1
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
2
|
Devillard CD, Marquette CA. Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel. Front Bioeng Biotechnol 2021; 9:721843. [PMID: 34671597 PMCID: PMC8522984 DOI: 10.3389/fbioe.2021.721843] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Since the emergence of regenerative medicine and tissue engineering more than half a century ago, one obstacle has persisted: the in vitro creation of large-scale vascular tissue (>1 cm3) to meet the clinical needs of viable tissue grafts but also for biological research applications. Considerable advancements in biofabrication have been made since Weinberg and Bell, in 1986, created the first blood vessel from collagen, endothelial cells, smooth muscle cells and fibroblasts. The synergistic combination of advances in fabrication methods, availability of cell source, biomaterials formulation and vascular tissue development, promises new strategies for the creation of autologous blood vessels, recapitulating biological functions, structural functions, but also the mechanical functions of a native blood vessel. In this review, the main technological advancements in bio-fabrication are discussed with a particular highlights on 3D bioprinting technologies. The choice of the main biomaterials and cell sources, the use of dynamic maturation systems such as bioreactors and the associated clinical trials will be detailed. The remaining challenges in this complex engineering field will finally be discussed.
Collapse
Affiliation(s)
- Chloé D Devillard
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
3
|
Jafarihaghighi F, Ardjmand M, Mirzadeh A, Hassani MS, Parizi SS. Current challenges and future trends in manufacturing small diameter artificial vascular grafts in bioreactors. Cell Tissue Bank 2020; 21:377-403. [PMID: 32415569 DOI: 10.1007/s10561-020-09837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/09/2020] [Indexed: 01/17/2023]
Abstract
Cardiovascular diseases are a leading cause of death. Vascular surgery is mainly used to solve this problem. However, the generation of a functional and suitable substitute for small diameter (< 6 mm) displacement is challengeable. Moreover, synthetic prostheses, made of polyethylene terephthalate and extended polytetrafluoroethylene show have shown insufficient performance. Therefore, the challenges dominating the use of autografts have prevented their efficient use. Tissue engineering is highlighted in regenerative medicine perhaps in aiming to address the issue of end-stage organ failure. While organs and complex tissues require the vascular supply to support the graft survival and render the bioartificial organ role, vascular tissue engineering has shown to be a hopeful method for cell implantation by the production of tissues in vitro. Bioreactors are a salient point in vascular tissue engineering due to the capability for reproducible and controlled variations showing a new horizon in blood vessel substitution. This review strives to display the overview of current concepts in the development of small-diameter by using bioreactors. In this work, we show a critical look at different factors for developing small-diameter and give suggestions for future studies.
Collapse
Affiliation(s)
- Farid Jafarihaghighi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Abolfazl Mirzadeh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mohammad Salar Hassani
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahriar Salemi Parizi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater 2018; 7:e1701461. [PMID: 29732735 PMCID: PMC6105365 DOI: 10.1002/adhm.201701461] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Collapse
Affiliation(s)
- Daniel Radke
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Wenkai Jia
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Kemin Fena
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| |
Collapse
|
5
|
Jang BS, Cheon JY, Kim SH, Park WH. Small diameter vascular graft with fibroblast cells and electrospun poly (L-lactide-co-ε-caprolactone) scaffolds: Cell Matrix Engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:942-959. [PMID: 28816087 DOI: 10.1080/09205063.2017.1367635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Electrospun scaffolds have been widely used in tissue engineering due to their similar structure to native extracellular matrices (ECM). However, one of the obstacles limiting the application of electrospun scaffolds for tissue engineering is the nano-sized pores, which inhibit cell infiltration into the scaffolds. To overcome this limitation, we approached to make layers which are consisted of cells onto the electrospun sheet and then tubular structure was constructed by rolling. We called this as 'Cell Matrix Engineering' because the electrospun sheets were combined with the cells to form one matrix. They maintained 3-D tubular structures well and their diameters were 4.1 mm (±0.1 mm). We compared the mechanical and biological properties of various vascular grafts with the electrospun PLCL sheets of different thickness. In these experiments, the vascular graft made with thin sheets showed a better cell proliferation and attachment than the grafts made with thick sheets because the thin layer allowed for more efficient mass transfer and better permeability than the thick layer. Culturing under physiological pulsatile flow condition was demonstrated in this work. These dynamic conditions provided the improved mass transport and aerobic cell metabolism. Therefore, the Cell Matrix Engineered vascular graft holds a great promise for clinical applications by overcoming the limitations associated with conventional scaffolds.
Collapse
Affiliation(s)
- Bong Seok Jang
- a Department of Advanced Organic Materials and Textile System Engineering , Chungnam National University , Daejeon , Korea
| | - Ja Young Cheon
- a Department of Advanced Organic Materials and Textile System Engineering , Chungnam National University , Daejeon , Korea
| | - Soo Hyun Kim
- b Biomaterials Research Center , Korea Institute of Science and Technology , Seoul , Korea.,c KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul , Korea
| | - Won Ho Park
- a Department of Advanced Organic Materials and Textile System Engineering , Chungnam National University , Daejeon , Korea
| |
Collapse
|