1
|
Villalba DS, Matesa A, Boni S, Gutiérrez FJ, Moracci R, Plotnikow GA. Impact of High-Flow Nasal Cannula Oxygen Therapy on the Pressure of the Airway System in Humans. Respir Care 2025; 70:10-16. [PMID: 39964860 DOI: 10.1089/respcare.12082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Background: The understanding of how pharyngeal pressure is transmitted to the trachea with high-flow nasal cannula (HFNC) implementation and the behavior of tracheal pressure in the presence of mouth leaks remains controversial. This study aimed to assess the impact of HFNC administration on tracheal pressure by comparing measurements taken with open and closed mouth with varying flows. Methods: A crossover study was conducted between March 2019 and June 2023. Subjects age > 18 years, with a tracheostomy and who were in the process of decannulation were included. Tracheal and pharyngeal pressures were measured by using specific devices, with different HFNC flows and mouth conditions. Results: Nine subjects were assessed: 77% women, with an average age of 60.5 years. Tracheal pressure was significantly higher than pharyngeal pressure only in baseline conditions (P = .03). With regard to the rest of the scenarios, there were no significant differences between both pressures. Tracheal pressure was higher than the baseline condition both with an open mouth and a closed mouth (P = .02). The tracheal pressure at 60 L/min with an open mouth was higher than at 40 L/min (P = .042). The median pharyngeal pressure with a closed mouth was higher than with an open mouth, both with 40 and 60 L/min of flow (P = .048 and P < .001, respectively). Pharyngeal pressure at 60 L/min with an open mouth was higher than both baseline condition and at 40 L/min (P = .002 and P = .043, respectively). However, pharyngeal pressure with the closed mouth was significantly higher than with the open mouth both with 40 and 60 L/min of flow (P = .031 and P = .02 respectively). Conclusions: The implementation of HFNC changes airway pressures with values that impact at a tracheal level as flow increases. Our data contribute to the difficult interpretation of the existing interrelation between the flow and its effects on the respiratory system.
Collapse
Affiliation(s)
- Darío S Villalba
- Mr. Villalba, Ms Matesa, and Ms Boni are affiliated with the Division of Respiratory Care, Clínica Basilea, Ciudad Autónoma de Buenos Aires, Argentina
| | - Amelia Matesa
- Mr. Villalba, Ms Matesa, and Ms Boni are affiliated with the Division of Respiratory Care, Clínica Basilea, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sabrina Boni
- Mr. Villalba, Ms Matesa, and Ms Boni are affiliated with the Division of Respiratory Care, Clínica Basilea, Ciudad Autónoma de Buenos Aires, Argentina
| | - Facundo J Gutiérrez
- Dr. Gutiérrez is affiliated with the Intensive Care Unit, Hospital Británico de Buenos Aires. Buenos Aires City, Buenos Aires, Argentina
| | - Roque Moracci
- Mrs. Moracci and Plotnikow are affiliated with the Physical and Respiratory Therapy Department, Intensive Care Unit, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gustavo A Plotnikow
- Mrs. Moracci and Plotnikow are affiliated with the Physical and Respiratory Therapy Department, Intensive Care Unit, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Dr. Plotnikow is affiliated with the Facultad de Medicina y Ciencias de la Salud. Universidad Abierta Interamericana. Ciudad Autónoma de Buenos Aires. Argentina
| |
Collapse
|
2
|
Mandeville R, Sedghamiz H, Mansfield P, Sheean G, Studer C, Cordice D, Ghanbari G, Malhotra A, Nemati S, Koola J. Deep learning enhanced transmembranous electromyography in the diagnosis of sleep apnea. BMC Neurosci 2024; 25:80. [PMID: 39741274 PMCID: PMC11686987 DOI: 10.1186/s12868-024-00913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/21/2024] [Indexed: 01/02/2025] Open
Abstract
Obstructive sleep apnea (OSA) is widespread, under-recognized, and under-treated, impacting the health and quality of life for millions. The current gold standard for sleep apnea testing is based on the in-lab sleep study, which is costly, cumbersome, not readily available and represents a well-known roadblock to managing this huge societal burden. Assessment of neuromuscular function involved in the upper airway using electromyography (EMG) has shown potential to characterize and diagnose sleep apnea, while the development of transmembranous electromyography (tmEMG), a painless surface probe, has made this opportunity practical and highly feasible. However, experience and ability to interpret electrical signals from the upper airway are scarce, and much of the pertinent information within the signal is likely difficult to detect visually. To overcome this issue, we explored the use of transformers, a deep learning (DL) model architecture with attention mechanisms, to model tmEMG data and distinguish between electromyographic signals from a cohort of control, neurogenic, and sleep apnea patients. Our approach involved three strategies to train a generalizable model on a relatively small dataset including, (1) transfer learning using an audio spectral transformer (AST), (2) the use of 6,000 simulated EMG recordings, converted to spectrograms and using standard backpropagation for fine-tuning, and (3) application of regularization to prevent overfitting and enhance generalizability. This DL approach was tested using 177 transoral EMG recordings from a prior study's database that included six healthy controls, five moderate to severe OSA patients, and five amyotrophic lateral sclerosis (ALS) patients with evidence of bulbar involvement (neurogenic injury). Sensitivity and specificity for classifying neurogenic cases from controls were 98% and 73%, respectively, while classifying OSA from controls were 88% and 64%, respectively. Notably, by averaging the predicted probabilities of each segment for individual patients, the model correctly classified up to 82% of control and OSA patients. These results not only suggest a potential to diagnose OSA patients accurately, but also to identify OSA endotypes that involve neuromuscular pathology, which has major implications for clinical management, patient outcomes, and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Powell Mansfield, Inc., San Diego, CA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Ghodsieh Ghanbari
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Atul Malhotra
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Division of Pulmonary, Critical Care, Sleep Medicine & Physiology, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Shamim Nemati
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Jejo Koola
- Powell Mansfield, Inc., San Diego, CA, USA.
- Division of Hospital Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
3
|
Maurer JT, Huseynov J, Hochreiter J, Perkins JD. Stimulation of the internal superior laryngeal nerve as a potential therapy for obstructive sleep apnea in a porcine model. J Appl Physiol (1985) 2024; 137:746-756. [PMID: 39024406 DOI: 10.1152/japplphysiol.00835.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Impaired pharyngeal sensing of negative pressure (NP) can lead to a blunted response of the upper airway dilator muscles and contribute to the development of obstructive sleep apnea (OSA). This response is modulated by the nerve fibers in the internal branch of the superior laryngeal nerve (iSLN), mediating negative pressure sensation. Artificial excitation of these fibers could be a potential treatment target for OSA. To evaluate this, electrostimulation of the iSLN was performed in a porcine-isolated upper airway model. Artificial obstructions were induced by varying the levels of negative pressure, and the ability of the animal to resolve these obstructions was evaluated. The pressure at which the animal was still able to resolve the obstruction was quantified as "Resolvable Pressure." Thereby, the effects on pharyngeal patency (n = 35) and the duration of the therapeutic effect outlasting the stimulation (n = 6) were quantified. Electrostimulation before the introduction of an artificial obstruction improved the median resolvable pressure from -28.3 cmH2O [IQR: -45.9; -26.1] to -92.6 cmH2O [IQR: -105.1; -78.6]. The median therapeutic effect was found to outlast the last stimulation burst applied by 163 s when five stimulation bursts were applied in short succession [IQR: 58; 231], 58 s when two were applied [IQR: 7; 65], and 6 s when one was applied [IQR: 0; 51]. Stimulation of the iSLN increased electromyography (EMG) in the genioglossus (GG). The proposed treatment concept can improve pharyngeal patency in the model. Transfer of the results to clinical application could enable the development of a new neuromodulation therapy for OSA.NEW & NOTEWORTHY Electrostimulation before the introduction of an artificial obstruction to induce artificial sleep apnea in the pig model improves the response of the upper airway to negative pressure (NP). The electrostimulation creates a sustained therapeutic effect that outlasts the initial electrostimulation. The use of this therapy in clinical practice has the potential to treat obstructive sleep apnea (OSA).
Collapse
Affiliation(s)
- Joachim T Maurer
- Division of Sleep Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jamal Huseynov
- Division of Sleep Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Justin D Perkins
- Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
4
|
Chan PYS, Lee LY, Davenport PW. Neural mechanisms of respiratory interoception. Auton Neurosci 2024; 253:103181. [PMID: 38696917 DOI: 10.1016/j.autneu.2024.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Respiratory interoception is one of the internal bodily systems that is comprised of different types of somatic and visceral sensations elicited by different patterns of afferent input and respiratory motor drive mediating multiple respiratory modalities. Respiratory interoception is a complex system, having multiple afferents grouped into afferent clusters and projecting into both discriminative and affective centers that are directly related to the behavioral assessment of breathing. The multi-afferent system provides a spectrum of input that result in the ability to interpret the different types of respiratory interceptive sensations. This can result in a response, commonly reported as breathlessness or dyspnea. Dyspnea can be differentiated into specific modalities. These respiratory sensory modalities lead to a general sensation of an Urge-to-Breathe, driven by a need to compensate for the modulation of ventilation that has occurred due to factors that have affected breathing. The multiafferent system for respiratory interoception can also lead to interpretation of the sensory signals resulting in respiratory related sensory experiences, including the Urge-to-Cough and Urge-to-Swallow. These behaviors are modalities that can be driven through the differentiation and integration of multiple afferent input into the respiratory neural comparator. Respiratory sensations require neural somatic and visceral interoceptive elements that include gated attention and detection leading to respiratory modality discrimination with subsequent cognitive decision and behavioral compensation. Studies of brain areas mediating cortical and subcortical respiratory sensory pathways are summarized and used to develop a model of an integrated respiratory neural network mediating respiratory interoception.
Collapse
Affiliation(s)
- Pei-Ying Sarah Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Lu-Yuan Lee
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Karuga FF, Kaczmarski P, Białasiewicz P, Szmyd B, Jaromirska J, Grzybowski F, Gebuza P, Sochal M, Gabryelska A. REM-OSA as a Tool to Understand Both the Architecture of Sleep and Pathogenesis of Sleep Apnea-Literature Review. J Clin Med 2023; 12:5907. [PMID: 37762848 PMCID: PMC10531579 DOI: 10.3390/jcm12185907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep is a complex physiological state, which can be divided into the non-rapid eye movement (NREM) phase and the REM phase. Both have some unique features and functions. This difference is best visible in electroencephalography recordings, respiratory system activity, arousals, autonomic nervous system activity, or metabolism. Obstructive sleep apnea (OSA) is a common condition characterized by recurrent episodes of pauses in breathing during sleep caused by blockage of the upper airways. This common condition has multifactorial ethiopathogenesis (e.g., anatomical predisposition, sex, obesity, and age). Within this heterogenous syndrome, some distinctive phenotypes sharing similar clinical features can be recognized, one of them being REM sleep predominant OSA (REM-OSA). The aim of this review was to describe the pathomechanism of REM-OSA phenotype, its specific clinical presentation, and its consequences. Available data suggest that in this group of patients, the severity of specific cardiovascular and metabolic complications is increased. Due to the impact of apneas and hypopneas predominance during REM sleep, patients are more prone to develop hypertension or glucose metabolism impairment. Additionally, due to the specific function of REM sleep, which is predominantly fragmented in the REM-OSA, this group presents with decreased neurocognitive performance, reflected in memory deterioration, and mood changes including depression. REM-OSA clinical diagnosis and treatment can alleviate these outcomes, surpassing the traditional treatment and focusing on a more personalized approach, such as using longer therapy of continuous positive airway pressure or oral appliance use.
Collapse
Affiliation(s)
- Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Kaczmarski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna St. 36/50, 91-738 Lodz, Poland
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Filip Grzybowski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Gebuza
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| |
Collapse
|
6
|
Chang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, et alChang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, Piper AJ, Plawecki A, Quigg M, Ravesloot MJ, Redline S, Rotenberg BW, Ryden A, Sarmiento KF, Sbeih F, Schell AE, Schmickl CN, Schotland HM, Schwab RJ, Seo J, Shah N, Shelgikar AV, Shochat I, Soose RJ, Steele TO, Stephens E, Stepnowsky C, Strohl KP, Sutherland K, Suurna MV, Thaler E, Thapa S, Vanderveken OM, de Vries N, Weaver EM, Weir ID, Wolfe LF, Tucker Woodson B, Won CH, Xu J, Yalamanchi P, Yaremchuk K, Yeghiazarians Y, Yu JL, Zeidler M, Rosen IM. International Consensus Statement on Obstructive Sleep Apnea. Int Forum Allergy Rhinol 2023; 13:1061-1482. [PMID: 36068685 PMCID: PMC10359192 DOI: 10.1002/alr.23079] [Show More Authors] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Evaluation and interpretation of the literature on obstructive sleep apnea (OSA) allows for consolidation and determination of the key factors important for clinical management of the adult OSA patient. Toward this goal, an international collaborative of multidisciplinary experts in sleep apnea evaluation and treatment have produced the International Consensus statement on Obstructive Sleep Apnea (ICS:OSA). METHODS Using previously defined methodology, focal topics in OSA were assigned as literature review (LR), evidence-based review (EBR), or evidence-based review with recommendations (EBR-R) formats. Each topic incorporated the available and relevant evidence which was summarized and graded on study quality. Each topic and section underwent iterative review and the ICS:OSA was created and reviewed by all authors for consensus. RESULTS The ICS:OSA addresses OSA syndrome definitions, pathophysiology, epidemiology, risk factors for disease, screening methods, diagnostic testing types, multiple treatment modalities, and effects of OSA treatment on multiple OSA-associated comorbidities. Specific focus on outcomes with positive airway pressure (PAP) and surgical treatments were evaluated. CONCLUSION This review of the literature consolidates the available knowledge and identifies the limitations of the current evidence on OSA. This effort aims to create a resource for OSA evidence-based practice and identify future research needs. Knowledge gaps and research opportunities include improving the metrics of OSA disease, determining the optimal OSA screening paradigms, developing strategies for PAP adherence and longitudinal care, enhancing selection of PAP alternatives and surgery, understanding health risk outcomes, and translating evidence into individualized approaches to therapy.
Collapse
Affiliation(s)
- Jolie L. Chang
- University of California, San Francisco, California, USA
| | | | | | | | - Liza Ashbrook
- University of California, San Francisco, California, USA
| | | | - Indu Ayappa
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Maurits S. Boon
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Pien Bosschieter
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Itzhak Braverman
- Hillel Yaffe Medical Center, Hadera Technion, Faculty of Medicine, Hadera, Israel
| | - Kara Brodie
- University of California, San Francisco, California, USA
| | | | - Ray Caesar
- Stone Oak Orthodontics, San Antonio, Texas, USA
| | | | - Yi Cai
- University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | - Susmita Chowdhuri
- Wayne State University and John D. Dingell VA Medical Center, Detroit, Michigan, USA
| | - Peter A. Cistulli
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David Claman
- University of California, San Francisco, California, USA
| | - Jacob Collen
- Uniformed Services University, Bethesda, Maryland, USA
| | | | | | - Eric M. Davis
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Mohan Dutt
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mazen El Ali
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Kirat Gill
- Stanford University, Palo Alto, California, USA
| | | | - Lea Golisch
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | | | | - Arushi Gulati
- University of California, San Francisco, California, USA
| | | | | | - Paul T. Hoff
- University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver M.G. Hoffmann
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | - Jennifer Hsia
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Colin Huntley
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - Sanjana Inala
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | - Meena Khan
- Ohio State University, Columbus, Ohio, USA
| | | | - Alan Kominsky
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | - Meir Kryger
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Derek J. Lam
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | - Atul Malhotra
- University of California, San Diego, California, USA
| | | | - Joachim T. Maurer
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Anna M. May
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Ron B. Mitchell
- University of Texas, Southwestern and Children’s Medical Center Dallas, Texas, USA
| | | | | | | | | | - Brandon Nokes
- University of California, San Diego, California, USA
| | | | - Allan I. Pack
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | - Mark Quigg
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Susan Redline
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Armand Ryden
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Firas Sbeih
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | | | | | | | | | - Jiyeon Seo
- University of California, Los Angeles, California, USA
| | - Neomi Shah
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Ryan J. Soose
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Erika Stephens
- University of California, San Francisco, California, USA
| | | | | | | | | | - Erica Thaler
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sritika Thapa
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Nico de Vries
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | | | - Ian D. Weir
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Josie Xu
- University of Toronto, Ontario, Canada
| | | | | | | | | | | | - Ilene M. Rosen
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Gell LK, Vena D, Alex RM, Azarbarzin A, Calianese N, Hess LB, Taranto-Montemurro L, White DP, Wellman A, Sands SA. Neural ventilatory drive decline as a predominant mechanism of obstructive sleep apnoea events. Thorax 2022; 77:707-716. [PMID: 35064045 PMCID: PMC10039972 DOI: 10.1136/thoraxjnl-2021-217756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND In the classic model of obstructive sleep apnoea (OSA), respiratory events occur with sleep-related dilator muscle hypotonia, precipitating increased neural ventilatory 'drive'. By contrast, a drive-dependent model has been proposed, whereby falling drive promotes dilator muscle hypotonia to precipitate respiratory events. Here we determine the extent to which the classic versus drive-dependent models of OSA are best supported by direct physiological measurements. METHODS In 50 OSA patients (5-91 events/hour), we recorded ventilation ('flow', oronasal mask and pneumotach) and ventilatory drive (calibrated intraoesophageal diaphragm electromyography, EMG) overnight. Flow and drive during events were ensemble averaged; patients were classified as drive dependent if flow fell/rose simultaneously with drive. Overnight effects of lower drive on flow, genioglossus muscle activity (EMGgg) and event risk were quantified (mixed models). RESULTS On average, ventilatory drive fell (rather than rose) during events (-20 (-42 to 3)%baseline, median (IQR)) and was strongly correlated with flow (R=0.78 (0.24 to 0.94)). Most patients (30/50, 60%) were classified as exhibiting drive-dependent event pathophysiology. Lower drive during sleep was associated with lower flow (-17 (-20 to -14)%/drive) and EMGgg (-3.5 (-3.8 to -3.3)%max/drive) and greater event risk (OR: 2.2 (1.8 to 2.5) per drive reduction of 100%eupnoea); associations were concentrated in patients with drive-dependent OSA (ie, flow: -37 (-40 to -34)%/drive, OR: 6.8 (5.3 to 8.7)). Oesophageal pressure-without tidal volume correction-falsely suggested rising drive during events (classic model). CONCLUSIONS In contrast to the prevailing view, patients with OSA predominantly exhibit drive-dependent event pathophysiology, whereby flow is lowest at nadir drive, and lower drive raises event risk. Preventing ventilatory drive decline is therefore considered a target for OSA intervention.
Collapse
Affiliation(s)
- Laura K Gell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Vena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raichel M Alex
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Calianese
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren B Hess
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Luigi Taranto-Montemurro
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David P White
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Myoelectric characteristics of tensor palatini and collapsibility of upper airway in OSA patients with different phenotypes under DISE. Eur Arch Otorhinolaryngol 2021; 279:425-432. [PMID: 34052864 DOI: 10.1007/s00405-021-06795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study aims to evaluate the combination of myoelectric characteristics of tensor palatini muscle (TP) and collapsibility of upper airway in obstructive sleep apnea (OSA) patients with different external phenotypes of collapse pattern at velum level under drug-induced sleep endoscopy (DISE). STUDY DESIGN Case series with planned data collection. SETTING Operation room. SUBJECTS AND METHODS 36 mainly collapse pattern at velum level OSA subjects underwent DISE with synchronous tensor palatini electromyograms (TP EMG), and polysomnography (ALICE 6). According to the phenotype of collapse pattern at velum level in DISE, the subjects were divided into group 1 (concentric collapse), group 2 (anteroposterior collapse), and group 3 (lateral collapse). Each group consisted of 13, 14, and 9 subjects, respectively, and was observed the electromyographic indexes at awake, sleep onset, during apnea and the third respiratory cycle after apnea. The active and passive upper airway critical closing pressure (Pcrit) of each group were measured at the same time, and the difference of neuromuscular response between different groups was evaluated. RESULTS In tonic TPEMG, group 1 showed the highest value during awake and sleep onset, while group 2 was the highest during apnea and after apnea. In peak TPEMG, group 1 showed the highest value during awake. Group 2 showed the highest value during other states. In passive Pcrit and D value (difference between passive Pcrit and active Pcrit), group 2 was the highest, while group 1 was the highest in active Pcrit. Difference was statistically significant. CONCLUSIONS Under different states of awake, sleep onset, apnea and after apnea, the response force of tensor palatini muscle of OSA subjects with different phenotypes under DISE was different. Group 1 showed the highest EMG values only when awake and sleep onset, and it was most prone to collapse. Group 2 had the highest anatomical load (passive Pcrit) and the highest neuromuscular compensatory effect (D value).
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the variability of obstructive sleep apnea (OSA), both from a standpoint of underlying mechanisms and in terms of clinical manifestations. RECENT FINDINGS Recent data suggest that not all patients with sleep apnea get their disease for the same reason. As such, no one variable is effective at defining which patients do or do not have sleep apnea. Identifying the mechanism(s) underlying OSA for an individual is helpful as it can help to determine whether personalized therapy could be developed based on an individual's characteristics. In addition, these underlying mechanisms may be helpful in predicting response to therapy and prognosticating regarding future complications. SUMMARY OSA is a heterogeneous disease with highly varying underlying mechanisms. OSA has variable clinical manifestations with definable subsets having risk of particular complications. Future studies will be helpful to identify mechanisms underlying OSA using clinically accessible tools and then using these data to focus individualized treatment approaches.
Collapse
|
10
|
Vila-Nova TEL, Vasconcelos BCDE, Leão RDS, Gomes JML, Feitosa RSC, Pellizzer EP, Moraes SLD. Does nocturnal use of a complete denture interfere with the degree of obstructive sleep apnea? A systematic review and meta-analysis. Sleep Breath 2021; 25:2289-2296. [PMID: 33415655 DOI: 10.1007/s11325-020-02265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The impact of a complete denture on obstructive sleep apnea is not well understood. Therefore, this study aimed to evaluate the relationship between nighttime use of complete dentures and obstructive sleep apnea and determine if wearing a complete denture during sleep changes the degree of obstructive sleep apnea. METHODS This systematic review followed the notification items for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was recorded in the International Prospective Registry of Systematic Reviews (PROSPERO) under number CRD42020183167. An electronic search in the PubMed/MEDLINE, Scopus, and Cochrane Library databases for articles published until September 2020 was conducted. The search strategy used the terms (complete denture OR denture OR edentulous OR edentulism) AND (quality of sleep OR sleep OR apnea OR obstructive sleep apnea). Only prospective, retrospective, controlled, and randomized clinical studies of patients wearing complete dentures, studies comparing sleep with and without the prosthesis, and studies in which patients were diagnosed with obstructive sleep apnea by polysomnography were included in the review. RESULTS In total, four articles were selected for the qualitative and quantitative analyses. A total of 144 patients, with an average age of 60 years, were studied. The meta-analysis showed that there was no statistical difference in the apnea-hypopnea index between using and not using the prosthesis during sleep. CONCLUSIONS The use of complete dentures during sleep does not influence the degree of obstructive sleep apnea.
Collapse
Affiliation(s)
- Taciana Emília Leite Vila-Nova
- Dentistry School Department of Prosthodontics, University of Pernambuco (UPE), Av. Governador Agamenon Magalhães, SN- Santo Amaro, Recife, PE, 50100-010, Brazil
| | - Belmiro Cavalcanti do Egito Vasconcelos
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pernambuco University (UPE), Oswaldo Cruz Hospital, University of Pernambuco, R. Arnóbio Marquês 310 - Santo Amaro, Recife, PE, 50100-130, Brazil
| | - Rafaella de Souza Leão
- Dentistry School Department of Prosthodontics, University of Pernambuco (UPE), Av. Governador Agamenon Magalhães, SN- Santo Amaro, Recife, PE, 50100-010, Brazil
| | - Jéssica Marcela Luna Gomes
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Araçatuba Dental School, José Bonifacio Street 1193, Araçatuba, SP, 1605000, Brazil
| | - Raquel Sâmela Costa Feitosa
- Dentistry School Department of Prosthodontics, University of Pernambuco (UPE), Av. Governador Agamenon Magalhães, SN- Santo Amaro, Recife, PE, 50100-010, Brazil
| | - Eduardo Piza Pellizzer
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Araçatuba Dental School, José Bonifacio Street 1193, Araçatuba, SP, 1605000, Brazil
| | - Sandra Lúcia Dantas Moraes
- Dentistry School Department of Prosthodontics, University of Pernambuco (UPE), Av. Governador Agamenon Magalhães, SN- Santo Amaro, Recife, PE, 50100-010, Brazil.
| |
Collapse
|
11
|
Mishima G, Sanuki T, Sato S, Kobayashi M, Kurata S, Ayuse T. Upper-airway collapsibility and compensatory responses under moderate sedation with ketamine, dexmedetomidine, and propofol in healthy volunteers. Physiol Rep 2020; 8:e14439. [PMID: 32441458 PMCID: PMC7243198 DOI: 10.14814/phy2.14439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/04/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ketamine is a potent sedative drug that helps to maintain upper-airway patency, due to its higher upper-airway dilator muscular activity and higher level of duty cycle, as seen in rats. However, no clinical trials have tested passive upper-airway collapsibility and changes in the inspiratory duty cycle against partial upper-airway obstruction in humans. The present study evaluated both the passive mechanical upper-airway collapsibility and compensatory response against acute partial upper-airway obstruction using three different sedative drugs in a crossover trial. METHODS Eight male volunteers entered this nonblinded, randomized crossover study. Upper-airway collapsibility (passive critical closing pressure) and inspiratory duty cycle were measured under moderate sedation with ketamine, propofol, and dexmedetomidine. Propofol, dexmedetomidine, and ketamine anesthesia were induced to obtain adequate, same-level sedation, with a BIS value of 50-70 and the OAA/S score of 2-3 and RASS score of -3. RESULTS The median passive critical closing pressure of 0.08 [-5.51 to 1.20] cm H2 O was not significantly different compared to that of propofol sedation (-0.32 [-1.41 to -0.19] cm H2 O) and of dexmedetomidine sedation (-0.28 [-0.95 to -0.03] cm H2 O) (p = .045). The median passive RUS for ketamine 54.35 [32.00 to 117.50] cm H2 O/L/s was significantly higher than that for propofol 5.50 [2.475 to 19.60] cm H2 O/L/s; (mean difference, 27.50; 95% CI 9.17 to 45.83) (p = .009) and for dexmedetomidine 19.25 [4.125 to 22.05] cm H2 O/L/s; (mean difference, 22.88; 95% CI 4.67 to 41.09) (p = .021). The inspiratory duty cycle increased significantly as the inspiratory airflow decreased in passive conditions for each sedative drug, but behavior differed among the three sedative drugs. CONCLUSION Our findings demonstrate that ketamine sedation may have an advantage of both maintained passive upper-airway collapsibility and a compensatory respiratory response, due to both increase in neuromuscular activity and the increased duty cycle, to acute partial upper-airway obstruction.
Collapse
Affiliation(s)
- Gaku Mishima
- Division of Clinical PhysiologyDepartment of Translational Medical SciencesNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Takuro Sanuki
- Division of Clinical PhysiologyDepartment of Translational Medical SciencesNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Shuntaro Sato
- Clinical Research CenterNagasaki University HospitalNagasakiJapan
| | - Masato Kobayashi
- Division of Clinical PhysiologyDepartment of Translational Medical SciencesNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Shinji Kurata
- Department of Dental AnesthesiologyNagasaki University HospitalNagasakiJapan
| | - Takao Ayuse
- Division of Clinical PhysiologyDepartment of Translational Medical SciencesNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
12
|
Lim R, Carberry JC, Wellman A, Grunstein R, Eckert DJ. Reboxetine and hyoscine butylbromide improve upper airway function during nonrapid eye movement and suppress rapid eye movement sleep in healthy individuals. Sleep 2020; 42:5262413. [PMID: 30590857 DOI: 10.1093/sleep/zsy261] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES Recent findings indicate that noradrenergic and antimuscarinic processes are crucial for sleep-related reductions in pharyngeal muscle activity. However, there are few human studies. Accordingly, this study aimed to determine if a combined noradrenergic and antimuscarinic intervention increases pharyngeal dilator muscle activity and improves airway function in sleeping humans. METHODS Genioglossus (GG) and tensor palatini electromyography (EMG), pharyngeal pressure, upper airway resistance, and breathing parameters were acquired in 10 healthy adults (5 female) during two overnight sleep studies after 4 mg of reboxetine (REB) plus 20 mg of hyoscine butylbromide (HBB) or placebo using a double-blind, placebo-controlled, randomized, cross-over design. RESULTS Compared with placebo, peak and tonic GG EMG were lower (Mean ± SD: 83 ± 73 vs. 130 ± 75, p = 0.021 and 102 ± 102 vs. 147 ± 123 % wakefulness, p = 0.021, respectively) but the sleep-related reduction in tensor palatini was less (Median [25th, 75th centiles]: 53[45, 62] vs. 34[28, 38] % wakefulness, p = 0.008) with the drug combination during nonrapid eye movement (non-REM) sleep. These changes were accompanied by improved upper airway function including reduced pharyngeal pressure swings, airway resistance, respiratory load compensation, and increased breathing frequency during N2. REB and HBB significantly reduced rapid eye movement sleep compared with placebo (0.6 ± 1.1 vs. 14.5 ± 6.8 % total sleep time, p < 0.001). CONCLUSIONS Contrary to our hypothesis, GG muscle activity (% wakefulness) during non-REM sleep was lower with REB and HBB. However, sleep-related reductions in tensor palatini activity were less and upper airway function improved. These findings provide mechanistic insight into the role of noradrenergic and antimuscarinic processes on upper airway function in humans and have therapeutic potential for obstructive sleep apnea. CLINICAL TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry, https://www.anzctr.org.au, trial ID: ACTRN12616000469415.
Collapse
Affiliation(s)
- Richard Lim
- Neuroscience Research Australia (NeuRA), Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Jayne C Carberry
- Neuroscience Research Australia (NeuRA), Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Andrew Wellman
- Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Ron Grunstein
- Woolcock Institute of Medical Research, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA), Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Ruehland WR, Rochford PD, Pierce RJ, Trinder J, Jordan AS, Cori JM, O'Donoghue FJ. Genioglossus muscle responses to resistive loads in severe OSA patients and healthy control subjects. J Appl Physiol (1985) 2019; 127:1586-1598. [PMID: 31647723 DOI: 10.1152/japplphysiol.00186.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to determine whether there is impairment of genioglossus neuromuscular responses to small negative pressure respiratory stimuli, close to the conscious detection threshold, in obstructive sleep apnea (OSA). We compared genioglossus electromyogram (EMGgg) responses to midinspiratory resistive loads of varying intensity (≈1.2-6.2 cmH2O·L-1·s), delivered via a nasal mask, between 16 severe OSA and 17 control participants while the subjects were awake and in a seated upright position. We examined the relationship between stimulus intensity and peak EMGgg amplitude in a 200-ms poststimulus window and hypothesized that OSA patients would have an increased activation threshold and reduced sensitivity in the relationship between EMGgg activation and stimulus intensity. There was no significant difference between control and OSA participants in the threshold (P = 0.545) or the sensitivity (P = 0.482) of the EMGgg amplitude vs. stimulus intensity relationship, where change in epiglottic pressure relative to background epiglottic pressure represented stimulus intensity. These results do not support the hypothesis that deficits in neuromuscular response to negative upper airway pressure exist in OSA during wakefulness; however, the results are likely influenced by a counterintuitive and novel genioglossus muscle suppression response observed in a significant proportion of both OSA and healthy control participants. This suppression response may relate to the inhibition seen in inspiratory muscles such as the diaphragm in response to sudden-onset negative pressure, and its presence provides new insight into the upper airway neuromuscular response to the collapsing force of negative pressure.NEW & NOTEWORTHY Our study used a novel midinspiratory resistive load stimulus to study upper airway neuromuscular responses to negative pressure during wakefulness in obstructive sleep apnea (OSA). Although no differences were found between OSA and healthy groups, the study uncovered a novel and unexpected suppression of neuromuscular activity in a large proportion of both OSA and healthy participants. The unusual response provides new insight into the upper airway neuromuscular response to the collapsing force of negative pressure.
Collapse
Affiliation(s)
- Warren R Ruehland
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Peter D Rochford
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Robert J Pierce
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - John Trinder
- School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Amy S Jordan
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer M Cori
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Fergal J O'Donoghue
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
14
|
Muscarinic Inhibition of Hypoglossal Motoneurons: Possible Implications for Upper Airway Muscle Hypotonia during REM Sleep. J Neurosci 2019; 39:7910-7919. [PMID: 31420456 DOI: 10.1523/jneurosci.0461-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023] Open
Abstract
Proper function of pharyngeal dilator muscles, including the genioglossus muscle of the tongue, is required to maintain upper airway patency. During sleep, the activity of these muscles is suppressed, and as a result individuals with obstructive sleep apnea experience repeated episodes of upper airway closure when they are asleep, in particular during rapid-eye-movement (REM) sleep. Blocking cholinergic transmission in the hypoglossal motor nucleus (MoXII) restores REM sleep genioglossus activity, highlighting the importance of cholinergic transmission in the inhibition of hypoglossal motor neurons (HMNs) during REM sleep. Glutamatergic afferent input from neurons in the parahypoglossal (PH) region to the HMNs is critical for MoXII respiratory motor output. We hypothesized that state-dependent cholinergic regulation may be mediated by this pathway. Here we studied the effects of cholinergic transmission in HMNs in adult male and female mice using patch-clamp recordings in brain slices. Using channelrhodopsin-2-assisted circuit mapping, we first demonstrated that PH glutamatergic neurons directly and robustly activate HMNs (PHGlut → HMNs). We then show that carbachol consistently depresses this input and that this effect is presynaptic. Additionally, carbachol directly affects HMNs by a variable combination of muscarinic-mediated excitatory and inhibitory responses. Altogether, our results suggest that cholinergic signaling impairs upper airway dilator muscle activity by suppressing glutamatergic input from PH premotoneurons to HMNs and by directly inhibiting HMNs. Our findings highlight the complexity of cholinergic control of HMNs at both the presynaptic and postsynaptic levels and provide a possible mechanism for REM sleep suppression of upper airway muscle activity.SIGNIFICANCE STATEMENT Individuals with obstructive sleep apnea can breathe adequately when awake but experience repeated episodes of upper airway closure when asleep, in particular during REM sleep. Similar to skeletal postural muscles, pharyngeal dilator muscles responsible for maintaining an open upper airway become hypotonic during REM sleep. Unlike spinal motoneurons controlling postural muscles that are inhibited by glycinergic transmission during REM sleep, hypoglossal motoneurons that control the upper airway muscles are inhibited in REM sleep by the combination of monoaminergic disfacilitation and cholinergic inhibition. In this study, we demonstrated how cholinergic signaling inhibits hypoglossal motoneurons through presynaptic and postsynaptic muscarinic receptors. Our results provide a potential mechanism for upper airway hypotonia during REM sleep.
Collapse
|
15
|
Analysis of the myoelectric characteristics of genioglossus in REM sleep and its improvement by CPAP treatment in OSA patients. Sleep Breath 2019; 24:471-482. [PMID: 31270727 DOI: 10.1007/s11325-019-01875-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To reveal the characteristics of genioglossus (GG) activation in moderate and severe obstructive sleep apnea (OSA) patients during rapid eye movement (REM) sleep compared with non-rapid eye movement (NREM) sleep and to determine whether continuous positive airway pressure (CPAP) could improve GG activation in OSA patients during sleep. METHODS All subjects underwent polysomnography (PSG) with synchronous GG electromyography (GGEMG) recording with intra-oral surface electrodes at baseline on the first night. Only those subjects diagnosed with moderate and severe OSA were included and were manually titrated with CPAP to achieve a therapeutic pressure (Pt) with GGEMG recording on the second night. RESULTS Nine OSA patients and six normal controls were analyzed in this study. The tonic GGEMG was higher in OSA patients during wakefulness (p = 0.003) and NREM sleep (p = 0.015), but it was not higher in REM sleep (p = 0.862). The average phasic activity of OSA patients was significantly higher in all stages, including wakefulness (p = 0.007), NREM sleep (p = 0.005), and REM sleep (p = 0.021). The peak phasic GGEMG was not different in wakefulness compared with normal controls (p = 0.240), but it was higher in OSA patients in NREM sleep (p = 0.001) and REM sleep (p = 0.021), and it was significantly reduced by using CPAP during sleep (NREM sleep: p = 0.027; REM sleep: p = 0.001). CONCLUSIONS Our results demonstrate that GG activation during NREM and REM sleep is associated with component differences. The tonic component of GGEMG exhibited less of a compensatory increase compared with the phasic component in REM sleep, suggesting that it may be one of the pathological mechanisms of UA collapsibility in REM sleep. In addition, treatment with CPAP can normalize GGEMG activity and mostly reduced the peak phasic GGEMG during sleep.
Collapse
|
16
|
Ichikawa T, Yokoba M, Kimura M, Shibuya M, Easton PA, Katagiri M. Genioglossus muscle activity during sniff and reverse sniff in healthy men. Exp Physiol 2018; 103:1656-1665. [PMID: 30242925 DOI: 10.1113/ep086995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/20/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Maximal sniff nasal inspiratory and reverse sniff nasal expiratory pressures are measured as inspiratory and expiratory muscle strength, respectively. Is the genioglossus muscle activated during short maximal inspiratory and expiratory efforts through the nose? What is the main finding and its importance? Genioglossus muscle activity occurred with inspiratory muscle activity during a maximal sniff and with expiratory muscle activity during a maximal reverse sniff. These results indicate that genioglossus muscle activity is closely related to the generation of maximal sniff nasal inspiratory and reverse sniff nasal expiratory pressures. ABSTRACT Maximal sniff nasal inspiratory pressure (SNIPmax ) is widely used to assess inspiratory muscle strength. The sniff nasal inspiratory pressure (SNIP) is lower in patients with neuromuscular disease with bulbar involvement compared with those without, possibly owing to impaired upper airway muscle function. However, the degree to which the genioglossus (GG) muscle, one of the upper airway muscles, is activated during inspiratory and expiratory efforts through the nose remains unclear. Therefore, we examined GG activity during short and sharp inspiratory and expiratory efforts through the nose, i.e. sniff and reverse sniff manoeuvres. In eight normal young subjects, we inserted fine wire electrodes into the GG muscle, parasternal intercostal and scalene (inspiratory) muscles and transversus abdominis (expiratory) muscle. We assessed EMG activity of each muscle and measured SNIP and reverse sniff nasal expiratory pressure (RSNEP) during sniffs and reverse sniffs from low to high intensities in the sitting position. The highest SNIP and RSNEP were analysed as SNIPmax and maximal RSNEP (RSNEPmax ), respectively. In each subject, GG EMG activity increased linearly with increasing SNIP and RSNEP. The SNIPmax and RSNEPmax were -85.1 ± 15.9 and 83.2 ± 24.2 cmH2 O, respectively. Genioglossus EMG activity varied with EMG activity of the parasternal intercostal and scalene muscles during generation of SNIPmax and with EMG activity of the transversus abdominis muscle during RSNEPmax . Genioglossus EMG activity during generation of SNIPmax was higher than during RSNEPmax (62.9 ± 31.1% EMG of SNIPmax , P = 0.012). These results suggested that GG activity was closely related to the generation of both SNIPmax and RSNEPmax .
Collapse
Affiliation(s)
- Tsuyoshi Ichikawa
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan.,Rehabilitation Centre, Tokai University Oiso Hospital, Kanagawa, Japan
| | - Masanori Yokoba
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | | | - Manaka Shibuya
- Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
| | - Paul A Easton
- Department of Critical Care, University of Calgary, Calgary, Alberta, Canada
| | - Masato Katagiri
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| |
Collapse
|
17
|
Pawlukowska W, Rychert M, Urbanowicz E, Romanowska H, Rotter I, Giżewska M. Therapeutic effect of a cleft lip teat on infants with respiratory and feeding disorders: Two case reports. Medicine (Baltimore) 2018; 97:e11467. [PMID: 30075512 PMCID: PMC6081053 DOI: 10.1097/md.0000000000011467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/18/2018] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Existing research into the effects of teat application has mainly focused on its negative and positive influence on the development of the oral cavity. Our work demonstrates that apart from changing the setting of the articulatory organs, the teat can also affect the quality of breathing, eating and sleeping. PATIENTS CONCERNS We described the cases of 2 children: a 19-month-old girl and a 2.5-month-old boy, who had breathing disorders due to withdrawal of the tongue and impaired food intake. INTERVENTION The babies were bottled fed with a special teat for cleft lip patients to observe the influence of the teat on the setting of the articulatory organs and breathing. DIAGNOSIS We suspected that the specific construction of the teat-the wide outer part and the short internal part-would affect children's reflexes and articulatory organs so as to force the frontal position of the tongue, which was meant to facilitate breathing and eating. OUTCOMES It was found that feeding with the cleft lip teat stimulates the gyro-linguistic muscle, which results in the proper position of the tongue and consequently better breathing and improved quality of sleep. LESSONS A specialist bottle teat designed for babies with cleft lips can constitute an effective tool in the therapy of nonspecific respiratory disorders resulting from improper position of the tongue and other articulatory organs.
Collapse
Affiliation(s)
- Wioletta Pawlukowska
- Department of Medical Rehabilitation and Clinical Physiotherapy, Clinic of Neurology PUM
| | - Monika Rychert
- Clinic of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age PUM, u. Unii Lubelskiej
| | - Ewa Urbanowicz
- Clinic of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age PUM, u. Unii Lubelskiej
| | - Hanna Romanowska
- Clinic of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age PUM, u. Unii Lubelskiej
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, ul. Żołnierska, Szczecin, Poland
| | - Maria Giżewska
- Clinic of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age PUM, u. Unii Lubelskiej
| |
Collapse
|
18
|
Li Y, Liu Y, Lu Y, Zhao B. Inhibitory effects of 17β-estradiol or a resveratrol dimer on hypoxia-inducible factor-1α in genioglossus myoblasts: Involvement of ERα and its downstream p38 MAPK pathways. Int J Mol Med 2017; 40:1347-1356. [PMID: 28901388 PMCID: PMC5627877 DOI: 10.3892/ijmm.2017.3123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/23/2017] [Indexed: 11/05/2022] Open
Abstract
Deficiency in the functioning of the genioglossus, which is one of the upper airway dilator muscles, is an important cause of obstructive sleep apnea/hypopnea syndrome (OSAHS). Estrogens have been reported to inhibit hypoxia-inducible factor-1α (HIF-1α) expression in hypoxia, regulating its target genes and exerting protective effects on the genioglossus in chronic intermittent hypoxia (CIH). This study aimed to investigate the role of 17β-estradiol (E2) and a resveratrol dimer (RD) on HIF-1α and the underlying mechanism. Mouse genioglossus myoblasts were isolated and cultured, and the estrogen receptor α (ERα) shRNA lentivirus was used for gene knockdown. Then MTT assay was used to determine the effects of E2 and RD on the viability of the cells. Cells in different groups were treated with different agents (E2, or RD, or E2 and SB203580), incubated under normoxia or hypoxia for 24 h, and then expression levels of HIF-1α, ERα, ERβ, total-p38 MAPK and phospho-p38 MAPK were detected. We observed that both E2 and RD inhibited the overexpression of HIF-1α induced by hypoxia at the mRNA and protein levels, and these effects were eliminated by genetic silencing of ERα by RNAi. In addition, we found that E2 activated p38 MAPK pathways to inhibit HIF-1α expression. On the whole, ERα may be responsible for downregulation of HIF-1α by E2 or RD via activation of downstream p38 MAPK pathways.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Yuehua Liu
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai 200001, P.R. China
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai 200001, P.R. China
| |
Collapse
|
19
|
Ding W, Chen X, Li W, Fu Z, Shi J. Genistein Protects Genioglossus Myoblast Against Hypoxia-induced Injury through PI3K-Akt and ERK MAPK Pathways. Sci Rep 2017; 7:5085. [PMID: 28698543 PMCID: PMC5506031 DOI: 10.1038/s41598-017-03484-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/28/2017] [Indexed: 11/17/2022] Open
Abstract
Obstructive sleep apnea and hypopnea syndrome (OSAHS) is a clinical syndrome characterized by recurrent episodes of obstruction of the upper airway during sleep that leads to a hypoxic condition. Genioglossus, an important pharyngeal muscle, plays an important role in maintaining an open upper airway for effective breathing. Our previous study found that genistein (a kind of phytoestrogen) protects genioglossus muscle from hypoxia-induced oxidative injury. However, the underlying mechanism is still unknown. In the present study, we examined the effects of hypoxia on genioglossus myoblast proliferation, viability and apoptosis, and the protective effect of genistein and its relationship with the PI3K/Akt and ERK MAPK pathways. Cell viability and Bcl-2 were reduced under hypoxic condition, while ROS generation, caspase-3, MDA, and DNA damage were increased following a hypoxia exposure. However, the effects of hypoxia were partially reversed by genistein in an Akt- and ERK- (but not estrogen receptor) dependent manner. In conclusion, genistein protects genioglossus myoblasts against hypoxia-induced oxidative injury and apoptosis independent of estrogen receptor. The PI3K-Akt and ERK1/2 MAPK signaling pathways are involved in the antioxidant and anti-apoptosis effect of genistein on genioglossus myoblasts.
Collapse
Affiliation(s)
- Wanghui Ding
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Xiaoyan Chen
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Wen Li
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Zhen Fu
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Jiejun Shi
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
20
|
Hicks A, Cori JM, Jordan AS, Nicholas CL, Kubin L, Semmler JG, Malhotra A, McSharry DGP, Trinder JA. Mechanisms of the deep, slow-wave, sleep-related increase of upper airway muscle tone in healthy humans. J Appl Physiol (1985) 2017; 122:1304-1312. [PMID: 28255086 DOI: 10.1152/japplphysiol.00872.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Upper airway muscle activity is reportedly elevated during slow-wave sleep (SWS) when compared with lighter sleep stages. To uncover the possible mechanisms underlying this elevation, we explored the correlation between different indices of central and reflex inspiratory drive, such as the changes in airway pressure and end-expiratory CO2 and the changes in the genioglossus (GG) and tensor palatini (TP) muscle activity accompanying transitions from the lighter N2 to the deeper N3 stage of non-rapid eye movement (NREM) sleep in healthy young adult men. Forty-six GG and 38 TP continuous electromyographic recordings were obtained from 16 men [age: 20 ± 2.5 (SD) yr; body mass index: 22.5 ± 1.8 kg/m2] during 32 transitions from NREM stages N2 to N3. GG but not TP activity increased following transition into N3 sleep, and the increase was positively correlated with more negative airway pressure, increased end-tidal CO2, increased peak inspiratory flow, and increased minute ventilation. None of these correlations was statistically significant for TP. Complementary GG and TP single motor unit analysis revealed a mild recruitment of GG units and derecruitment of TP units during the N2 to N3 transitions. These findings suggest that, in healthy individuals, the increased GG activity during SWS is driven primarily by reflex stimulation of airway mechanoreceptors and central chemoreceptors.NEW & NOTEWORTHY The characteristic increase in the activity of the upper airway dilator muscle genioglossus during slow-wave sleep (SWS) in young healthy individuals was found to be related to increased stimulation of airway mechanoreceptors and central chemoreceptors. No evidence was found for the presence of a central SWS-specific drive stimulating genioglossus activity in young healthy individuals. However, it remains to be determined whether a central drive exists in obstructive sleep apnea patients.
Collapse
Affiliation(s)
- Amelia Hicks
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer M Cori
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Amy S Jordan
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Christian L Nicholas
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John G Semmler
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California at San Diego, San Diego, California; and
| | - David G P McSharry
- School of Medicine and Medical Science, University College Dublin and Mater Misericordiae University Hospital, Dublin, Ireland
| | - John A Trinder
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
21
|
Sensory detection of threshold intensity resistive loads in severe obstructive sleep apnoea. Respir Physiol Neurobiol 2017; 236:29-41. [DOI: 10.1016/j.resp.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/20/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022]
|
22
|
Chen Q, Zou D, Feng H, Pan S. Will wearing dentures affect edentulous patients’ breathing during sleep? Sleep Breath 2017; 21:589-594. [DOI: 10.1007/s11325-017-1457-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
|
23
|
|
24
|
Cai M, Brown EC, Hatt A, Cheng S, Bilston LE. Effect of head and jaw position on respiratory-related motion of the genioglossus. J Appl Physiol (1985) 2016; 120:758-65. [DOI: 10.1152/japplphysiol.00382.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/19/2016] [Indexed: 11/22/2022] Open
Abstract
Head and jaw position influence upper airway patency and electromyographic (EMG) activity of the main upper airway dilator muscle, the genioglossus. However, it is not known whether changes in genioglossus EMG activity translate into altered muscle movement during respiration. The aim of this study was to determine the influence of head and jaw position on dilatory motion of the genioglossus in healthy adult men during quiet breathing by measuring the displacement of the posterior tongue in six positions—neutral, head extension, head rotation, head flexion, mouth opening, and mandibular advancement. Respiratory-related motion of the genioglossus was imaged with spatial modulation of magnetization (SPAMM) in 12 awake male participants. Tissue displacement was quantified with harmonic phase (HARP) analysis. The genioglossus moved anteriorly beginning immediately before or during inspiration, and there was greater movement in the oropharynx than in the velopharynx in all positions. Anterior displacements of the oropharyngeal tongue varied between neutral head position (0.81 ± 0.41 mm), head flexion (0.62 ± 0.45 mm), extension (0.39 ± 0.19 mm), axial rotation (0.39 ± 0.2 mm), mouth open (1.24 ± 0.72 mm), and mandibular advancement (1.08 ± 0.65 mm). Anteroposterior displacement increased in the mouth-open position and decreased in the rotated position relative to cross-sectional area (CSA) ( P = 0.002 and 0.02, respectively), but CSA did not independently predict anteroposterior movement overall ( P = 0.057). The findings of this study suggest that head position influences airway dilation during inspiration and may contribute to variation in airway patency in different head positions.
Collapse
Affiliation(s)
- Mingshu Cai
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | - Elizabeth C. Brown
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | - Alice Hatt
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | - Shaokoon Cheng
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | - Lynne E. Bilston
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Carberry JC, Jordan AS, White DP, Wellman A, Eckert DJ. Upper Airway Collapsibility (Pcrit) and Pharyngeal Dilator Muscle Activity are Sleep Stage Dependent. Sleep 2016; 39:511-21. [PMID: 26612386 DOI: 10.5665/sleep.5516] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/15/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES An anatomically narrow/highly collapsible upper airway is the main cause of obstructive sleep apnea (OSA). Upper airway muscle activity contributes to airway patency and, like apnea severity, can be sleep stage dependent. Conversely, existing data derived from a small number of participants suggest that upper airway collapsibility, measured by the passive pharyngeal critical closing pressure (Pcrit) technique, is not sleep stage dependent. This study aimed to determine the effect of sleep stage on Pcrit and upper airway muscle activity in a larger cohort than previously tested. METHODS Pcrit and/or muscle data were obtained from 72 adults aged 20-64 y with and without OSA.Pcrit was determined via transient reductions in continuous positive airway pressure (CPAP) during N2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. Genioglossus and tensor palatini muscle activities were measured: (1) awake with and without CPAP, (2) during stable sleep on CPAP, and (3) in response to the CPAP reductions used to quantify Pcrit. RESULTS Pcrit was 4.9 ± 1.4 cmH2O higher (more collapsible) during REM versus SWS (P = 0.012), 2.3 ± 0.6 cmH2O higher during REM versus N2 (P < 0.001), and 1.6 ± 0.7 cmH2O higher in N2 versus SWS (P = 0.048). Muscle activity decreased from wakefulness to sleep and from SWS to N2 to REM sleep for genioglossus but not for tensor palatini. Pharyngeal muscle activity increased by ∼50% by breath 5 following CPAP reductions. CONCLUSIONS Upper airway collapsibility measured via the Pcrit technique and genioglossus muscle activity vary with sleep stage. These findings should be taken into account when performing and interpreting "passive" Pcrit measurements.
Collapse
Affiliation(s)
- Jayne C Carberry
- Neuroscience Research Australia (NeuRA) and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Amy S Jordan
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - David P White
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Andrew Wellman
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA) and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Shin W, Jen R, Li Y, Malhotra A. Tailored treatment strategies for obstructive sleep apnea. Respir Investig 2015; 54:2-7. [PMID: 26718138 DOI: 10.1016/j.resinv.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 01/28/2023]
Abstract
Obstructive sleep apnea (OSA) is characterized by repetitive collapse of the upper airway (UA) during sleep and is associated with chronic intermittent hypoxemia, catecholamine surges, and sleep disrupt. Multiple pathophysiological risk factors have been identified and contribute to OSA, including anatomical abnormalities (elevated UA mechanical load), compromised UA dilators, increased loop gain (unstable respiratory control), and decreased arousal threshold. These factors may contribute to the pathophysiology of sleep apnea in different individuals and recent evidence suggests that treatment may be targeted towards underlying pathophysiological mechanism. In some cases, combination therapy may be required to treat the condition.
Collapse
Affiliation(s)
- Wonchul Shin
- Department of Neurology, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea.
| | - Rachel Jen
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Yanru Li
- Beijing Tongren Hospital, Capital Medical University, Department of Otolaryngology Head and Neck Surgery, Beijing, China.
| | - Atul Malhotra
- University of California at San Diego, Division of Pulmonary, Critical Care and Sleep Medicine, 9300 Campus Point Drive #7381, La Jolla, CA 92037-7381, USA.
| |
Collapse
|
27
|
Donovan LM, Boeder S, Malhotra A, Patel SR. New developments in the use of positive airway pressure for obstructive sleep apnea. J Thorac Dis 2015; 7:1323-42. [PMID: 26380760 DOI: 10.3978/j.issn.2072-1439.2015.07.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/03/2015] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea (OSA) is a disorder which afflicts a large number of individuals around the world. OSA causes sleepiness and is a major cardiovascular risk factor. Since its inception in the early 1980's, continuous positive airway pressure (CPAP) has emerged as the major treatment of OSA, and it has been shown to improve sleepiness, hypertension, and a number of cardiovascular indices. Despite its successes, adherence with treatment remains a major limitation. Herein we will review the evidence behind the use of positive airway pressure (PAP) therapy, its various modes, and the methods employed to improve adherence. We will also discuss the future of PAP therapy in OSA and personalization of care.
Collapse
Affiliation(s)
- Lucas M Donovan
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA ; 2 Department of Medicine, 3 Department of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA, USA ; 4 Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Schafer Boeder
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA ; 2 Department of Medicine, 3 Department of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA, USA ; 4 Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Atul Malhotra
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA ; 2 Department of Medicine, 3 Department of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA, USA ; 4 Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sanjay R Patel
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA ; 2 Department of Medicine, 3 Department of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA, USA ; 4 Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Carberry JC, Hensen H, Fisher LP, Saboisky JP, Butler JE, Gandevia SC, Eckert DJ. Mechanisms contributing to the response of upper-airway muscles to changes in airway pressure. J Appl Physiol (1985) 2015; 118:1221-8. [DOI: 10.1152/japplphysiol.01103.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/02/2015] [Indexed: 11/22/2022] Open
Abstract
This study assessed the effects of inhaled lignocaine to reduce upper airway surface mechanoreceptor activity on 1) basal genioglossus and tensor palatini EMG, 2) genioglossus reflex responses to large pulses (∼10 cmH2O) of negative airway pressure, and 3) upper airway collapsibility in 15 awake individuals. Genioglossus and tensor palatini muscle EMG and airway pressures were recorded during quiet nasal breathing and during brief pulses (250 ms) of negative upper-airway pressure. Lignocaine reduced peak inspiratory (5.6 ± 1.5 vs. 3.8 ± 1.1% maximum; mean ± SE, P < 0.01) and tonic (2.8 ± 0.8 vs. 2.1 ± 0.7% maximum; P < 0.05) genioglossus EMG during quiet breathing but had no effect on tensor palatini EMG (5.0 ± 0.8 vs. 5.0 ± 0.5% maximum; P = 0.97). Genioglossus reflex excitation to negative pressure pulses decreased after anesthesia (60.9 ± 20.7 vs. 23.6 ± 5.2 μV; P < 0.05), but not when expressed as a percentage of the immediate prestimulus baseline. Reflex excitation was closely related to the change in baseline EMG following lignocaine ( r2 = 0.98). A short-latency genioglossus reflex to rapid increases from negative to atmospheric pressure was also observed. The upper airway collapsibility index (%difference) between nadir choanal and epiglottic pressure increased after lignocaine (17.8 ± 3.7 vs. 28.8 ± 7.5%; P < 0.05). These findings indicate that surface receptors modulate genioglossus but not tensor palatini activity during quiet breathing. However, removal of input from surface mechanoreceptors has minimal effect on genioglossus reflex responses to large (∼10 cmH2O), sudden changes in airway pressure. Changes in pressure rather than negative pressure per se can elicit genioglossus reflex responses. These findings challenge previous views and have important implications for upper airway muscle control.
Collapse
Affiliation(s)
- Jayne C. Carberry
- Neuroscience Research Australia (NeuRA) and University of New South Wales, Sydney, New South Wales, Australia
| | - Hanna Hensen
- Neuroscience Research Australia (NeuRA) and University of New South Wales, Sydney, New South Wales, Australia
| | - Lauren P. Fisher
- Neuroscience Research Australia (NeuRA) and University of New South Wales, Sydney, New South Wales, Australia
| | - Julian P. Saboisky
- Neuroscience Research Australia (NeuRA) and University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia (NeuRA) and University of New South Wales, Sydney, New South Wales, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia (NeuRA) and University of New South Wales, Sydney, New South Wales, Australia
| | - Danny J. Eckert
- Neuroscience Research Australia (NeuRA) and University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Younes M, Loewen A, Ostrowski M, Hanly P. Short-term potentiation in the control of pharyngeal muscles in obstructive apnea patients. Sleep 2014; 37:1833-49. [PMID: 25364079 DOI: 10.5665/sleep.4182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES To determine if activation of the genioglossus (GG) muscle during obstructive apnea events involves short-term potentiation (STP) and is followed by sustained activation beyond the obstructive phase (after-discharge). DESIGN Physiological study. SETTING Sleep laboratory in a tertiary hospital. PARTICIPANTS Twenty-one patients with obstructive apnea. INTERVENTIONS Polysomnography on continuous positive airway pressure (CPAP) with measurement of genioglossus activity. Brief dial-downs of CPAP to induce obstructive events. MEASUREMENTS AND RESULTS Peak, phasic, and tonic genioglossus activities were measured breath-by-breath before, during, and following three-breath obstructions. Tonic but not phasic activity increased immediately following the first obstructed breath (4.9 ± 1.6 versus 3.6 ± 1.2 %GGMAX; P = 0.01) under conditions where stimuli to genioglossus activation were likely constant, strongly implicating STP in mediating recruitment of tonic activity. Both phasic and tonic activities declined slowly after relief of obstruction (after-discharge). Decay time constants were systematically shorter for phasic than for tonic activity (7.5 ± 3.8 versus 18.1 ± 8.4 sec; P < 0.001). Decay time-constant of peak activity correlated with tonic, but not phasic, recruitment. Cortical arousal near the end of obstruction resulted in a lower after-discharge (P < 0.01). Contribution of tonic activity to the increase in peak activity (6-65%Peak), as well as the decay constant (6-30 sec), varied considerably among patients. CONCLUSIONS Short-term potentiation contributes to recruitment of the genioglossus during obstructive episodes and results in sustained tonic activity beyond the obstructive phase, thereby potentially preventing recurrence of obstruction. Wide response differences among subjects suggest that this mechanism may contribute to severity of the disorder. The after-discharge is inhibited following cortical arousal, potentially explaining arousals' destabilizing effect.
Collapse
Affiliation(s)
- Magdy Younes
- Sleep Disorders Centre, Misericordia Health Centre, Winnipeg, Manitoba, Canada ; Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, Canada
| | - Andrea Loewen
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, Canada
| | - Michele Ostrowski
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, Canada
| | - Patrick Hanly
- Sleep Centre, Foothills Medical Centre, University of Calgary, Calgary, Canada
| |
Collapse
|
30
|
Kwan BCH, Butler JE, Hudson AL, McKenzie DK, Bilston LE, Gandevia SC. A novel ultrasound technique to measure genioglossus movement in vivo. J Appl Physiol (1985) 2014; 117:556-62. [DOI: 10.1152/japplphysiol.01257.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upper airway muscles are important in maintaining airway patency. Visualization of their dynamic motion should allow measurement, comparison, and further understanding of their roles in healthy subjects and those with upper airway disorders. Currently, there are few clinically feasible real-time imaging methods. Methods such as tagged magnetic resonance imaging have documented movement of genioglossus (GG), the largest upper airway dilator. Inspiratory movement was largest in the posterior region of GG. This study aimed to develop a novel ultrasound (US) method to measure GG movement in real time. We tested 20 healthy, awake subjects (21–38 yr) breathing quietly in the supine posture with the head in a neutral position. US images were collected using a transducer positioned submentally. Image correlation analysis measured regional displacement of GG within a grid of points in the midsagittal plane throughout the respiratory cycle. Typically, motion began before inspiratory flow in an anteroinferior direction and peaked in midinspiration. Average peak displacements of the anterior, posterior, superior, and inferior grid points were 0.44 ± 0.23 (mean ± SD), 0.57 ± 0.35, 0.38 ± 0.20, and 0.62 ± 0.41 mm, respectively. Largest displacements occurred in the most inferoposterior part (0.70 ± 0.48 mm). This method had good intrarater repeatability within the same testing session, as well as across sessions. We have devised a simple noninvasive US method, which should be a useful tool to assess GG movement in normal subjects and those with sleep-disordered breathing.
Collapse
Affiliation(s)
- Benjamin C. H. Kwan
- Neuroscience Research Australia, Sydney, New South Wales, Australia; and
- University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia, Sydney, New South Wales, Australia; and
- University of New South Wales, Sydney, New South Wales, Australia
| | - Anna L. Hudson
- Neuroscience Research Australia, Sydney, New South Wales, Australia; and
- University of New South Wales, Sydney, New South Wales, Australia
| | - David K. McKenzie
- Neuroscience Research Australia, Sydney, New South Wales, Australia; and
- University of New South Wales, Sydney, New South Wales, Australia
| | - Lynne E. Bilston
- Neuroscience Research Australia, Sydney, New South Wales, Australia; and
- University of New South Wales, Sydney, New South Wales, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Sydney, New South Wales, Australia; and
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
|
32
|
Rukhadze I, Kalter J, Stettner GM, Kubin L. Lingual muscle activity across sleep-wake States in rats with surgically altered upper airway. Front Neurol 2014; 5:61. [PMID: 24803913 PMCID: PMC4009435 DOI: 10.3389/fneur.2014.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/13/2014] [Indexed: 11/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) patients have increased upper airway muscle activity, including such lingual muscles as the genioglossus (GG), geniohyoid (GH), and hyoglossus (HG). This adaptation partially protects their upper airway against obstructions. Rodents are used to study the central neural control of sleep and breathing but they do not naturally exhibit OSA. We investigated whether, in chronically instrumented, behaving rats, disconnecting the GH and HG muscles from the hyoid (H) apparatus would result in a compensatory increase of other upper airway muscle activity (electromyogram, EMG) and/or other signs of upper airway instability. We first determined that, in intact rats, lingual (GG and intrinsic) muscles maintained stable activity levels when quantified based on 2 h-long recordings conducted on days 6 through 22 after instrumentation. We then studied five rats in which the tendons connecting the GH and HG muscles to the H apparatus were experimentally severed. When quantified across all recording days, lingual EMG during slow-wave sleep (SWS) was modestly but significantly increased in rats with surgically altered upper airway [8.6 ± 0.7% (SE) vs. 6.1 ± 0.7% of the mean during wakefulness; p = 0.012]. Respiratory modulation of lingual EMG occurred mainly during SWS and was similarly infrequent in both groups, and the incidence of sighs and central apneas also was similar. Thus, a weakened action of selected lingual muscles did not produce sleep-disordered breathing but resulted in a relatively elevated activity in other lingual muscles during SWS. These results encourage more extensive surgical manipulations with the aim to obtain a rodent model with collapsible upper airway.
Collapse
Affiliation(s)
- Irma Rukhadze
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Julie Kalter
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Georg M Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Leszek Kubin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
33
|
Lu Y, Liu Y, Li Y. Comparison of natural estrogens and synthetic derivative on genioglossus function and estrogen receptors expression in rats with chronic intermittent hypoxia. J Steroid Biochem Mol Biol 2014; 140:71-9. [PMID: 24333797 DOI: 10.1016/j.jsbmb.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/29/2013] [Accepted: 12/01/2013] [Indexed: 01/24/2023]
Abstract
The pathogenesis of obstructive sleep apnea--hypopnea syndrome (OSAHS) is summarized as the narrow anatomic structure of upper airway (UA) and the defective function of UA dilator muscles. Up to now, there have been no specific treatments for the UA dilator muscle deficiency. We previously found that some estrogen-like compounds exert protective effects on genioglossus, but this protection tends to be less satisfactory. A novel phytoestrogen derivative was synthesized in recent years and was verified to have some cytoprotective activity. This study was designed to compare the effects of natural estrogens and the synthetic resveratrol dimer on genioglossus contraction and expression of estrogen receptors (ERs) under chronic intermittent hypoxia (CIH) condition. Genioglossus myoblasts of rat were isolated and cultured in a culture medium with different agents (estradiol, genistein, resveratrol, and resveratrol dimer, respectively) under hypoxia condition, and ERs expressions were detected. In vivo study, 48 ovariectomized female rats were randomized into six groups. After CIH exposure and agents injection, rats were tested for genioglossus contractile properties and further analysis of ERs expression. Estradiol up-regulated ERα level and exerted the best protective effect of fatigue resistance. Genistein, resveratrol and resveratrol dimer primarily up-regulated the expression of ERβ. Resveratrol dimer exhibited better protection of fatigue resistance than genistein and resveratrol, and expressed higher binding affinity for ERβ than for ERα. Besides estrogenic effects, there may be some other mechanisms for the fatigue resistance improvement contributed by phytoestrogens and their derivatives.
Collapse
Affiliation(s)
- Yun Lu
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Orthodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Yuehua Liu
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Orthodontics, School of Stomatology, Tongji University, Shanghai, China.
| | - Yuanyuan Li
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Orthodontics, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Strohl KP, Butler JP, Malhotra A. Mechanical properties of the upper airway. Compr Physiol 2013; 2:1853-72. [PMID: 23723026 DOI: 10.1002/cphy.c110053] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions.
Collapse
Affiliation(s)
- Kingman P Strohl
- Center for Sleep Disorders Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
35
|
Abstract
Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive collapse of the pharyngeal airway during sleep. Control of pharyngeal patency is a complex process relating primarily to basic anatomy and the activity of many pharyngeal dilator muscles. The control of these muscles is regulated by a number of processes including respiratory drive, negative pressure reflexes, and state (sleep) effects. In general, patients with OSA have an anatomically small airway the patency of which is maintained during wakefulness by reflex-driven augmented dilator muscle activation. At sleep onset, muscle activity falls, thereby compromising the upper airway. However, recent data suggest that the mechanism of OSA differs substantially among patients, with variable contributions from several physiologic characteristics including, among others: level of upper airway dilator muscle activation required to open the airway, increase in chemical drive required to recruit the pharyngeal muscles, chemical control loop gain, and arousal threshold. Thus, the cause of sleep apnea likely varies substantially between patients. Other physiologic mechanisms likely contributing to OSA pathogenesis include falling lung volume during sleep, shifts in blood volume from peripheral tissues to the neck, and airway edema. Apnea severity may progress over time, likely due to weight gain, muscle/nerve injury, aging effects on airway anatomy/collapsibility, and changes in ventilatory control stability.
Collapse
Affiliation(s)
- David P White
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
36
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
37
|
Pelteret JPV, Reddy BD. Development of a computational biomechanical model of the human upper-airway soft-tissues toward simulating obstructive sleep apnea. Clin Anat 2013; 27:182-200. [PMID: 24515574 DOI: 10.1002/ca.22313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 11/11/2022]
Abstract
Numerous challenges are faced in investigations aimed at developing a better understanding of the pathophysiology of obstructive sleep apnea (OSA). The anatomy of the tongue and other upper-airway tissues, and the ability to model their behavior, are central to such investigations. We present details of the construction and development of a soft-tissue model of the human upper airway, with the ultimate goal of simulating obstructive sleep apnea. The steps taken to produce a representative anatomical geometry, of which the associated muscle histology is also captured, are documented. An overview of the mathematical models used to describe tissue behavior, both at a macro- and microscopic level, is given. A neurological model, which mimics the proprioceptive capabilities of the body, is described as it is applies to control of the active dynamics of the tongue. A simplified scenario, which allows for the manipulation of several environmental influences, is presented. It is demonstrated that the response of the genioglossus is qualitatively similar to that determined through experimental techniques. Furthermore, insights into the stress distribution developed within the tongue are discussed. It is shown that changes in almost any aspect of the breathing or physiological conditions invoke a significant change in the response of the airway dilators. The results of this study provide further evidence of the importance of modeling and simulation techniques as an aid in understanding the complex behavior of the human body.
Collapse
Affiliation(s)
- Jean-Paul V Pelteret
- Centre for Research in Computational and Applied Mechanics, University of Cape Town, Cape Town, Western Cape, South Africa
| | | |
Collapse
|
38
|
Horner RL, Hughes SW, Malhotra A. State-dependent and reflex drives to the upper airway: basic physiology with clinical implications. J Appl Physiol (1985) 2013; 116:325-36. [PMID: 23970535 DOI: 10.1152/japplphysiol.00531.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The root cause of the most common and serious of the sleep disorders is impairment of breathing, and a number of factors predispose a particular individual to hypoventilation during sleep. In turn, obstructive hypopneas and apneas are the most common of the sleep-related respiratory problems and are caused by dysfunction of the upper airway as a conduit for airflow. The overarching principle that underpins the full spectrum of clinical sleep-related breathing disorders is that the sleeping brain modifies respiratory muscle activity and control mechanisms and diminishes the ability to respond to respiratory distress. Depression of upper airway muscle activity and reflex responses, and suppression of arousal (i.e., "waking-up") responses to respiratory disturbance, can also occur with commonly used sedating agents (e.g., hypnotics and anesthetics). Growing evidence indicates that the sometimes critical problems of sleep and sedation-induced depression of breathing and arousal responses may be working through common brain pathways acting on common cellular mechanisms. To identify these state-dependent pathways and reflex mechanisms, as they affect the upper airway, is the focus of this paper. Major emphasis is on the synthesis of established and recent findings. In particular, we specifically focus on 1) the recently defined mechanism of genioglossus muscle inhibition in rapid-eye-movement sleep; 2) convergence of diverse neurotransmitters and signaling pathways onto one root mechanism that may explain pharyngeal motor suppression in sleep and drug-induced brain sedation; 3) the lateral reticular formation as a key hub of respiratory and reflex drives to the upper airway.
Collapse
Affiliation(s)
- Richard L Horner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
39
|
Kajee Y, Pelteret JPV, Reddy BD. The biomechanics of the human tongue. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:492-514. [PMID: 23319169 DOI: 10.1002/cnm.2531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/19/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
The human tongue is composed mainly of skeletal muscle tissue and has a complex architecture. Its anatomy is characterised by interweaving yet distinct muscle groups. It is a significant contributor to the phenomenon of obstructive sleep apnoea syndrome. A realistic model of the tongue and computational simulations are important in areas such as linguistics and speech therapy. The aim of this work is to report on the construction of a geometric and constitutive model of the human tongue and to demonstrate its use in computational simulations for obstructive sleep apnoea syndrome research. The geometry of the tongue and each muscle group of the tongue, including muscle fibre orientations, are captured from the Visible Human Project dataset. The fully linear muscle model is based on the Hill three-element model that represents the constituent parts of muscle fibres. The mechanics of the model are limited to quasi-static, small-strain, linear-elastic behaviour. The main focus of this work is on the material directionality and muscle activation. The transversely isotropic behaviour of the muscle tissue is accounted for, as well as the influence of muscle activation. The behaviour of the model is illustrated in a number of benchmark tests and for the case of a subject in the supine position.
Collapse
Affiliation(s)
- Yaseen Kajee
- Centre for Research in Computational and Applied Mechanics, University of Cape Town, 5th floor, Menzies Building, Private Bag X3, 7701 Rondebosch, South Africa.
| | | | | |
Collapse
|
40
|
Huang J, Pinto SJ, Yuan H, Katz ES, Karamessinis LR, Bradford RM, Gallagher PR, Hannigan JT, Nixon T, Ward MB, Lee YN, Marcus CL. Upper airway collapsibility and genioglossus activity in adolescents during sleep. Sleep 2012; 35:1345-52. [PMID: 23024432 PMCID: PMC3443760 DOI: 10.5665/sleep.2110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Obese patients develop obstructive sleep apnea syndrome (OSAS), at least in part because of a narrowed upper airway. However, many obese adolescents do not develop OSAS, despite having a presumably narrower airway. The reasons for this phenomenon are unclear. The authors hypothesized that obese controls have a compensatory neuromuscular response to subatmospheric pressure loads during sleep, making them less likely to develop upper airway collapse. DESIGN Patients underwent pressure-flow measurements during sleep while wearing intraoral electrodes to measure genioglossal electromyography (EMGgg). Two techniques were applied to decrease nasal pressure (P(N)) to subatmospheric levels, resulting in an activated and relatively hypotonic upper airway. SETTING Sleep laboratory. PARTICIPANTS There were 35 obese patients with OSAS, 28 obese controls, and 43 lean controls. RESULTS In the activated state, the two control groups had a flatter slope of the pressure-flow relationship and a more negative critical closing pressure (less collapsible) than the OSAS group. In the hypotonic state, the lean controls had a flatter slope of the pressure-flow relationship than the OSAS and obese control groups. In the activated state, the slope of EMGgg versus P(N) was greater in the obese control group than in the OSAS or lean control groups (P = 0.002 and P = 0.028, respectively); there were no differences in the hypotonic state. CONCLUSIONS Obese controls have vigorous upper airway neuromuscular responses during sleep. Upper airway reflexes normally decline during adolescent development. It is speculated that obese adolescents without OSAS maintain protective upper airway reflexes during adolescent development, whereas those who go on to develop OSAS do not.
Collapse
Affiliation(s)
- Jingtao Huang
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Swaroop J. Pinto
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Haibo Yuan
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
- Division of Respiratory Diseases, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Eliot S. Katz
- Children's Hospital Boston, Harvard Medical School, Boston, MA
| | - Laurie R. Karamessinis
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Ruth M. Bradford
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Paul R. Gallagher
- Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - James T. Hannigan
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Thomas Nixon
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michelle B. Ward
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Yin N. Lee
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Carole L. Marcus
- The Sleep Center and Biostatistics Core, Clinical and Translational Research Center, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
41
|
Pelteret JPV, Reddy BD. Computational model of soft tissues in the human upper airway. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:111-132. [PMID: 25830209 DOI: 10.1002/cnm.1487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.
Collapse
Affiliation(s)
- J-P V Pelteret
- Centre for Research in Computational and Applied Mechanics, University of Cape Town, 5th floor, Menzies Building, Private Bag X3, 7701 Rondebosch, South Africa.
| | | |
Collapse
|
42
|
Younes M, Loewen AHS, Ostrowski M, Laprairie J, Maturino F, Hanly PJ. Genioglossus activity available via non-arousal mechanisms vs. that required for opening the airway in obstructive apnea patients. J Appl Physiol (1985) 2011; 112:249-58. [PMID: 21921245 DOI: 10.1152/japplphysiol.00312.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is generally believed that reflex recruitment of pharyngeal dilator muscles is insufficient to open the airway of obstructive apnea (OSA) patients once it is closed and, therefore, that arousal is required. Yet arousal promotes recurrence of obstruction. There is no information about how much dilator [genioglossus (GG)] activation is required to open the airway (GG Opening Threshold) or about the capacity of reflex mechanisms to increase dilator activity before/without arousal (Non-Arousal Activation). The relationship between these two variables is important for ventilatory stability. We measured both variables in 32 OSA patients (apnea-hypopnea index 74 ± 42 events/h). GG activity was monitored while patients were on optimal continuous positive airway pressure (CPAP). Zopiclone was administered to delay arousal. Maximum GG activity (GG(MAX)) and airway closing pressure (P(CRIT)) were measured. During stable sleep CPAP was decreased to 1 cmH(2)O to induce obstructive events and the dial-downs were maintained until the airway opened with or without arousal. GG activity at the instant of opening (GG Opening Threshold) was measured. GG Opening Threshold averaged only 10.4 ± 9.5% GG(Max) and did not correlate with P(CRIT) (r = 0.04). Twenty-six patients had >3 openings without arousal, indicating that Non-Arousal Activation can exceed GG Opening Threshold in the majority of patients. GG activity reached before arousal in Arousal-Associated Openings was only 5.4 ± 4.6% GG(MAX) below GG Opening Threshold. We conclude that in most patients GG activity required to open the airway is modest and can be reached by non-arousal mechanisms. Arousals occur in most cases just before non-arousal mechanisms manage to increase activity above GG Opening Threshold. Measures to reduce GG Opening Threshold even slightly may help stabilize breathing in many patients.
Collapse
Affiliation(s)
- Magdy Younes
- Sleep Center, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Jordan AS, Eckert DJ, Wellman A, Trinder JA, Malhotra A, White DP. Termination of respiratory events with and without cortical arousal in obstructive sleep apnea. Am J Respir Crit Care Med 2011; 184:1183-91. [PMID: 21836132 DOI: 10.1164/rccm.201106-0975oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE A total of 20-30% of respiratory events in obstructive sleep apnea are terminated without clear arousal. Arousals are thought to predispose to further events by promoting hyperventilation, hypocapnia, and upper-airway dilator muscle hypotonia. Therefore, events terminated without arousal may promote stable breathing. OBJECTIVES To compare physiologic changes at respiratory event termination with American Sleep Disorders Association (ASDA) Arousal to No Arousal, and determine whether secondary respiratory events are less common and have higher dilator muscle activity after No Arousal compared with ASDA Arousal. METHODS Patients with obstructive sleep apnea wore sleep staging, genioglossus (EMG(GG)), and tensor palatini (EMG(TP)) electrodes plus a nasal mask and pneumotachograph. During stable sleep, continuous positive airway pressure (CPAP) was lowered for 3-minute periods to induce respiratory events. Physiologic variables were compared between events terminated with (1) ASDA Arousal, (2) No Arousal, or (3) sudden CPAP increase (CPAPinc, control). MEASUREMENTS AND MAIN RESULTS Sixteen subjects had adequate data. EMG(GG), EMG(TP), and heart rate increased after ASDA Arousal (340 ± 57%, 215 ± 28%, and 110.7 ± 2.3%) and No Arousal (185 ± 32%, 167 ± 15%, and 108.5 ± 1.6%) but not CPAPinc (90 ± 10%, 94 ± 11%, and 102.1 ± 1%). Ventilation increased more after ASDA Arousal than No Arousal and CPAPinc, but not after accounting for the severity of respiratory event. Fewer No Arousals were followed by secondary events than ASDA Arousals. However, low dilator muscle activity did not occur after ASDA Arousal or No Arousal (EMG(GG) rose from 75 ± 5 to 125 ± 7%) and secondary events were less severe than initial events (ventilation rose 4 ± 0.4 to 5.5 ± 0.51 L/min). CONCLUSIONS Respiratory events that were terminated with ASDA Arousal were more severely flow-limited, had enhanced hyperventilation after event termination, and were more often followed by secondary events than No arousal. However, secondary events were not associated with low dilator muscle activity and airflow was improved after both No Arousal and ASDA Arousal.
Collapse
Affiliation(s)
- Amy S Jordan
- Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Loewen AH, Ostrowski M, Laprairie J, Maturino F, Hanly PJ, Younes M. Response of genioglossus muscle to increasing chemical drive in sleeping obstructive apnea patients. Sleep 2011; 34:1061-73. [PMID: 21804668 PMCID: PMC3138161 DOI: 10.5665/sleep.1162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Subjects with a collapsible upper airway must activate their pharyngeal dilators sufficiently in response to increasing chemical drive if they are to maintain airway patency without arousal from sleep. Little is known about the response of pharyngeal dilators to increasing chemical drive in these subjects. We wished to determine, in obstructive apnea patients, the response of the genioglossus to increasing chemical drive and the contribution of mechanoreceptor feedback to this response. DESIGN Physiological study. SETTING University-based sleep laboratory. PATIENTS 20 patients with obstructive apnea. INTERVENTIONS Genioglossus activity was monitored during overnight polysomnography on optimal continuous positive airway pressure (CPAP). Intermittently, inspired gases were altered to produce different levels of ventilatory stimulation. CPAP was then briefly reduced to 1.0 cm H(2)O (dial-down), inducing an obstruction. MEASUREMENTS AND RESULTS Without mechanoreceptor feedback (i.e., on CPAP) the increase in genioglossus activity as ventilation increased from 6.1 ± 1.4 to 16.1 ± 4.8 L/min was modest (ΔTonic activity 0.3% ± 0.5%maximum; ΔPhasic activity 1.7% ± 3.4%maximum). Genioglossus activity increased immediately upon dial-down, reflecting mechanoreceptor feedback, but only when ventilation before dial-down exceeded a threshold value. This threshold varied among patients and, once surpassed, genioglossus activity increased briskly with further increases in chemical drive (1.1% ± 0.84%GG(MAX) per L/min increase in V(E)). CONCLUSIONS In sleeping obstructive apnea patients: (1) Mechanoreceptor feedback is responsible for most of the genioglossus response to chemical drive. (2) Mechanoreceptor feedback is effective only above a threshold chemical drive, which varies greatly among patients. These findings account in part for the highly variable relation between pharyngeal mechanical abnormalities and apnea severity.
Collapse
Affiliation(s)
- Andrea H.S. Loewen
- Sleep Center, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Michele Ostrowski
- Sleep Center, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - John Laprairie
- Sleep Center, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Frances Maturino
- Sleep Center, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Patrick J. Hanly
- Sleep Center, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Magdy Younes
- Sleep Center, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
|
46
|
Brown EC, Hudson AL, Butler JE, McKenzie DK, Bilston LE, Gandevia SC. Single motor unit recordings in human geniohyoid reveal minimal respiratory activity during quiet breathing. J Appl Physiol (1985) 2011; 110:1054-9. [DOI: 10.1152/japplphysiol.00454.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maintenance of airway patency during breathing involves complex interactions between pharyngeal dilator muscles. The few previous studies of geniohyoid activity using multiunit electromyography (EMG) have suggested that geniohyoid shows predominantly inspiratory phasic activity. This study aimed to quantify geniohyoid respiration-related activity with single motor unit (SMU) EMG recordings. Six healthy subjects of normal body mass index were studied. Intramuscular EMG recordings of geniohyoid activity were made with a monopolar needle with subjects in supine and seated positions. The depth of the geniohyoid was identified by ultrasound, and the electrode position was confirmed with maneuvers to isolate activity in geniohyoid and genioglossus. Activity was recorded at 85 sites in the geniohyoid during quiet breathing (45 supine and 40 seated). When subjects were supine, 33 sites (73%) showed no activity during breathing and 10 (22%) showed tonic activity. In addition, one site showed a tonic SMU with increased expiratory discharge, and one site in another subject had one unit with expiratory phasic activity. When subjects were seated, 27 sites (68%) in the geniohyoid showed no activity, 12 sites (30%) showed tonic activity that was not respiration related, and one unit at one site showed phasic expiratory activity. The average peak discharge frequency of geniohyoid motor units was 16.2 ± 3.1 impulses/s during the “geniohyoid maneuver,” which was the first part of a swallow. In contrast to previous findings, the geniohyoid shows some tonic activity but minimal respiration-related activity in healthy subjects in quiet breathing. The geniohyoid has little active role in airway stability under these conditions.
Collapse
Affiliation(s)
- Elizabeth C. Brown
- Neuroscience Research Australia and University of New South Wales, Sydney, NSW, Australia
| | - Anna L. Hudson
- Neuroscience Research Australia and University of New South Wales, Sydney, NSW, Australia
| | - Jane E. Butler
- Neuroscience Research Australia and University of New South Wales, Sydney, NSW, Australia
| | - David K. McKenzie
- Neuroscience Research Australia and University of New South Wales, Sydney, NSW, Australia
| | - Lynne E. Bilston
- Neuroscience Research Australia and University of New South Wales, Sydney, NSW, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia and University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
47
|
Pillar G, Lavie P. Obstructive sleep apnea: diagnosis, risk factors, and pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2011; 98:383-99. [PMID: 21056200 DOI: 10.1016/b978-0-444-52006-7.00025-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giora Pillar
- Sleep Medicine Center, Ramham Hospital and Lloyd Rigler Sleep Apnea Research Laboratory, Haifa, Israel.
| | | |
Collapse
|
48
|
Schäffer T. Respiratory physiology in sleep and wakefulness. HANDBOOK OF CLINICAL NEUROLOGY 2011; 98:371-81. [PMID: 21056199 DOI: 10.1016/b978-0-444-52006-7.00024-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thorsten Schäffer
- Medical Faculty, Ruhr-University Bochum and Institute of Clinical Physiology, Helios Klinik Hagen-Ambrock, Germany.
| |
Collapse
|
49
|
Hou YX, Jia SS, Liu YH. 17beta-Estradiol accentuates contractility of rat genioglossal muscle via regulation of estrogen receptor alpha. Arch Oral Biol 2010; 55:309-17. [PMID: 20153851 DOI: 10.1016/j.archoralbio.2010.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study in rat genioglossus muscle (GG) was designed to test the hypothesis that the effects of estrogen are at least in part, meditated directly by the estrogen receptors (ERs) of muscle. DESIGN Eighty-eight-week-old female Sprague-Dawley rats were randomly assigned to five groups: (1) normal animals (Normal); (2) sham operation animals (Sham); (3) ovariectomized animals without estrogen replacement (OVX); (4) ovariectomized animals with olive oil replacement (OVX+O); (5) ovariectomized animals with 17beta-estradiol replacement (OVX+E2). Six weeks later, GG was assessed in vivo for contractile properties and further analysis for ERs expression was carried out including real-time quantitative RT-PCR, immunohistochemistry and Western blotting. RESULTS The maximal twitch tension, 70%-decay time and fatigue index of GG decreased significantly in OVX group when compared with Normal group (P<0.05, P<0.05, P<0.05). However, all the three parameters reversed in OVX+E2 group especially fatigue index. Further analysis showed a clear expression of ERalpha and ERbeta in rat GG. The expression of both ERalpha protein and ERalpha mRNA was both significantly decreased in OVX group (P<0.05) and recovered back to previous level after receiving 17beta-estradiol replacement (P<0.05). But neither ERbeta protein nor ERbeta mRNA was regulated by estrogen deprivation and replacement. CONCLUSION The results demonstrated that the contractility of GG was accentuated by estrogen. Moreover, these effects were at least in part, meditated directly via regulation of the expression of ERalpha. It might contribute to the protective effects of estrogen on the patency of upper airway and the pathogenesis of obstructive sleep apnea hypopnoea syndrome.
Collapse
Affiliation(s)
- Yu-xia Hou
- Department of Orthodontics, School of Stomatology, Tongji University, 399 Yanchangzhong Road, Shanghai 200072, China
| | | | | |
Collapse
|
50
|
Schwartz AR, Patil SP, Squier S, Schneider H, Kirkness JP, Smith PL. Obesity and upper airway control during sleep. J Appl Physiol (1985) 2009; 108:430-5. [PMID: 19875707 DOI: 10.1152/japplphysiol.00919.2009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms linking obesity with upper airway dysfunction in obstructive sleep apnea are reviewed. Obstructive sleep apnea is due to alterations in upper airway anatomy and neuromuscular control. Upper airway structural alterations in obesity are related to adipose deposition around the pharynx, which can increase its collapsibility or critical pressure (P(crit)). In addition, obesity and, particularly, central adiposity lead to reductions in resting lung volume, resulting in loss of caudal traction on upper airway structures and parallel increases in pharyngeal collapsibility. Metabolic and humoral factors that promote central adiposity may contribute to these alterations in upper airway mechanical function and increase sleep apnea susceptibility. In contrast, neural responses to upper airway obstruction can mitigate these mechanical loads and restore pharyngeal patency during sleep. Current evidence suggests that these responses can improve with weight loss. Improvements in these neural responses with weight loss may be related to a decline in systemic and local pharyngeal concentrations of specific inflammatory mediators with somnogenic effects.
Collapse
Affiliation(s)
- Alan R Schwartz
- Sleep Disorders Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | |
Collapse
|