1
|
Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial cells for the treatment of respiratory diseases. Front Pharmacol 2022; 13:983816. [PMID: 36110525 PMCID: PMC9468609 DOI: 10.3389/fphar.2022.983816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary vascular endothelial cells (VECs) are the main damaged cells in the pathogenesis of various respiratory diseases and they mediate the development and regulation of the diseases. Effective intervention targeting pulmonary VECs is of great significance for the treatment of respiratory diseases. A variety of cell markers are expressed on the surface of VECs, some of which can be specifically combined with the drugs or carriers modified by corresponding ligands such as ICAM-1, PECAM-1, and P-selectin, to achieve effective delivery of drugs in lung tissues. In addition, the great endothelial surface area of the pulmonary vessels, the “first pass effect” of venous blood in lung tissues, and the high volume and relatively slow blood perfusion rate of pulmonary capillaries further promote the drug distribution in lung tissues. This review summarizes the representative markers at the onset of respiratory diseases, drug delivery systems designed to target these markers and their therapeutic effects.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing Li
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing-Bo Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| | - Chun-Lin Yang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| |
Collapse
|
2
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
3
|
Brenner JS, Greineder C, Shuvaev V, Muzykantov V. Endothelial nanomedicine for the treatment of pulmonary disease. Expert Opin Drug Deliv 2014; 12:239-61. [PMID: 25394760 DOI: 10.1517/17425247.2015.961418] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Even though pulmonary diseases are among the leading causes of morbidity and mortality in the world, exceedingly few life-prolonging therapies have been developed for these maladies. Relief may finally come from nanomedicine and targeted drug delivery. AREAS COVERED Here, we focus on four conditions for which the pulmonary endothelium plays a pivotal role: acute respiratory distress syndrome, primary graft dysfunction occurring immediately after lung transplantation, pulmonary arterial hypertension and pulmonary embolism. For each of these diseases, we first evaluate the targeted drug delivery approaches that have been tested in animals. Then we suggest a 'need specification' for each disease: a list of criteria (e.g., macroscale delivery method, stability, etc.) that nanomedicine agents must meet in order to warrant human clinical trials and investment from industry. EXPERT OPINION For the diseases profiled here, numerous nanomedicine agents have shown promise in animal models. However, to maximize the chances of creating products that reach patients, nanomedicine engineers and clinicians must work together and use each disease's need specification to guide the design of practical and effective nanomedicine agents.
Collapse
Affiliation(s)
- Jacob S Brenner
- University of Pennsylvania, Perelman School of Medicine, Department of Pharmacology and Center for Targeted Therapeutics and Translational Nanomedicine , TRC10-125, 3600 Civic Center Boulevard, Philadelphia, PA 19104 , USA +1 215 898 9823 ; +1 215 573 9135 ;
| | | | | | | |
Collapse
|
4
|
Shuvaev VV, Muzykantov VR. Targeted modulation of reactive oxygen species in the vascular endothelium. J Control Release 2011; 153:56-63. [PMID: 21457736 PMCID: PMC3134152 DOI: 10.1016/j.jconrel.2011.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/21/2011] [Indexed: 01/28/2023]
Abstract
'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS.
Collapse
Affiliation(s)
- Vladimir V. Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Vladimir R. Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
5
|
Scherpereel A, Rome JJ, Wiewrodt R, Watkins SC, Harshaw DW, Alder S, Christofidou-Solomidou M, Haut E, Murciano JC, Nakada M, Albelda SM, Muzykantov VR. Platelet-endothelial cell adhesion molecule-1-directed immunotargeting to cardiopulmonary vasculature. J Pharmacol Exp Ther 2002; 300:777-86. [PMID: 11861781 DOI: 10.1124/jpet.300.3.777] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Therapeutic molecules conjugated with antibodies to the platelet-endothelial cell adhesion molecule-1 (PECAM-1) accumulate in the pulmonary endothelium after i.v. injection in mice. In this study, we characterized PECAM-directed targeting to the lung and heart after local versus systemic intravascular administration in a large animal model, pigs. Radiolabel tracing showed that 1 h post-i.v. injection, 35% of anti-PECAM versus 2.5% of control IgG had accumulated in the lungs. Infusion of anti-PECAM via a catheter placed in the right pulmonary artery (RPA) resulted in a 3-fold elevation of the uptake in the right lower lobe and 2-fold reduction of uptake in the left lobes in the lung. Cardiac uptake of anti-PECAM was negligible after i.v. and RPA infusion. In contrast, delivery with a catheter placed in the right coronary artery (RCA) resulted in a 4-fold elevation of cardiac uptake of anti-PECAM, but not IgG, compared with i.v. injection. To estimate the targeting of an active reporter enzyme, streptavidin-conjugated beta-galactosidase (beta-Gal) was coupled to anti-PECAM or IgG (anti-PECAM/beta-Gal and IgG/beta-Gal) and injected into the RCA. Beta-Gal activity was markedly elevated in the heart and lungs (5- and 25-fold increased, respectively) after injection of anti-PECAM/beta-Gal, but not IgG/beta-Gal. Image analysis confirmed endothelial targeting of anti-PECAM/beta-Gal in the heart and lung. In summary, anti-PECAM antibody conjugates deliver agents to the pulmonary endothelium regardless of injection route, whereas local arterial infusion permits targeting to the cardiac vasculature. This paradigm may be useful for drug targeting to endothelium in lungs, heart, and possibly other organs.
Collapse
Affiliation(s)
- Arnaud Scherpereel
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6068, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Christofidou-Solomidou M, Kennel S, Scherpereel A, Wiewrodt R, Solomides CC, Pietra GG, Murciano JC, Shah SA, Ischiropoulos H, Albelda SM, Muzykantov VR. Vascular immunotargeting of glucose oxidase to the endothelial antigens induces distinct forms of oxidant acute lung injury: targeting to thrombomodulin, but not to PECAM-1, causes pulmonary thrombosis and neutrophil transmigration. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1155-69. [PMID: 11891211 PMCID: PMC1867171 DOI: 10.1016/s0002-9440(10)64935-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative endothelial stress, leukocyte transmigration, and pulmonary thrombosis are important pathological factors in acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Vascular immunotargeting of the H(2)O(2)-generating enzyme glucose oxidase (GOX) to the pulmonary endothelium causes an acute oxidative lung injury in mice.(1) In the present study we compared the pulmonary thrombosis and leukocyte transmigration caused by GOX targeting to the endothelial antigens platelet-endothelial cell adhesion molecule (PECAM) and thrombomodulin (TM). Both anti-PECAM and anti-TM delivered similar amounts of (125)I-GOX to the lungs and caused a dose-dependent, tissue-selective lung injury manifested within 2 to 4 hours by high lethality, vascular congestion, polymorphonuclear neutrophil (PMN) sequestration in the pulmonary vasculature, severe pulmonary edema, and tissue oxidation, yet at an equal dose, anti-TM/GOX inflicted more severe lung injury than anti-PECAM/GOX. Moreover, anti-TM/GOX-induced injury was accompanied by PMN transmigration in the alveolar space, whereas anti-PECAM/GOX-induced injury was accompanied by PMN degranulation within vascular lumen without PMN transmigration, likely because of PECAM blockage. Anti-TM/GOX caused markedly more severe pulmonary thrombosis than anti-PECAM/GOX, likely because of TM inhibition. These results indicate that blocking of specific endothelial antigens by GOX immunotargeting modulates important pathological features of the lung injury initiated by local generation of H(2)O(2) and that this approach provides specific and robust models of diverse variants of human ALI/ARDS in mice. In particular, anti-TM/GOX causes lung injury combining oxidative, prothrombotic, and inflammatory components characteristic of the complex pathological picture seen in human ALI/ARDS.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary Critical Care Division, the Institute of Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6068, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Murciano JC, Harshaw DW, Ghitescu L, Danilov SM, Muzykantov VR. Vascular immunotargeting to endothelial surface in a specific macrodomain in alveolar capillaries. Am J Respir Crit Care Med 2001; 164:1295-302. [PMID: 11673225 DOI: 10.1164/ajrccm.164.7.2010076] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel 85 kD glycoprotein (gp85) is a marker of the avesicular zone, a thin part of pulmonary endothelial cells separating alveolar and vascular compartments and lacking vesicles. This report presents the first evaluation whether mAb 30B3, a monoclonal antibody to gp85, can be used for targeting of drugs to the surface of lung endothelium. 125I-mAb 30B3 accumulated in isolated perfused lungs (IPL) (22.8 +/- 1.1 versus 0.5 +/- 0.1 %ID/g for 125I-IgG) and accumulated preferentially in the lungs after intravenous or intraarterial injection (10.9 +/- 0.7 and 11.0 +/- 1.5 versus 0.9 +/- 0.2 %ID/g for 125I-IgG). 125I-mAb 30B3 uptake in IPL was rapid (T1/2 15 min), saturable (Bmax appr. 10(5) molecules/cell), specific (inhibited by nonlabeled mAb 30B3) and temperature independent (26.3 +/- 2.1 versus 22.8 +/- 1.1 %ID/g at 6 degrees C versus 37 degrees C). Biotinylated mAb 30B3 permitted subsequent accumulation of perfused avidin derivative in IPL. Because these data indicated that mAb 30B3 binds to an accessible, poorly internalizable antigen in the lung, we conjugated mAb 30B3 with a plasminogen activator, 125I-tPA. After intravenous injection in rats, lung-to-blood ratio was 8.4 +/- 0.9 for mAb 30B3/125I-tPA versus 0.4 +/- 0.1 for IgG/125I-tPA, indicating that mAb 30B3 may deliver drugs, which was supposed to exert therapeutic action in the vascular lumen (e.g., antithrombotic proteins), to the surface of pulmonary endothelium.
Collapse
Affiliation(s)
- J C Murciano
- Institute for Environmental Medicine and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
8
|
Reynolds PN, Zinn KR, Gavrilyuk VD, Balyasnikova IV, Rogers BE, Buchsbaum DJ, Wang MH, Miletich DJ, Grizzle WE, Douglas JT, Danilov SM, Curiel DT. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol Ther 2000; 2:562-78. [PMID: 11124057 DOI: 10.1006/mthe.2000.0205] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenoviral (Ad) vectors are promising gene therapy vehicles due to their in vivo stability and efficiency, but their potential utility is compromised by their restricted tropism. Targeting strategies have been devised to improve the efficacy of these agents, but specific targeting following in vivo systemic administration of vector has not previously been demonstrated. The distinct aim of the current study was to determine whether an Ad-targeting strategy could maintain fidelity upon systemic vascular administration. We used a bispecific antibody to target Ad infection specifically to angiotensin-converting enzyme (ACE), which is preferentially expressed on pulmonary capillary endothelium and which may thus enable gene therapy for pulmonary vascular disease. Cell-specific gene delivery to ACE-expressing cells was first confirmed in vitro. Administration of retargeted vector complex via tail vein injection into rats resulted in at least a 20-fold increase in both Ad DNA localization and luciferase transgene expression in the lungs, compared to the untargeted vector. Furthermore, targeting led to reduced transgene expression in nontarget organs, especially the liver, where the reduction was over 80%. Immunohistochemical and immunoelectron microscopy analysis confirmed that the pulmonary transgene expression was specifically localized to endothelial cells. Enhancement of transgene expression in the lungs as a result of the ACE-targeting strategy was also confirmed using a new noninvasive imaging technique. This study shows that a retargeting approach can indeed specifically modify the gene delivery properties of an Ad vector given systemically and thus has encouraging implications for the further development of targetable, injectable Ad vectors.
Collapse
Affiliation(s)
- P N Reynolds
- Division of Human Gene Therapy, University of Illinois at Chicago, Birmingham, Alabama, 35294-3300, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Christofidou-Solomidou M, Pietra GG, Solomides CC, Arguiris E, Harshaw D, Fitzgerald GA, Albelda SM, Muzykantov VR. Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs. Am J Physiol Lung Cell Mol Physiol 2000; 278:L794-805. [PMID: 10749757 DOI: 10.1152/ajplung.2000.278.4.l794] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular immunotargeting is a novel approach for site-selective drug delivery to endothelium. To validate the strategy, we conjugated glucose oxidase (GOX) via streptavidin with antibodies to the endothelial cell surface antigen platelet endothelial cell adhesion molecule (PECAM). Previous work documented that 1) anti-PECAM-streptavidin carrier accumulates in the lungs after intravenous injection in animals and 2) anti-PECAM-GOX binds to, enters, and kills endothelium via intracellular H(2)O(2) generation in cell culture. In the present work, we studied the targeting and effect of anti-PECAM-GOX in animals. Anti-PECAM-GOX, but not IgG-GOX, accumulated in the isolated rat lungs, produced H(2)O(2,) and caused endothelial injury manifested by a fourfold elevation of angiotensin-converting enzyme activity in the perfusate. In intact mice, anti-PECAM-GOX accumulated in the lungs (27 +/- 9 vs. 2.4 +/- 0.3% injected dose/g for IgG-GOX) and caused severe lung injury and 95% lethality within hours after intravenous injection. Endothelial disruption and blebbing, elevated lung wet-to-dry ratio, and interstitial and alveolar edema indicated that anti-PECAM-GOX damaged pulmonary endothelium. The vascular injury in the lungs was associated with positive immunostaining for iPF(2alpha)-III isoprostane, a marker for oxidative stress. In contrast, IgG-GOX caused a minor lung injury and little (5%) lethality. Anti-PECAM conjugated with inert proteins induced no death or lung injury. None of the conjugates caused major injury to other internal organs. These results indicate that an immunotargeting strategy can deliver an active enzyme to selected target cells in intact animals. Anti-PECAM-GOX provides a novel model of oxidative injury to the pulmonary endothelium in vivo.
Collapse
Affiliation(s)
- M Christofidou-Solomidou
- Pulmonary Critical Care Division, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Immunotargeting of drugs to the pulmonary vascular endothelium as a therapeutic strategy. PATHOPHYSIOLOGY 1998. [DOI: 10.1016/s0928-4680(98)00006-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Muzykantov VR, Atochina EN, Ischiropoulos H, Danilov SM, Fisher AB. Immunotargeting of antioxidant enzyme to the pulmonary endothelium. Proc Natl Acad Sci U S A 1996; 93:5213-8. [PMID: 8643555 PMCID: PMC39224 DOI: 10.1073/pnas.93.11.5213] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Oxidative injury to the pulmonary endothelium has pathological significance for a spectrum of diseases. Administration of antioxidant enzymes, superoxide dismutase (SOD) and catalase (Cat), has been proposed as a method to protect endothelium. However, neither these enzymes nor their derivatives possess specific affinity to endothelium and do not accumulate in the lung. Previously we have described a monoclonal antibody to angiotensin-converting enzyme (ACE) that accumulates selectively in the lung after systemic injection in rats, hamsters, cats, monkeys, and humans. In the present work we describe a system for selective intrapulmonary delivery of CuZn-SOD and Cat conjugated with biotinylated anti-ACE antibody mAb 9B9 (b-mAb 9B9) by a streptavidin (SA)-biotin bridge. Both enzymes biotinylated with biotin ester at biotin/enzyme ratio 20 retain enzymatic activity and bind SA without loss of activity. We have constructed tri-molecular heteropolymer complexes consisting of b-mAb 9B9, SA, and biotinylated SOD or biotinylated Cat and have studied biodistribution and pulmonary uptake of these complexes in the rat after i.v. injection. Biodistribution of biotinylated enzymes was similar to that of nonmodified enzymes. Binding of SA markedly prolonged lifetime of biotinylated enzymes in the circulation. In contrast to enzymes conjugated with nonspecific IgG, other enzyme derivatives, and nonmodified enzymes, biotinylated enzymes conjugated with b-mAb 9B9 accumulated specifically in the rat lung (9% of injected SOD/g of lung tissue and 7.5% of injected Cat/g of lung tissue). Pulmonary uptake of nonmodified enzymes or derivatives with nonspecific IgG did not exceed 0.5% of injected dose/g. Both SOD and Cat conjugated with b-mAb 9B9 were retained in the rat lung for at least several hours. Trichloracetic acid-precipitable radiolabeled Cat was associated with microsomal and plasma membrane fractions of the lung tissue homogenate. Thus, modification of antioxidant enzymes with biotin and SA-mediated conjugation with b-mAb 9B9 prolongs the circulation of enzymes resulting in selective accumulation in the lung and intracellular delivery of enzymes to the pulmonary endothelium. These results provide the background for an approach to provide protection of pulmonary endothelium against oxidative insults.
Collapse
Affiliation(s)
- V R Muzykantov
- Insitute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Muzykantov VR, Danilov SM. Glucose oxidase conjugated with anti-endothelial monoclonal antibodies: in vitro and in vivo studies. Int J Radiat Biol 1991; 60:11-5. [PMID: 1677957 DOI: 10.1080/09553009114551411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- V R Muzykantov
- Institute of Experimental Cardiology, USSR Cardiology Research Centre, Moscow
| | | |
Collapse
|