
|
7
|
Liu Y, Shen W, Cui H. Combined Transition-Metal/Enzyme Dual Catalytic System for Highly Intensive Glow-Type Chemiluminescence-Functionalized CaCO3 Microspheres. Anal Chem 2019; 91:10614-10621. [DOI: 10.1021/acs.analchem.9b01774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yating Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen Shen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Radhakrishnan K, Vincent A, Joseph RR, Moreno M, Dickescheid A, Agrawal R, Venkatraman S. Hollow Microcapsules as Periocular Drug Depot for Sustained Release of Anti-VEGF Protein. Pharmaceutics 2019; 11:E330. [PMID: 31336771 PMCID: PMC6680760 DOI: 10.3390/pharmaceutics11070330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/30/2023] Open
Abstract
Diseases affecting the posterior segment of the eye such as age-related macular degeneration and diabetic retinopathy are leading causes of blindness all over the world. The current treatment regimen for such diseases involves repeated intravitreal injections of anti- Vascular Endothelial Growth Factor (VEGF) proteins. This method is highly invasive and can lead to severe complications. In an attempt to develop less invasive alternatives, we propose the use of a controlled release system consisting of anti-VEGF loaded hollow microcapsules that can be administered periocularly to form drug eluting depots on the episcleral surface. The microcapsules with either positive or negative surface charge were prepared by a layer by layer approach and showed pH responsive permeability switching. An ex vivo experiment using porcine sclera indicated positively charged microcapsules remained on the episcleral surface over four days while the negatively charged microcapsules were washed away. These positively charged microcapsules were then loaded with anti-VEGF protein ranibizumab using pH dependent permeability switching and protein release from the microcapsules were studied using an in vitro setup. An ex vivo experiment utilizing porcine sclera demonstrated sustained release of ranibizumab over seven days with zero-order kinetics.
Collapse
Affiliation(s)
- Krishna Radhakrishnan
- NTU-Northwestern Institute for Nanomedicine (NNIN), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50, Nanyang Avenue, Singapore 639798, Singapore.
| | - Anita Vincent
- NTU-Northwestern Institute for Nanomedicine (NNIN), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50, Nanyang Avenue, Singapore 639798, Singapore
| | - Rini Rachel Joseph
- NTU-Northwestern Institute for Nanomedicine (NNIN), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50, Nanyang Avenue, Singapore 639798, Singapore
| | - Miguel Moreno
- NTU-Northwestern Institute for Nanomedicine (NNIN), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50, Nanyang Avenue, Singapore 639798, Singapore
| | - Andreas Dickescheid
- NTU-Northwestern Institute for Nanomedicine (NNIN), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50, Nanyang Avenue, Singapore 639798, Singapore
| | - Rupesh Agrawal
- Tan Tock Seng Hospital, Novena, Singapore 308433, Singapore
| | - Subbu Venkatraman
- NTU-Northwestern Institute for Nanomedicine (NNIN), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50, Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
9
|
Jia Y, Li J. Molecular Assemblies of Biomimetic Microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8557-8564. [PMID: 30759988 DOI: 10.1021/acs.langmuir.8b04319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Layer-by-layer (LbL) assembly is a most commonly used method to prepare various microcapsules based on the electrostatic interactions, hydrogen bonding, covalent bonding, and so on. Among these interactions, Schiff base bond formed in covalent assembly not only has an advantage in stability, but also enables the assembled microcapsules with autofluorescence and pH sensitivity. In this Article, we will mainly describe the construction of biomimetic microcapsules through Schiff base mediated LbL assembly. The structures and properties of the assembled microcapsules are introduced and their applications as drug carriers are highlighted.
Collapse
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing , 100190 , China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
10
|
Karcher J, Pianowski ZL. Photocontrol of Drug Release from Supramolecular Hydrogels with Green Light. Chemistry 2018; 24:11605-11610. [DOI: 10.1002/chem.201802205] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Johannes Karcher
- Institut für Organische ChemieKarlsruher Institut für Technologie Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Zbigniew L. Pianowski
- Institut für Organische ChemieKarlsruher Institut für Technologie Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institut für Toxikologie und GenetikKarlsruher Institut für Technologie, Campus Nord Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
11
|
Belbekhouche S, Charaabi S, Picton L, Le Cerf D, Carbonnier B. Glucose-sensitive polyelectrolyte microcapsules based on (alginate/chitosan) pair. Carbohydr Polym 2018; 184:144-153. [DOI: 10.1016/j.carbpol.2017.12.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/25/2023]
|
12
|
Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review. J Clin Diagn Res 2015; 9:ZE21-5. [PMID: 26501034 DOI: 10.7860/jcdr/2015/13907.6565] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/05/2015] [Indexed: 01/07/2023]
Abstract
Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.
Collapse
Affiliation(s)
- Preeti Yadav
- Senior Lecturer, Department of Prosthodontics, Crown and Bridge and Implantology, NIMS Dental College , Jaipur, Rajasthan, India
| | - Harsh Yadav
- Private Practioner, Oral & Maxillofacial Surgery, Gurgaon, Haryana, India
| | - Veena Gowri Shah
- Reader, Department of Prosthodontics, Crown and Bridge and Implantology, NIMS Dental College , Jaipur, Rajasthan, India
| | - Gaurav Shah
- Reader, Department of Oral & Maxillofacial Surgery, NIMS Dental College , Jaipur, Rajasthan, India
| | - Gaurav Dhaka
- Private Practitioner, Meerut, Uttar Pradesh, India
| |
Collapse
|
13
|
Aston R, Wimalaratne M, Brock A, Lawrie G, Grøndahl L. Interactions between Chitosan and Alginate Dialdehyde Biopolymers and Their Layer-by-Layer Assemblies. Biomacromolecules 2015; 16:1807-17. [DOI: 10.1021/acs.biomac.5b00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robyn Aston
- School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane QLD-4072, Australia
| | - Medini Wimalaratne
- School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane QLD-4072, Australia
| | - Aidan Brock
- School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane QLD-4072, Australia
| | - Gwendolyn Lawrie
- School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane QLD-4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane QLD-4072, Australia
| |
Collapse
|
14
|
Rivera MC, Pinheiro AC, Bourbon AI, Cerqueira MA, Vicente AA. Hollow chitosan/alginate nanocapsules for bioactive compound delivery. Int J Biol Macromol 2015; 79:95-102. [PMID: 25907011 DOI: 10.1016/j.ijbiomac.2015.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/19/2015] [Accepted: 03/03/2015] [Indexed: 01/24/2023]
Abstract
This work aimed at the development of biodegradable nanocapsules as carriers of two bioactive compounds, 5-aminosalycilic acid and glycomacropeptide. Nanocapsules were produced through layer-by-layer (LbL) deposition of chitosan (CH) and alginate (ALG) layers on polystyrene nanoparticles. The bioactive compounds were incorporated on the third layer of the nanocapsules being its encapsulation efficiency and release behaviour evaluated. The LbL deposition process, stability, morphology and size of the multilayer nanocapsules were monitored by means of zeta potential and transmission electron microscopy (TEM). The bioactive compounds release from the CH/ALG nanocapsules was successfully described by a mathematical model (linear superimposition model - LSM), which allowed concluding that bioactive compounds release is due to both Brownian motion and the polymer relaxation of the CH/ALG layers. Final results demonstrated that the synthesized LbL hollow nanocapsules presented spherical morphology and a good capacity to encapsulate different bioactive compounds, being the best results obtained for the system containing 5-aminosalycilic acid (with an encapsulation efficiency of approximately 70%). CH/ALG multilayer nanocapsules could be a promising carrier of bioactive compounds for applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Melissa C Rivera
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana C Pinheiro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana I Bourbon
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel A Cerqueira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
15
|
Wolski K, Szuwarzyński M, Kopeć M, Zapotoczny S. Ordered photo- and electroactive thin polymer layers. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Riyajan SA, Nuim J. Effect of carboxymethyl cellulose viscosity on the size of turmeric extract nanoparticles. RUSS J APPL CHEM+ 2015. [DOI: 10.1134/s1070427214100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Jia Y, Li J. Molecular assembly of Schiff Base interactions: construction and application. Chem Rev 2014; 115:1597-621. [PMID: 25543900 DOI: 10.1021/cr400559g] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | | |
Collapse
|
18
|
Kilan K, Warszyński P. Thickness and permeability of multilayers containing alginate cross-linked by calcium ions. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Wang P, Zhang A, Jin Y, Zhang Q, Zhang L, Peng Y, Du S. Molecularly imprinted layer-coated hollow polysaccharide microcapsules toward gate-controlled release of water-soluble drugs. RSC Adv 2014. [DOI: 10.1039/c4ra04444d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Song X, Li H, Tong W, Gao C. Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing. J Colloid Interface Sci 2013; 416:252-7. [PMID: 24370429 DOI: 10.1016/j.jcis.2013.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 01/11/2023]
Abstract
Encapsulation of pH sensitive fluorophores as reporting molecules provides a powerful approach to visualize the transportation of multilayer capsules. In this study, two pH sensitive dyes (fluorescein and oregon green) and one pH insensitive dye (rhodamine B) were simultaneously labeled on the microcapsules to fabricate ratiometric pH sensors. The fluorescence of the triple-labeled microcapsule sensors was robust and nearly independent of other intracellular species. With a dynamic pH measurement range of 3.3-6.5, the microcapsules can report their localized pH at a real time. Cell culture experiments showed that the microcapsules could be internalized by RAW 246.7 cells naturally and finally accumulated in acidic organelles with a pH value of 5.08 ± 0.59 (mean ± s.d.; n=162).
Collapse
Affiliation(s)
- Xiaoxue Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou, 310027 Hangzhou, China
| | - Huanbin Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou, 310027 Hangzhou, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou, 310027 Hangzhou, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou, 310027 Hangzhou, China
| |
Collapse
|
21
|
Alginate-Based Biomaterials for Regenerative Medicine Applications. MATERIALS 2013; 6:1285-1309. [PMID: 28809210 PMCID: PMC5452316 DOI: 10.3390/ma6041285] [Citation(s) in RCA: 741] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/19/2013] [Accepted: 03/19/2013] [Indexed: 02/07/2023]
Abstract
Alginate is a natural polysaccharide exhibiting excellent biocompatibility and biodegradability, having many different applications in the field of biomedicine. Alginate is readily processable for applicable three-dimensional scaffolding materials such as hydrogels, microspheres, microcapsules, sponges, foams and fibers. Alginate-based biomaterials can be utilized as drug delivery systems and cell carriers for tissue engineering. Alginate can be easily modified via chemical and physical reactions to obtain derivatives having various structures, properties, functions and applications. Tuning the structure and properties such as biodegradability, mechanical strength, gelation property and cell affinity can be achieved through combination with other biomaterials, immobilization of specific ligands such as peptide and sugar molecules, and physical or chemical crosslinking. This review focuses on recent advances in the use of alginate and its derivatives in the field of biomedical applications, including wound healing, cartilage repair, bone regeneration and drug delivery, which have potential in tissue regeneration applications.
Collapse
|
22
|
Ma X, Yuan S, Yang L, Li L, Zhang X, Su C, Wang K. Fabrication and potential applications of CaCO3–lentinan hybrid materials with hierarchical composite pore structure obtained by self-assembly of nanoparticles. CrystEngComm 2013. [DOI: 10.1039/c3ce41275j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Tripathy J, Raichur AM. Designing carboxymethyl cellulose based layer-by-layer capsules as a carrier for protein delivery. Colloids Surf B Biointerfaces 2013; 101:487-92. [DOI: 10.1016/j.colsurfb.2012.07.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 11/26/2022]
|
24
|
Xia B, Wang X, He F, Cui Q, Li L. Self-assembly of conjugated polymer on hybrid nanospheres for cellular imaging applications. ACS APPLIED MATERIALS & INTERFACES 2012; 4:6332-6337. [PMID: 23101490 DOI: 10.1021/am301945k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new kind of hybrid core-shell nanosphere was fabricated by combining the in situ formation of Au nanoparticles and covalent cross-linking of biocompatible carboxymethyl starch dialdehyde (CMSD) and chitosan (CTS). When the fluorescent dye poly[9,9'-bis(6″-(N,N,N-trimethylammonium)-hexyl)fluorene-2,7-ylenevinylene-co-alt-1,4-phenylene dibromide] (PFV) was assembled on the surface of the hybrid nanospheres through electrostatic attraction, these biocompatible hybrid nanospheres exhibited metal-enhanced fluorescence effects. The fluorescence intensity of (CTS-Au)@CMSD/PFV hybrid nanosphere is 1.43 times that of CTS-CMSD/PFV hybrid nanospheres lacking Au nanoparticle. In addition, the (CTS-Au)@CMSD/PFV hybrid nanospheres exhibit excellent biodegradability upon exposure to enzymatic aqueous solution and good biocompatibility when cocultured with HeLa cervical carcinoma cells; these advantages make them attractive for cellular imaging and biological analysis and detection.
Collapse
Affiliation(s)
- Bihua Xia
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | | | | | | | | |
Collapse
|
25
|
Han Y, Bu J, Zhang Y, Tong W, Gao C. Encapsulation of Photosensitizer into Multilayer Microcapsules by Combination of Spontaneous Deposition and Heat-Induced Shrinkage for Photodynamic Therapy. Macromol Biosci 2012; 12:1436-42. [DOI: 10.1002/mabi.201200191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 06/28/2012] [Indexed: 01/20/2023]
|
26
|
Romero G, Moya SE. Synthesis of Organic Nanoparticles. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00004-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 2011; 63:822-36. [PMID: 21684313 DOI: 10.1016/j.addr.2011.03.017] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/23/2011] [Accepted: 03/30/2011] [Indexed: 12/17/2022]
Abstract
Localized delivery of bioactive compounds from surfaces of biomedical devices affords significant therapeutic benefits, and often relies on the capability of surface coatings to provide spatial and temporal control over release rate. The layer-by-layer technique presents a unique means to construct surface coatings that can conform to a variety of biomaterial surfaces and serve as matrices enabling controlled delivery of bioactive molecules from surfaces. The versatility of layer-by-layer assembly enables construction of surface coatings of diverse chemistry and internal architecture with controlled release properties. This review focuses on recent developments in constructing such layered matrices using linear polymers, polymer nanoparticles and block copolymer micelles, including micelles with stimuli-responsive cores, as film building blocks and in controlling release rate of therapeutics from these matrices via degradation, application of pH, ionic strength, temperature, light, electric field and chemical or biological stimuli. Challenges and opportunities associated with fabrication of stratified multilayer films capable of multi-stage delivery of multiple drugs are also discussed.
Collapse
|
28
|
Lyophilization of Protein-Loaded Polyelectrolyte Microcapsules. Pharm Res 2011; 28:1765-73. [DOI: 10.1007/s11095-011-0411-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
|
29
|
Jia Y, Fei J, Cui Y, Yang Y, Gao L, Li J. pH-responsive polysaccharide microcapsules through covalent bonding assembly. Chem Commun (Camb) 2011; 47:1175-7. [DOI: 10.1039/c0cc03578e] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Du P, Liu P, Mu B, Wang Y. Monodisperse superparamagnetic pH-sensitive single-layer chitosan hollow microspheres with controllable structure. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24294] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2009.11.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Li W, Wu P. Biomimetic synthesis of monodisperse rosette-like calcite mesocrystals regulated by carboxymethyl cellulose and the proposed mechanism : An unconventional rhombohedra-stacking route. CrystEngComm 2009. [DOI: 10.1039/b901580a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Szarpak A, Pignot-Paintrand I, Nicolas C, Picart C, Auzély-Velty R. Multilayer assembly of hyaluronic acid/poly(allylamine): control of the buildup for the production of hollow capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9767-9774. [PMID: 18680329 DOI: 10.1021/la801274z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The objective of this work was to investigate the formation of hollow microcapsules composed of hyaluronic acid (HA) and poly(allylamine) (PAH) by layer-by-layer adsorption on CaCO 3 microparticles and subsequent core removal by addition of chelating agents for calcium ions. We found that the molecular weight of HA as well as the HA solution concentration used during deposition are crucial parameters influencing the multilayer structure. Whereas the effect of molecular weight of HA was mainly attributed to the porous structure of the template which allows penetration of polyelectrolytes when their size is below the maximum pore size of the template ( approximately 60 nm), that of the concentration of the HA solution was related to the intrinsic properties of the polysaccharide. Indeed, as shown by quartz crystal microbalance with dissipation monitoring as well as electron microscopy techniques, the latter leads to dense structures for concentrations from five to ten times the critical overlap concentration during adsorption. Such conditions were found to be favorable for the formation of hollow shells. Regarding conditions for core dissolution, we demonstrated the possibility to use either ethylenediaminetetraacetic acid (EDTA) or citric acid as chelating agents. However, in some cases, it was necessary to chemically cross-link the shell to maintain its integrity.
Collapse
Affiliation(s)
- Anna Szarpak
- Centre de Recherches sur les Macromolecules Vegetales (CERMAV-CNRS), BP53, 38041 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
34
|
Zhao Q, Li B. pH-controlled drug loading and release from biodegradable microcapsules. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2008; 4:302-10. [PMID: 18657478 DOI: 10.1016/j.nano.2008.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 05/14/2008] [Accepted: 06/03/2008] [Indexed: 11/16/2022]
Abstract
Microcapsules made of biopolymers are of both scientific and technological interest and have many potential applications in medicine, including their use as controlled drug delivery devices. The present study makes use of the electrostatic interaction between polycations and polyanions to form a multilayered microcapsule shell and also to control the loading and release of charged drug molecules inside the microcapsule. Micron-sized calcium carbonate (CaCO3) particles were synthesized and integrated with chondroitin sulfate (CS) through a reaction between sodium carbonate and calcium nitrate tetrahydrate solutions suspended with CS macromolecules. Oppositely charged biopolymers were alternately deposited onto the synthesized particles using electrostatic layer-by-layer self-assembly, and glutaraldehyde was introduced to cross-link the multilayered shell structure. Microcapsules integrated with CS inside the multilayered shells were obtained after decomposition of the CaCO3 templates. The integration of a matrix (i.e., CS) permitted the subsequent selective control of drug loading and release. The CS-integrated microcapsules were loaded with a model drug, bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA), and it was shown that pH was an effective means of controlling the loading and release of FITC-BSA. Such CS-integrated microcapsules may be used for controlled localized drug delivery as biodegradable devices, which have advantages in reducing systemic side effects and increasing drug efficacy.
Collapse
Affiliation(s)
- Qinghe Zhao
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506-9196, USA
| | | |
Collapse
|
35
|
Han B, Shen B, Wang Z, Shi M, Li H, Peng C, Zhao Q, Gao C. Layered microcapsules for daunorubicin loading and release as well asin vitro andin vivo studies. POLYM ADVAN TECHNOL 2008. [DOI: 10.1002/pat.966] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Tong W, Gao C. Multilayer microcapsules with tailored structures for bio-related applications. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b805717f] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Lee H, Jeong Y, Park TG. Shell Cross-Linked Hyaluronic Acid/Polylysine Layer-by-Layer Polyelectrolyte Microcapsules Prepared by Removal of Reducible Hyaluronic Acid Microgel Cores. Biomacromolecules 2007; 8:3705-11. [DOI: 10.1021/bm700854j] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyukjin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Yongho Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Tae Gwan Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| |
Collapse
|
38
|
Zhao Q, Han B, Wang Z, Gao C, Peng C, Shen J. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: doxorubicin loading and in vitro and in vivo studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 3:63-74. [PMID: 17379170 DOI: 10.1016/j.nano.2006.11.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 10/27/2006] [Accepted: 11/21/2006] [Indexed: 11/19/2022]
Abstract
We report here the loading of the antitumor drug doxorubicin (DOX) in preformed multilayer microcapsules and its application in tumor treatment assayed by in vitro cell culture and in vivo animal experiments. The microcapsules, consisting completely of polysaccharides, were fabricated by deposition of oppositely charged chitosan and alginate onto carboxylmethyl cellulose (CMC)-doped CaCO(3) colloidal particles in a layer-by-layer fashion, followed by cross-linking with glutaraldehyde and decomposition of the cores by disodium ethylenediaminetetraacetic acid. The microcapsules as prepared contain negatively charged CMC-either in a free state or very possibly coupled with the excess chitosan of the first layer. They showed a strong ability to accumulate the positively charged DOX with a factor of tens to hundreds; that is, the drug concentration within the microcapsules was hundreds of times higher than the feeding concentration. Confocal microscopy and transmission electron microscopy revealed homogeneous distribution of the drug. The encapsulated DOX could be released again, following a diffusion-controlled model at the initial stage. In vitro experiments showed that the encapsulated drug can effectively induce the apoptosis of HepG2 tumor cells, as shown by various microscopy techniques after acridine orange, Hoechst 33342, and osmium tetraoxide staining. By seeding the HepG2 hepatoma cells into BALB/c/nu mice, tumors were created for the experimental studies. The results showed that the encapsulated DOX had better efficacy than that of the free drug in terms of tumor inhibition in a 4-week in vivo culture period.
Collapse
Affiliation(s)
- Qinghe Zhao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|