1
|
Gaspar LS, Pyakurel S, Xu N, D'Souza SP, Koritala BSC. Circadian Biology in Obstructive Sleep Apnea-Associated Cardiovascular Disease. J Mol Cell Cardiol 2025; 202:116-132. [PMID: 40107345 DOI: 10.1016/j.yjmcc.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/16/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
A dysregulated circadian system is independently associated with both Obstructive Sleep Apnea (OSA) and cardiovascular disease (CVD). OSA and CVD coexistence is often seen in patients with prolonged untreated OSA. However, the role of circadian dysregulation in their relationship is unclear. Half of the human genes, associated biological pathways, and physiological functions exhibit circadian rhythms, including blood pressure and heart rate regulation. Mechanisms related to circadian dysregulation and heart function are potentially involved in the coexistence of OSA and CVD. In this article, we provide a comprehensive overview of circadian dysregulation in OSA and associated CVD. We also discuss feasible animal models and new avenues for future research to understand their relationship. Oxygen-sensing pathways, inflammation, dysregulation of cardiovascular processes, oxidative stress, metabolic regulation, hormone signaling, and epigenetics are potential clock-regulated mechanisms connecting OSA and CVD.
Collapse
Affiliation(s)
- Laetitia S Gaspar
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Santoshi Pyakurel
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Na Xu
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Bala S C Koritala
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.
| |
Collapse
|
2
|
Huang Z, Zhao Q, Zhao Z, Thomas RJ, Duan A, Li X, Zhang S, Gao L, An C, Wang Y, Li S, Wang Q, Luo Q, Liu Z. Chinese consensus report on the assessment and management of obstructive sleep apnea in patients with cardiovascular disease: 2024 edition. Sleep Med 2025; 126:248-259. [PMID: 39721361 DOI: 10.1016/j.sleep.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
As cardiovascular disease (CVD) incidence and mortality rates continue to rise in China, the importance of identifying and managing CVD risk factors grows. Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder, affecting an estimated 936 million individuals aged 30-69 worldwide, with China leading globally with about 176 million affected. Increasing research indicates a close association between OSA and the onset and progression of various CVD, significantly affecting outcomes. However, OSA has long been underrecognized and undertreated in CVD clinical practice. To address this gap, a multidisciplinary expert panel developed evidence-based recommendations using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology and the Delphi process. This consensus provides 17 recommendations on core clinical issues such as screening, diagnosis, treatment, and follow-up of CVD patients with OSA, aiming to standardize care and improve patient outcomes. The recommendations were informed by current evidence-based research and extensive expert consensus discussions. This approach seeks to support clinical decision-making, improve the quality of care, and address the unique challenges of managing OSA in Chinese CVD patients.
Collapse
Affiliation(s)
- Zhihua Huang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Robert Joseph Thomas
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, United States
| | - Anqi Duan
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sicheng Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luyang Gao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenhong An
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yijia Wang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sicong Li
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Wang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Luo
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhihong Liu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Kasai T, Kohno T, Shimizu W, Ando S, Joho S, Osada N, Kato M, Kario K, Shiina K, Tamura A, Yoshihisa A, Fukumoto Y, Takata Y, Yamauchi M, Shiota S, Chiba S, Terada J, Tonogi M, Suzuki K, Adachi T, Iwasaki Y, Naruse Y, Suda S, Misaka T, Tomita Y, Naito R, Goda A, Tokunou T, Sata M, Minamino T, Ide T, Chin K, Hagiwara N, Momomura S. JCS 2023 Guideline on Diagnosis and Treatment of Sleep Disordered Breathing in Cardiovascular Disease. Circ J 2024; 88:1865-1935. [PMID: 39183026 DOI: 10.1253/circj.cj-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Affiliation(s)
- Takatoshi Kasai
- Division of School of Health Science, Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University
| | - Takashi Kohno
- Department of Cardiovascular Medicine, Kyorin University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| | - Shinichi Ando
- Sleep Medicine Center, Fukuokaken Saiseikai Futsukaichi Hospital
| | - Shuji Joho
- Second Department of Internal Medicine, University of Toyama
| | - Naohiko Osada
- Department of Cardiology, St. Marianna University School of Medicine
| | - Masahiko Kato
- Division of School of Health Science, Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine
| | | | | | - Akiomi Yoshihisa
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Science
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | | | - Motoo Yamauchi
- Department of Clinical Pathophysiology of Nursing and Department of Respiratory Medicine, Nara Medical University
| | - Satomi Shiota
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Jiro Terada
- Department of Respiratory Medicine, Japanese Red Cross Narita Hospital
| | - Morio Tonogi
- 1st Depertment of Oral & Maxillofacial Surgery, Nihon Univercity School of Dentistry
| | | | - Taro Adachi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Yuki Iwasaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| | - Yoshihisa Naruse
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Shoko Suda
- Department of Cardiovascular Medicine, Juntendo University School of Medicine
| | - Tomofumi Misaka
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Science
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | | - Ryo Naito
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Ayumi Goda
- Department of Cardiovascular Medicine, Kyorin University Faculty of Medicine
| | - Tomotake Tokunou
- Division of Cardiology, Department of Medicine, Fukuoka Dental College
| | - Makoto Sata
- Department of Pulmonology and Infectious Diseases, National Cerebral and Cardiovascular Center
| | | | - Tomomi Ide
- Faculty of Medical Sciences, Kyushu University
| | - Kazuo Chin
- Graduate School of Medicine and Faculty of Medicine, Kyoto University
| | - Nobuhisa Hagiwara
- YUMINO Medical Corporation
- Department of Cardiology, Tokyo Women's Medical University
| | | |
Collapse
|
4
|
Bjork S, Jain D, Marliere MH, Predescu SA, Mokhlesi B. Obstructive Sleep Apnea, Obesity Hypoventilation Syndrome, and Pulmonary Hypertension: A State-of-the-Art Review. Sleep Med Clin 2024; 19:307-325. [PMID: 38692755 DOI: 10.1016/j.jsmc.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The pathophysiological interplay between sleep-disordered breathing (SDB) and pulmonary hypertension (PH) is complex and can involve a variety of mechanisms by which SDB can worsen PH. These mechanistic pathways include wide swings in intrathoracic pressure while breathing against an occluded upper airway, intermittent and/or sustained hypoxemia, acute and/or chronic hypercapnia, and obesity. In this review, we discuss how the downstream consequences of SDB can adversely impact PH, the challenges in accurately diagnosing and classifying PH in the severely obese, and review the limited literature assessing the effect of treating obesity, obstructive sleep apnea, and obesity hypoventilation syndrome on PH.
Collapse
Affiliation(s)
- Sarah Bjork
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Deepanjali Jain
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Manuel Hache Marliere
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Nathani A, Attaway A, Mehra R. Hypoxic and Autonomic Mechanisms from Sleep-Disordered Breathing Leading to Cardiopulmonary Dysfunction. Sleep Med Clin 2024; 19:229-237. [PMID: 38692748 DOI: 10.1016/j.jsmc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. Its prevalence has increased due to increasing obesity and improved screening and diagnostic strategies. OSA overlaps with cardiopulmonary diseases to promote intermittent hypoxia and autonomic dysfunction. Intermittent hypoxia increases the risk for oxidative stress and inflammation, which promotes endothelial dysfunction and predisposes to atherosclerosis and other cardiovascular complications. OSA is associated with an increased sympathetic nervous system drive resulting in autonomic dysfunction leading to worsening of cardiopulmonary diseases. Cardiovascular diseases are observed in 40% to 80% of OSA patients. Therefore, it is essential to screen and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Avantika Nathani
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA.
| | - Amy Attaway
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA
| | - Reena Mehra
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA; Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Balcan B, Akdeniz B, Peker Y, Collaborators TTURCOSACT. Obstructive Sleep Apnea and Pulmonary Hypertension: A Chicken-and-Egg Relationship. J Clin Med 2024; 13:2961. [PMID: 38792502 PMCID: PMC11122166 DOI: 10.3390/jcm13102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by repeated episodes of upper airway obstruction during sleep, and it is closely linked to several cardiovascular issues due to intermittent hypoxia, nocturnal hypoxemia, and disrupted sleep patterns. Pulmonary hypertension (PH), identified by elevated pulmonary arterial pressure, shares a complex interplay with OSA, contributing to cardiovascular complications and morbidity. The prevalence of OSA is alarmingly high, with studies indicating rates of 20-30% in males and 10-15% in females, escalating significantly with age and obesity. OSA's impact on cardiovascular health is profound, particularly in exacerbating conditions like systemic hypertension and heart failure. The pivotal role of hypoxemia increases intrathoracic pressure, inflammation, and autonomic nervous system dysregulation in this interplay, which all contribute to PH's pathogenesis. The prevalence of PH among OSA patients varies widely, with studies reporting rates from 15% to 80%, highlighting the variability in diagnostic criteria and methodologies. Conversely, OSA prevalence among PH patients also remains high, often exceeding 25%, stressing the need for careful screening and diagnosis. Treatment strategies like continuous positive airway pressure (CPAP) therapy show promise in mitigating PH progression in OSA patients. However, this review underscores the need for further research into long-term outcomes and the efficacy of these treatments. This review provides comprehensive insights into the epidemiology, pathophysiology, and treatment of the intricate interplay between OSA and PH, calling for integrated, personalized approaches in diagnosis and management. The future landscape of OSA and PH management hinges on continued research, technological advancements, and a holistic approach to improving patient outcomes.
Collapse
Affiliation(s)
- Baran Balcan
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
| | - Bahri Akdeniz
- Department of Cardiology, Dokuz Eylül University Faculty of Medicine, Izmir 35340, Turkey;
| | - Yüksel Peker
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Clinical Sciences, Respiratory Medicine and Allergology, Faculty of Medicine, Lund University, 22185 Lund, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
7
|
Lenka J, Foley R, Metersky M, Salmon A. Relationship between obstructive sleep apnea and pulmonary hypertension: past, present and future. Expert Rev Respir Med 2024; 18:85-97. [PMID: 38646681 DOI: 10.1080/17476348.2024.2345684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a widely prevalent condition with consequent multiple organ systems complications. There is consensus that OSA is associated with negative effects on pulmonary hemodynamics but whether it contributes to development of clinical pulmonary hypertension (PH) is unclear. AREAS COVERED In this review, we (1) highlight previous studies looking into the possible bidirectional association of OSA and PH, focusing on those that explore clinical prognostic implications, (2) explore potential pathophysiology, (3) discuss the new metrics in OSA, (4) describe endo-phenotyping of OSA, (5) recommend possible risk assessment and screening pathways. EXPERT OPINION Relying only on symptoms to consider a sleep study in PH patients is a missed opportunity to detect OSA, which, if present and not treated, can worsen outcomes. The potential prognostic role of sleep study metrics such as oxygen desaturation index (ODI), hypoxic burden (HB) and ventilatory burden (VB) in OSA should be studied in prospective trials to identify patients at risk for PH. AHI alone has not provided clarity. In those with PH, we should consider replacing ambulatory overnight pulse oximetry (OPO) with home sleep studies (HST). In PH patients, mild OSA should be sufficient to consider PAP therapy.
Collapse
Affiliation(s)
- Jyotirmayee Lenka
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT, USA
| | - Raymond Foley
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT, USA
| | - Mark Metersky
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT, USA
| | - Adrian Salmon
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
8
|
Suzuki A. The "silent threat" of nocturnal hypoxia remains unresolved for patients with fibrotic interstitial lung diseases. ERJ Open Res 2024; 10:01017-2023. [PMID: 38348239 PMCID: PMC10860205 DOI: 10.1183/23120541.01017-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 02/15/2024] Open
Abstract
Nocturnal hypoxia has a significant impact on prognosis in patients with fibrotic interstitial lung diseases https://bit.ly/3RNzNVu.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Sykes AV, Sonners C, Schmickl CN, Raphelson J, Swiatkiewicz I, Roberts E, Feldman E, Malhotra A, Taub PR. The Impact of Underlying Obstructive Sleep Apnea Treatment on Exercise Capacity in Patients With Pulmonary Hypertension Undergoing a Cardiac Rehabilitation Program. J Cardiopulm Rehabil Prev 2023; 43:186-191. [PMID: 36729594 PMCID: PMC10148900 DOI: 10.1097/hcr.0000000000000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Obstructive sleep apnea (OSA)-related pulmonary hypertension (PH) can often be reversed with treatment of OSA via continuous positive airway pressure. We hypothesized that treatment of OSA would be associated with a greater improvement in exercise capacity (EC) with cardiac rehabilitation (CR), especially in patients with PH as compared with those who are untreated. METHODS We reviewed medical records of 315 consecutive patients who participated in CR. Pulmonary hypertension status was assessed on the basis of peak tricuspid regurgitant velocity (>2.8 m/sec) on pre-CR echocardiograms. The OSA status (no, untreated, or treated OSA) was determined on the basis of results from sleep studies, continuous positive airway pressure device data, and physician notes. Exercise capacity was assessed by measuring metabolic equivalents (METs) using a treadmill stress test before and after CR. RESULTS We included 290 patients who participated in CR with available echocardiographic data: 44 (15%) had PH, and 102 (35%) had known OSA (30 treated and 72 untreated). Patients with OSA versus those with no OSA were more likely to have PH ( P = .06). Patients with PH versus no-PH were associated with significantly lower baseline METs in crude and adjusted analyses ( P ≤. 004). The PH and OSA status in isolation were not associated with changes in METs ( P > .2) with CR. There was a significant interaction between OSA treatment and PH in crude and adjusted analyses ( P ≤.01): treatment vs no treatment of OSA was associated with a clinically and statistically greater improvement in METs in patients who participated in CR with but not without PH. CONCLUSION Baseline PH was associated with decreased baseline EC but did not attenuate CR-related improvements in METs. However, in the subset of OSA patients with PH, OSA therapy was associated with improved EC after CR.
Collapse
Affiliation(s)
- Alexandra Vaio Sykes
- Internal Medicine (Drs Sykes, Sonners, Raphelson, Roberts, and Feldman), Pulmonary, Critical Care, Sleep Medicine and Physiology (Drs Schmickl and Malhotra), and Cardiovascular Medicine (Drs Swiatkiewicz and Taub), UC San Diego, La Jolla, California; and Department of Cardiology and Internal Medicine, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, Bydgoszcz, Poland (Dr Swiatkiewicz)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang JZ, Mokhlesi B, Mesarwi OA. Obstructive sleep apnea and pulmonary hypertension: the pendulum swings again. J Clin Sleep Med 2023; 19:209-211. [PMID: 36533401 PMCID: PMC9892742 DOI: 10.5664/jcsm.10454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Jenny Z. Yang
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, La Jolla, California
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
11
|
Wahab A, Chowdhury A, Jain NK, Surani S, Mushtaq H, Khedr A, Mir M, Jama AB, Rauf I, Jain S, Korsapati AR, Chandramouli MS, Boike S, Attallah N, Hassan E, Chand M, Bawaadam HS, Khan SA. Cardiovascular Complications of Obstructive Sleep Apnea in the Intensive Care Unit and Beyond. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1390. [PMID: 36295551 PMCID: PMC9609939 DOI: 10.3390/medicina58101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Obstructive sleep apnea (OSA) is a common disease with a high degree of association with and possible etiological factor for several cardiovascular diseases. Patients who are admitted to the Intensive Care Unit (ICU) are incredibly sick, have multiple co-morbidities, and are at substantial risk for mortality. A study of cardiovascular manifestations and disease processes in patients with OSA admitted to the ICU is very intriguing, and its impact is likely significant. Although much is known about these cardiovascular complications associated with OSA, there is still a paucity of high-quality evidence trying to establish causality between the two. Studies exploring the potential impact of therapeutic interventions, such as positive airway pressure therapy (PAP), on cardiovascular complications in ICU patients are also needed and should be encouraged. This study reviewed the literature currently available on this topic and potential future research directions of this clinically significant relationship between OSA and cardiovascular disease processes in the ICU and beyond.
Collapse
Affiliation(s)
- Abdul Wahab
- Department of Hospital Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA
| | - Arnab Chowdhury
- Section of Hospital Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitesh Kumar Jain
- Department of Critical Care Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA
| | - Salim Surani
- Department of Medicine and Pharmacology, Texas A&M University, College Station, TX 79016, USA
| | - Hisham Mushtaq
- Department of Internal Medicine, St Vincent’s Medical Center, Bridgeport, CT 06606, USA
| | - Anwar Khedr
- Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA
| | - Mikael Mir
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Abbas Bashir Jama
- Department of Critical Care Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA
| | - Ibtisam Rauf
- Department of Medicine, St. George’s University School of Medicine, St. George SW17 0RE, Grenada
| | - Shikha Jain
- Department of Medicine, MVJ Medical College and Research Hospital, Karnataka 562114, India
| | | | | | - Sydney Boike
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Noura Attallah
- Department of Critical Care Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA
| | - Esraa Hassan
- Department of Critical Care Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA
| | - Mool Chand
- Department of Hospital Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA
| | - Hasnain Saifee Bawaadam
- Department of Pulmonary & Critical Care Medicine, Aurora Medical Center, Kenosha, WI 53140, USA
| | - Syed Anjum Khan
- Department of Critical Care Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA
| |
Collapse
|
12
|
The Association between Idiopathic Pulmonary Fibrosis and Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11175008. [PMID: 36078938 PMCID: PMC9457448 DOI: 10.3390/jcm11175008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence of obstructive sleep apnea (OSA) has greatly increased in recent years. Recent data suggest that severe and moderate forms of OSA affect between 6 and 17% of adults in the general population. Many papers are reporting the significantly increased prevalence of OSA in patients suffering from fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Therefore, we performed a systematic review and meta-analysis regarding the dependency between IPF and OSA. Due to the lack of papers focusing on IPF among OSA patients, we focused on the prevalence of OSA among IPF patients. In the search strategy, a total of 684 abstracts were identified, 496 after the removal of duplicates. After the screening of titles and abstracts, 31 studies were qualified for further full-text analysis for eligibility criteria. The final analysis was performed on 614 IPF patients from 18 studies, which met inclusion criteria. There were 469 (76.38%) IPF patients with OSA and 145 (23.62%) without. The mean age varied from 60.9 ± 8.1 up to 70.3 ± 7.9. The obtained prevalence was 76.4 (95% CI: 72.9–79.7) and 75.7 (95% CI: 70.1–80.9) for fixed and random effects, respectively. The median prevalence of OSA among non-IPF patients for all the ethnics groups included in this study was 16,4% (IQR: 3.4%–26.8%). The study provides strong evidence for the increased prevalence of OSA in IPF patients when comparing with the general OSA prevalence.
Collapse
|
13
|
Brittain EL, Thenappan T, Huston JH, Agrawal V, Lai YC, Dixon D, Ryan JJ, Lewis EF, Redfield MM, Shah SJ, Maron BA. Elucidating the Clinical Implications and Pathophysiology of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction: A Call to Action: A Science Advisory From the American Heart Association. Circulation 2022; 146:e73-e88. [PMID: 35862198 PMCID: PMC9901193 DOI: 10.1161/cir.0000000000001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This science advisory focuses on the need to better understand the epidemiology, pathophysiology, and treatment of pulmonary hypertension in patients with heart failure with preserved ejection fraction. This clinical phenotype is important because it is common, is strongly associated with adverse outcomes, and lacks evidence-based therapies. Our goal is to clarify key knowledge gaps in pulmonary hypertension attributable to heart failure with preserved ejection fraction and to suggest specific, actionable scientific directions for addressing such gaps. Areas in need of additional investigation include refined disease definitions and interpretation of hemodynamics, as well as greater insights into noncardiac contributors to pulmonary hypertension risk, optimized animal models, and further molecular studies in patients with combined precapillary and postcapillary pulmonary hypertension. We highlight translational approaches that may provide important biological insight into pathophysiology and reveal new therapeutic targets. Last, we discuss the current and future landscape of potential therapies for patients with heart failure with preserved ejection fraction and pulmonary vascular dysfunction, including considerations of precision medicine, novel trial design, and device-based therapies, among other considerations. This science advisory provides a synthesis of important knowledge gaps, culminating in a collection of specific research priorities that we argue warrant investment from the scientific community.
Collapse
|
14
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Li YE, Ren J. Association between obstructive sleep apnea and cardiovascular diseases. Acta Biochim Biophys Sin (Shanghai) 2022; 54:882-892. [PMID: 35838200 PMCID: PMC9828315 DOI: 10.3724/abbs.2022084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder characterized by partial obstruction of upper respiratory tract and repetitive cessation of breathing during sleep. The etiology behind OSA is associated with the occurrence of intermittent hypoxemia, recurrent arousals and intrathoracic pressure swings. These contributing factors may turn on various signaling mechanisms including elevated sympathetic tone, oxidative stress, inflammation, endothelial dysfunction, cardiovascular variability, abnormal coagulation and metabolic defect ( e.g., insulin resistance, leptin resistance and altered hepatic metabolism). Given its close tie with major cardiovascular risk factors, OSA is commonly linked to the pathogenesis of a wide array of cardiovascular diseases (CVDs) including hypertension, heart failure, arrhythmias, coronary artery disease, stroke, cerebrovascular disease and pulmonary hypertension (PH). The current standard treatment for OSA using adequate nasal continuous positive airway pressure (CPAP) confers a significant reduction in cardiovascular morbidity. Nonetheless, despite the availability of effective therapy, patients with CVDs are still deemed highly vulnerable to OSA and related adverse clinical outcomes. A better understanding of the etiology of OSA along with early diagnosis should be essential for this undertreated disorder in the clinical setting.
Collapse
Affiliation(s)
- Yiran E. Li
- Department of CardiologyZhongshan HospitalFudan University; Shanghai Institute of Cardiovascular DiseasesShanghai200032China
| | - Jun Ren
- Department of CardiologyZhongshan HospitalFudan University; Shanghai Institute of Cardiovascular DiseasesShanghai200032China,Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA,Correspondence address. Tel: +86-21-64041990; E-mail:
| |
Collapse
|
16
|
Murta MS, Duarte RLM, Waetge D, Gozal D, Cardoso AP, Mello FCQ. Sleep-Disordered Breathing in Adults with Precapillary Pulmonary Hypertension: Prevalence and Predictors of Nocturnal Hypoxemia. Lung 2022; 200:523-530. [PMID: 35717489 DOI: 10.1007/s00408-022-00547-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the frequency of sleep-disordered breathing (SDB) and predictors of the presence of nocturnal desaturation in adults with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. METHODS Outpatients with a hemodynamic diagnosis of precapillary pulmonary hypertension who underwent portable polysomnography were evaluated. Diagnosis and severity of SDB were assessed using three well-established respiratory disturbance index (RDI) thresholds: 5.0/h, 15.0/h, and 30.0/h, while nocturnal hypoxemia was defined by the average oxygen saturation (SpO2) < 90%. Multiple linear regression analysis evaluated the potential relationships among explanatory variables with the dependent variable (average SpO2 values), with comparisons based on the standardized regression coefficient (β). The R-squared (R2; coefficient of determination) was used to evaluate the goodness-of-fit measure for the linear regression model. RESULTS Thirty-six adults were evaluated (69.4% females). The majority of the participants (75.0%) had SDB (26 with obstructive sleep apnea [OSA] and one with central sleep apnea [CSA]); while 50% of them had nocturnal hypoxemia. In the linear regression model (R2 = 0.391), the mean pulmonary artery pressure [mPAP] (β - 0.668; p = 0.030) emerged as the only independent parameter of the average SpO2. CONCLUSION Our study found that the majority of the participants had some type of SDB with a marked predominance of OSA over CSA, while half of them had nocturnal desaturation. Neither clinical and hemodynamic parameters nor the RDI was a predictor of nocturnal desaturation, except for mPAP measured during a right heart catheterization, which emerged as the only independent and significant predictor of average SpO2.
Collapse
Affiliation(s)
- Marcia S Murta
- Instituto de Doenças Do Tórax (IDT), Universidade Federal Do Rio de Janeiro (UFRJ), Rua Professor Rodolpho Paulo Rocco, 255 - 1° andar - sala 01D 58/60, Rio de Janeiro, RJ, CEP, 21941-913, Brazil
| | - Ricardo L M Duarte
- Instituto de Doenças Do Tórax (IDT), Universidade Federal Do Rio de Janeiro (UFRJ), Rua Professor Rodolpho Paulo Rocco, 255 - 1° andar - sala 01D 58/60, Rio de Janeiro, RJ, CEP, 21941-913, Brazil.
| | - Daniel Waetge
- Instituto de Doenças Do Tórax (IDT), Universidade Federal Do Rio de Janeiro (UFRJ), Rua Professor Rodolpho Paulo Rocco, 255 - 1° andar - sala 01D 58/60, Rio de Janeiro, RJ, CEP, 21941-913, Brazil
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Alexandre P Cardoso
- Instituto de Doenças Do Tórax (IDT), Universidade Federal Do Rio de Janeiro (UFRJ), Rua Professor Rodolpho Paulo Rocco, 255 - 1° andar - sala 01D 58/60, Rio de Janeiro, RJ, CEP, 21941-913, Brazil
| | - Fernanda C Q Mello
- Instituto de Doenças Do Tórax (IDT), Universidade Federal Do Rio de Janeiro (UFRJ), Rua Professor Rodolpho Paulo Rocco, 255 - 1° andar - sala 01D 58/60, Rio de Janeiro, RJ, CEP, 21941-913, Brazil
| |
Collapse
|
17
|
Maloney MA, Ward SLD, Su JA, Durazo-Arvizu RA, Breunig JM, Okpara DU, Gillett ES. Prevalence of pulmonary hypertension on echocardiogram in children with severe obstructive sleep apnea. J Clin Sleep Med 2022; 18:1629-1637. [PMID: 35212261 PMCID: PMC9163633 DOI: 10.5664/jcsm.9944] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
STUDY OBJECTIVES Pulmonary hypertension (PH) is a rare yet serious complication of obstructive sleep apnea (OSA). Echocardiographic screening for PH is recommended in children with severe OSA, but the health care burden of universal screening is high. We sought to determine the prevalence of PH on echocardiogram among children with severe OSA and identify variables associated with a positive PH screen. METHODS Retrospective study of 318 children with severe OSA (obstructive apnea-hypopnea index ≥ 10 events/h) and echocardiogram within 1 year of polysomnogram. PH-positive echocardiogram was defined by peak tricuspid regurgitation velocity ≥ 2.5 m/s and/or 2 or more right-heart abnormalities suggestive of elevated pulmonary artery pressure. Patient characteristics and polysomnogram data were compared to identify factors associated with PH. RESULTS Twenty-six children (8.2%; 95% confidence interval [CI] 5.4-11.8%) had echocardiographic evidence of PH. There was no difference in age, sex, body mass index, obstructive apnea-hypopnea index, or oxygenation indices between patients with and without PH. Sleep-related hypoventilation (end-tidal CO2 > 50 mmHg for > 25% of total sleep time) was present in 25% of children with PH compared with 6.3% of children without PH (adjusted prevalence ratio = 2.73; 95% CI 1.18-6.35). Forty-six percent of children (12/26) with PH had Down syndrome vs 14% (41/292) without PH (adjusted prevalence ratio = 3.11; 95% CI 1.46-6.65). CONCLUSIONS There was a relatively high prevalence of PH on echocardiogram in our cohort of children with severe OSA. The findings of increased PH prevalence among children with sleep-related hypoventilation or Down syndrome may help inform the development of targeted screening recommendations for specific pediatric OSA populations. CITATION Maloney MA, Davidson Ward SL, Su JA, et al. Prevalence of pulmonary hypertension on echocardiogram in children with severe obstructive sleep apnea. J Clin Sleep Med. 2022;18(6):1629-1637.
Collapse
Affiliation(s)
- Melissa A. Maloney
- Division of Pediatric Pulmonology and Sleep Medicine, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California,Address correspondence to: Melissa A. Maloney, MD, 4650 Sunset Blvd, Mailstop #83, Los Angeles, CA, 90027; Tel: (323) 361-2101;
| | - Sally L. Davidson Ward
- Division of Pediatric Pulmonology and Sleep Medicine, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California,Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Jennifer A. Su
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California,Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California
| | - Ramon A. Durazo-Arvizu
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California,Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
| | | | | | - Emily S. Gillett
- Division of Pediatric Pulmonology and Sleep Medicine, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California,Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
18
|
Abstract
Pulmonary hypertension (PH) describes heterogeneous population of patients with a mean pulmonary arterial pressure >20 mm Hg. Rarely, PH presents as a primary disorder but is more commonly part of a complex phenotype associated with comorbidities. Regardless of the cause, PH reduces life expectancy and impacts quality of life. The current clinical classification divides PH into 1 of 5 diagnostic groups to assign treatment. There are currently no pharmacological cures for any form of PH. Animal models are essential to help decipher the molecular mechanisms underlying the disease, to assign genotype-phenotype relationships to help identify new therapeutic targets, and for clinical translation to assess the mechanism of action and putative efficacy of new therapies. However, limitations inherent of all animal models of disease limit the ability of any single model to fully recapitulate complex human disease. Within the PH community, we are often critical of animal models due to the perceived low success upon clinical translation of new drugs. In this review, we describe the characteristics, advantages, and disadvantages of existing animal models developed to gain insight into the molecular and pathological mechanisms and test new therapeutics, focusing on adult forms of PH from groups 1 to 3. We also discuss areas of improvement for animal models with approaches combining several hits to better reflect the clinical situation and elevate their translational value.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK & Insigneo institute for in silico medicine, Sheffield, UK
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
19
|
Deep Singh T. Abnormal Sleep-Related Breathing Related to Heart Failure. Sleep Med Clin 2022; 17:87-98. [PMID: 35216764 DOI: 10.1016/j.jsmc.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sleep-disordered breathing (SDB) is highly prevalent in patients with heart failure (HF). Untreated obstructive sleep apnea (OSA) and central sleep apnea (CSA) in patients with HF are associated with worse outcomes. Detailed sleep history along with polysomnography (PSG) should be conducted if SDB is suspected in patients with HF. First line of treatment is the optimization of medical therapy for HF and if symptoms persist despite optimization of the treatment, positive airway pressure (PAP) therapy will be started to treat SDB. At present, there is limited evidence to prescribe any drugs for treating CSA in patients with HF. There is limited evidence for the efficacy of continuous positive airway pressure (CPAP) or adaptive servo-ventilation (ASV) in improving mortality in patients with heart failure with reduced ejection fraction (HFrEF). There is a need to perform well-designed studies to identify different phenotypes of CSA/OSA in patients with HF and to determine which phenotype responds to which therapy. Results of ongoing trials, ADVENT-HF, and LOFT-HF are eagerly awaited to shed more light on the management of CSA in patients with HF. Until then the management of SDB in patients with HF is limited due to the lack of evidence and guidance for treating SDB in patients with HF.
Collapse
Affiliation(s)
- Tripat Deep Singh
- Academy of Sleep Wake Science, #32 St.no-9 Guru Nanak Nagar, near Gurbax Colony, Patiala, Punjab, India 147003.
| |
Collapse
|
20
|
The clinical characteristics of patients with pulmonary hypertension combined with obstructive sleep apnoea. BMC Pulm Med 2021; 21:378. [PMID: 34802431 PMCID: PMC8607599 DOI: 10.1186/s12890-021-01755-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Obstructive sleep apnoea (OSA) is one cause of pulmonary hypertension (PH) and can also emerge along with PH. The clinical diagnosis and treatment of OSA in patients with PH are still controversial. The purpose of this clinical observation study was to observe and summarize the incidence and clinical characteristics of OSA in patients with PH and to explore possible predictors of PH combined with OSA. Methods Patients with PH diagnosed by right heart catheterization who underwent overnight cardiorespiratory monitoring from December 2018 to December 2020 were enrolled. OSA was defined as an apnoea–hypopnoea index of ≥ 5/h with ≥ 50% of apnoeic events being obstructive. Baseline clinical characteristics and parameters were collected to compare PH patients with and without OSA. Logistic regression analysis was run to determine the risk factors for OSA in PH patients. Results A total of 35 (25%) of 140 patients had OSA. OSA is relatively frequent in patients with PH, especially in patients with chronic thromboembolic pulmonary hypertension and patients with lung disease– or hypoxia-associated PH. The patients who had OSA were mostly male and had a higher age and a lower daytime arterial oxygen pressure. Logistic regression analysis found that older age, male sex, and lower daytime arterial blood oxygen pressure correlated with OSA in PH patients. Conclusion OSA is common in patients with PH. Lower daytime arterial oxygen pressure is a risk factor for OSA in older male patients with PH.
Collapse
|
21
|
A Prospective Study of CPAP Therapy in Relation to Cardiovascular Outcome in a Cohort of Romanian Obstructive Sleep Apnea Patients. J Pers Med 2021; 11:jpm11101001. [PMID: 34683142 PMCID: PMC8540427 DOI: 10.3390/jpm11101001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Despite efforts at treatment, obstructive sleep apnea (OSA) remains a major health problem, especially with increasing evidence showing an association with cardiovascular morbidity and mortality. The treatment of choice for OSA patients is Continuous Positive Airway Pressure (CPAP), which has been proven in randomized controlled trials to be an effective therapy for this condition. The impact of CPAP on the cardiovascular pathology associated with OSA remains, however, unclear. Although the effect of CPAP has been previously studied in relation to cardiovascular outcome, follow-up of the treatment impact on cardiovascular risk factors at one year of therapy is lacking in a Romanian population. Thus, we aimed to evaluate the one-year effect of CPAP therapy on lipid profile, inflammatory state, blood pressure and cardiac function, assessed by echocardiography, on a cohort of Romanian OSA patients. Methods: We enrolled 163 participants and recorded their baseline demographic and clinical characteristics with a follow-up after 12 months. Inflammatory and cardiovascular risk factors were assessed at baseline and follow up. Results: Our results show that CPAP therapy leads to attenuation of cardiovascular risk factors including echocardiographic parameters, while having no effect on inflammatory markers. Conclusion: Treatment of OSA with CPAP proved to have beneficial effects on some of the cardiovascular risk factors while others remained unchanged, raising new questions for research into the treatment and management of OSA patients.
Collapse
|
22
|
Ventrikuläre Arrhythmien bei obstruktiver und zentraler Schlafapnoe. SOMNOLOGIE 2021. [DOI: 10.1007/s11818-021-00319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zusammenfassung
Hintergrund
Ventrikuläre Arrhythmien treten mit einer hohen Prävalenz auf und sind mit einer hohen Morbidität und Mortalität assoziiert. Sowohl die obstruktive (OSA) als auch die zentrale (ZSA) Schlafapnoe können auf Grund ihrer Pathophysiologie zu vermehrten ventrikulären Arrhythmien beitragen.
Ziel
Dieser Artikel soll die komplexen Zusammenhänge und Erkenntnisse jüngster Forschungen bezüglich schlafbezogenen Atmungsstörungen (SBAS) und ventrikulärer Arrhythmien und deren Therapiemöglichkeiten beleuchten.
Material und Methoden
Es erfolgte eine Literaturrecherche basierend auf prospektiven, retrospektiven, klinischen und experimentellen Studien sowie Reviews, Metaanalysen und aktuellen Leitlinien, die seit 2014 in der Medline-Datenbank gelistet wurden.
Ergebnisse
Es besteht ein bidirektionaler Zusammenhang zwischen der SBAS und ventrikulären Arrhythmien. Intermittierende Hypoxie, oxidativer Stress, wiederkehrende Arousals, intrathorakale Druckschwankungen und kardiales Remodeling tragen im Rahmen der SBAS zu einer erhöhten ventrikulären Arrhythmieneigung bei. Der Schweregrad der OSA, gemessen mittels Apnoe-Hypopnoe-Index, ist mit der Prävalenz ventrikulärer Arrhythmien assoziiert. Ähnliche Ergebnisse liegen für Patienten mit ZSA und Herzinsuffizienz vor. Studien zu ventrikulären Arrhythmien bei ZSA-Patienten ohne Herzinsuffizienz fehlen. Eine Positivdrucktherapie (PAP) bei OSA- oder ZSA-Patienten führte in verschiedenen Studien zu einer reduzierten Anzahl an ventrikulären Arrhythmien. Dieser Zusammenhang konnte jedoch nicht in allen Studien bestätigt werden. Ventrikuläre Arrhythmien treten bei der OSA gehäuft nachts auf, bei der ZSA gleichmäßig über den Tag verteilt.
Diskussion
Bisherige Studien weisen einen Zusammenhang zwischen der OSA bzw. der ZSA und ventrikulären Arrhythmien trotz unterschiedlicher Pathophysiologie nach. Hinsichtlich des Effektes der PAP auf ventrikuläre Arrhythmien bei Patienten mit OSA und ZSA sind weitere Studien erforderlich.
Collapse
|
23
|
Esnaud R, Gagnadoux F, Beurnier A, Berrehare A, Trzepizur W, Humbert M, Montani D, Jutant EM. The association between sleep-related breathing disorders and pre-capillary pulmonary hypertension: A chicken and egg question. Respir Med Res 2021; 80:100835. [PMID: 34174525 DOI: 10.1016/j.resmer.2021.100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
The level of knowledge about a direct link between sleep-related breathing disorders and pre-capillary pulmonary hypertension (PH) is low and there is a chicken and egg question to know which disease causes the other. On one hand, sleep-related breathing disorders are considered as a cause of group 3 PH, in the subgroup of patients with hypoxemia without lung disease. Indeed, isolated sleep-related breathing disorders can lead to mild pre-capillary PH on their own, although this is rare for obstructive sleep apnea and difficult to establish for obesity-hypoventilation syndrome, the evolution towards PH being observed especially in the presence of respiratory comorbidities. The hemodynamic improvement under treatment with continuous positive airway pressure or non-invasive ventilation also argues for a causal link between pre-capillary PH and sleep-related breathing disorders. On the other hand, patients followed for pre-capillary PH, particularly pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension, develop more sleep-related breathing disorders than the general population, especially sleep hypoxemia, central sleep apnea in patients with severe PH and obstructive sleep apnea in older patients with higher body mass index. The main objective of this article is therefore to answer two main questions, which will then lead us to discuss the bilateral link between these diseases: are sleep-related breathing disorders independent risk factors for pre-capillary PH and does pre-capillary PH induce sleep-related breathing disorders? In other words, who is the chicken and who is the egg?
Collapse
Affiliation(s)
- R Esnaud
- INSERM UMR1063, Université d'Angers, Angers, France; Department of Respiratory and Sleep Medicine, Angers University Hospital, Angers, France
| | - F Gagnadoux
- INSERM UMR1063, Université d'Angers, Angers, France; Department of Respiratory and Sleep Medicine, Angers University Hospital, Angers, France
| | - A Beurnier
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de physiologie et d'explorations fonctionnelles respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - A Berrehare
- Département de Pneumologie, Centre Hospitalier du Mans, Le Mans, France
| | - W Trzepizur
- INSERM UMR1063, Université d'Angers, Angers, France; Department of Respiratory and Sleep Medicine, Angers University Hospital, Angers, France
| | - M Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - D Montani
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - E-M Jutant
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
24
|
Sleep apnea and pulmonary hypertension: A riddle waiting to be solved. Pharmacol Ther 2021; 227:107935. [PMID: 34171327 DOI: 10.1016/j.pharmthera.2021.107935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/02/2023]
Abstract
Obstructive sleep apnea (OSA) is an under-recognized yet highly prevalent disease that has major implications to cardiovascular health. Pulmonary hypertension (pH) is less common but none the less a fatal condition. The association of OSA and PH is a known but not well understood phenomenon. Furthermore, the relationship appears to be bi-directional with limited understanding of the mechanism(s) driving the processes. PH in OSA has real time consequences as it has been shown to increase mortality. Limited data suggests that treatment with continuous positive pressure therapy may be beneficial and reduce pulmonary pressure. In this review, we discuss current data on prevalence of PH in OSA and vice versa. We also explore the pathophysiology of this relationship and a proposed mechanism for their connection. Finally, we address the treatment of OSA with CPAP and its impact on pulmonary pressures. Gaps in knowledge and future research potential are illustrated and discoursed.
Collapse
|
25
|
Yeghiazarians Y, Jneid H, Tietjens JR, Redline S, Brown DL, El-Sherif N, Mehra R, Bozkurt B, Ndumele CE, Somers VK. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021; 144:e56-e67. [PMID: 34148375 DOI: 10.1161/cir.0000000000000988] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent complete and partial upper airway obstructive events, resulting in intermittent hypoxemia, autonomic fluctuation, and sleep fragmentation. Approximately 34% and 17% of middle-aged men and women, respectively, meet the diagnostic criteria for OSA. Sleep disturbances are common and underdiagnosed among middle-aged and older adults, and the prevalence varies by race/ethnicity, sex, and obesity status. OSA prevalence is as high as 40% to 80% in patients with hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, and stroke. Despite its high prevalence in patients with heart disease and the vulnerability of cardiac patients to OSA-related stressors and adverse cardiovascular outcomes, OSA is often underrecognized and undertreated in cardiovascular practice. We recommend screening for OSA in patients with resistant/poorly controlled hypertension, pulmonary hypertension, and recurrent atrial fibrillation after either cardioversion or ablation. In patients with New York Heart Association class II to IV heart failure and suspicion of sleep-disordered breathing or excessive daytime sleepiness, a formal sleep assessment is reasonable. In patients with tachy-brady syndrome or ventricular tachycardia or survivors of sudden cardiac death in whom sleep apnea is suspected after a comprehensive sleep assessment, evaluation for sleep apnea should be considered. After stroke, clinical equipoise exists with respect to screening and treatment. Patients with nocturnally occurring angina, myocardial infarction, arrhythmias, or appropriate shocks from implanted cardioverter-defibrillators may be especially likely to have comorbid sleep apnea. All patients with OSA should be considered for treatment, including behavioral modifications and weight loss as indicated. Continuous positive airway pressure should be offered to patients with severe OSA, whereas oral appliances can be considered for those with mild to moderate OSA or for continuous positive airway pressure-intolerant patients. Follow-up sleep testing should be performed to assess the effectiveness of treatment.
Collapse
|
26
|
Voulgaris A, Archontogeorgis K, Steiropoulos P, Papanas N. Cardiovascular Disease in Patients with Chronic Obstructive Pulmonary Disease, Obstructive Sleep Apnoea Syndrome and Overlap Syndrome. Curr Vasc Pharmacol 2021; 19:285-300. [PMID: 32188387 DOI: 10.2174/1570161118666200318103553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea syndrome (OSAS) are among the most prevalent chronic respiratory disorders. Accumulating data suggest that there is a significant burden of cardiovascular disease (CVD) in patients with COPD and OSAS, affecting negatively patients' quality of life and survival. Overlap syndrome (OS), i.e. the co-existence of both COPD and OSAS in the same patient, has an additional impact on the cardiovascular system multiplying the risk of morbidity and mortality. The underlying mechanisms for the development of CVD in patients with either OSAS or COPD and OS are not entirely elucidated. Several mechanisms, in addition to smoking and obesity, may be implicated, including systemic inflammation, increased sympathetic activity, oxidative stress and endothelial dysfunction. Early diagnosis and proper management of these patients might reduce cardiovascular risk and improve patients' survival. In this review, we summarize the current knowledge regarding epidemiological aspects, pathophysiological mechanisms and present point-to-point specific associations between COPD, OSAS, OS and components of CVD, namely, pulmonary hypertension, coronary artery disease, peripheral arterial disease and stroke.
Collapse
Affiliation(s)
- A Voulgaris
- MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - K Archontogeorgis
- MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - P Steiropoulos
- MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - N Papanas
- Diabetes Centre, Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
27
|
Shah FA, Moronta S, Braford M, Greene N. Obstructive Sleep Apnea and Pulmonary Hypertension: A Review of Literature. Cureus 2021; 13:e14575. [PMID: 34035997 PMCID: PMC8135661 DOI: 10.7759/cureus.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a disease process involving recurrent pharyngeal collapse during sleep, resulting in apneic episodes. Clinically, symptoms can include snoring, sudden awakening with a choking-like sensation, excessive somnolence, non-restorative sleep, difficulty in starting or maintaining sleep, and fatigue. It results in impaired gas exchange, subsequently causing various cardiovascular, metabolic, and neurocognitive pathologies. Historically, OSA has been underdiagnosed and undertreated, especially in women. OSA is associated with WHO (World Health Organization) class III pulmonary hypertension (PH) or PH due to lung disease. PH is a concerning complication of OSA and thought to occur in roughly 20% of individuals with OSA. The pathogenesis of PH in OSA can include pulmonary artery vasoconstriction and remodeling. Patients suffering from OSA who develop PH tend to have worse cardiovascular and pulmonary changes. We present a thorough review of the literature examining the interplay between OSA and PH.
Collapse
Affiliation(s)
- Farhan A Shah
- Internal Medicine, Lewis Gale Medical Center, Salem, USA
| | - Shaidy Moronta
- Internal Medicine, Edward Via College of Osteopathic Medicine, Salem, USA
| | - Michalla Braford
- Internal Medicine, Edward Via College of Osteopathic Medicine, Salem, USA
| | - Nelson Greene
- Pulmonary and Critical Care, Lewis Gale Medical Center, Salem, USA
| |
Collapse
|
28
|
Kearney K, Kotlyar E, Lau EMT. Pulmonary Vascular Disease as a Systemic and Multisystem Disease. Clin Chest Med 2021; 42:167-177. [PMID: 33541610 DOI: 10.1016/j.ccm.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a disease of progressive pulmonary vascular remodeling due to abnormal proliferation of pulmonary vascular endothelial and smooth muscle cells and endothelial dysfunction. PAH is a multisystem disease with systemic manifestations and complications. This article covers the chronic heart failure syndrome, including the systemic consequences of right ventricle-pulmonary artery uncoupling and neurohormonal activation, skeletal and respiratory muscle effects, systemic endothelial dysfunction and coronary artery disease, systemic inflammation and infection, endocrine and metabolic changes, the liver and gut axis, sleep, neurologic complications, and skin and iron metabolic changes.
Collapse
Affiliation(s)
- Katherine Kearney
- Cardiology Department, St Vincent's Hospital, 394 Victoria Street, Darlinghurst, New South Wales 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Eugene Kotlyar
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Heart Transplant Unit, St Vincent's Hospital, 394 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Edmund M T Lau
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Missenden Road, Camperdown, New South Wales 2050, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia.
| |
Collapse
|
29
|
Milicevic T, Katic J, Milovac SN, Matetic A, Aljinovic J, Dogas Z, Gunjaca G. Auto-adaptive positive airway pressure improves lung function and arterial stiffness parameters in patients with severe obstructive sleep apnea syndrome over a 1 year follow-up. Physiol Meas 2020; 41:125006. [PMID: 33382043 DOI: 10.1088/1361-6579/abcdf5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Auto-adaptive positive airway pressure (APAP) is an emerging therapeutic modality for obstructive sleep apnea (OSA) patients. However, their associated physiological effects have not been well-defined. Therefore, we aimed to investigate the impact of a 1 year APAP treatment on lung function and arterial stiffness parameters. APPROACH This study enrolled male patients with newly diagnosed severe OSA who have undergone APAP treatment. A total of 35 patients completed a 1 year follow up. Blood pressure, arterial stiffness (PWV, cAIx, pAIx, cSBP), and lung function readings (FEV1, FVC, FEV1/FVC, PEF) were obtained basally and after 1, 3, 6, and 12 months of treatment. MAIN RESULTS A gradual increase in FEV1 has been observed over the follow-up (2.92 ± 0.88 versus 3.07 ± 0.92 versus 3.18 ± 0.93 versus 3.28 ± 0.93 versus 3.41 ± 0.97 L), while PWV showed a gradual decrease over the follow-up (9.72 ± 1.64 versus 9.32 ± 1.73 versus 8.89 ± 1.65 versus 8.53 ± 1.61 versus 8.46 ± 1.60 m s-1), as measured by absolute values. Linear mixed effects model analysis revealed a statistically significantly higher FEV1 values (coefficient of 0.11, 0.20, and 0.33 for 3rd month, 6th month, and 12th month, respectively, P < 0.001) and lower PWV values (coefficient of -0.69, -0.63, and -0.34 for 3rd month, 6th month, and 12th month, respectively, P < 0.001), after the initiation of APAP treatment. SIGNIFICANCE We conclude that APAP treatment improves main lung function and arterial stiffness parameters in male patients with severe OSA over a 1 year follow-up.
Collapse
Affiliation(s)
- Tanja Milicevic
- Department of Endocrinology and Diabetology, University Hospital of Split, Split, Croatia
| | - Josip Katic
- Department of Cardiology, University Hospital of Split, Split, Croatia
| | | | - Andrija Matetic
- Department of Cardiology, University Hospital of Split, Split, Croatia.,Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Jure Aljinovic
- Institute of Physical and Rehabilitation Medicine with Rheumatology, University Hospital of Split, Split, Croatia.,University Department for Health Studies, University of Split, Split, Croatia
| | - Zoran Dogas
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| | - Grgo Gunjaca
- Community Health Center Split-Dalmatia County, Split, Croatia
| |
Collapse
|
30
|
Evaluation of right ventricular performance and impact of continuous positive airway pressure therapy in patients with obstructive sleep apnea living at high altitude. Sci Rep 2020; 10:20186. [PMID: 33214634 PMCID: PMC7678870 DOI: 10.1038/s41598-020-71584-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) can lead to alterations in right ventricular (RV) performance and pulmonary vascular haemodynamics. Additionally, altitude-related hypoxia is associated with pulmonary vasoconstriction, and the effect of high-altitude on the pulmonary circulation in OSAS patients can be further altered. We sought to assess alterations in RV morphology and function in OSAS patients living at high altitude by way of 2-dimensional speckle tracking echocardiography (2D-STE), real-time 3- dimensional echocardiography (RT-3DE) and cardiac biomarkers. We also evaluate the impact of continuous positive airway pressure (CPAP) treatment on RV performance. Seventy-one patients with newly diagnosed OSAS and thirty-one controls were included in this study. All individuals were assessed for cardiac biomarkers as well as underwent 2D-STE and RT-3DE. Forty-five OSAS patients underwent CPAP therapy for at least 24 weeks and were studied before and after CPAP treatment. RT-3DE was used to measure RV volume, and calculate RV 3D ejection fraction (3D RVEF). Peak systolic strain was determined. Cardiac biomarkers, including C-reactive protein (CRP), N-terminal pro-B-type natriuretic peptide, and cardiac troponin T were also measured. Right atrium volume index, RV volume, RV volume index, systolic pulmonary artery pressure (sPAP), pulmonary vascular resistance (PVR) and level of serum CRP were significantly higher in OSAS group, while OSAS patients showed lower 3D RVEF and RV longitudinal strains. Compared to the patients with sPAP < 40 mmHg, RV longitudinal strains in patients with sPAP ≥ 40 mmHg were lower. Both RV global longitudinal strain and sPAP were associated with apnea–hypopnea index. Patients treated with 6 months of CPAP therapy had significant improvement in RV geometry and performance. RV structural abnormalities and RV function impairments were observed in OSAS patients living at moderate high altitude compared to control highlanders. The reversibility of these changes after application of CPAP were further confirmed.
Collapse
|
31
|
Umeda A, Miyagawa K, Mochida A, Takeda H, Takeda K, Okada Y, Gozal D. Effects of Normoxic Recovery on Intima-Media Thickness of Aorta and Pulmonary Artery Following Intermittent Hypoxia in Mice. Front Physiol 2020; 11:583735. [PMID: 33192596 PMCID: PMC7645053 DOI: 10.3389/fphys.2020.583735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Obstructive sleep apnea (OSA) patients are at risk for increased blood pressure and carotid intima-media thickness (IMT), with pulmonary hypertension and right-sided heart failure potentially developing as well. Chronic intermittent hypoxia (IH) has been used as an OSA model in animals, but its effects on vascular beds have not been evaluated using objective unbiased tools. Previously published and current experimental data in mice exposed to IH were evaluated for IMT in aorta and pulmonary artery (PA) after IH with or without normoxic recovery using software for meta-analysis, Review Manager 5. Because IMT data reports on PA were extremely scarce, atherosclerotic area percentage from lumen data was also evaluated. IH significantly increased IMT parameters in both aorta and PA as illustrated by Forest plots (P < 0.01), which also confirmed that IMT values after normoxic recovery were within the normal range in both vascular beds. One-sided scarce lower areas in Funnel Plots were seen for both aorta and PA indicating the likelihood of significant publication bias. Forest and Funnel plots, which provide unbiased assessments of published and current data, suggest that IH exposures may induce IMT thickening that may be reversed by normoxic recovery in both aorta and PA. In light of the potential likelihood of publication bias, future studies are needed to confirm or refute the findings. In conclusion, OSA may induce IMT thickening (e.g., aorta and/or PA), but the treatment (e.g., nasal continuous positive airway pressure) will likely lead to improvements in such findings.
Collapse
Affiliation(s)
- Akira Umeda
- Department of Respiratory Medicine, International University of Health and Welfare Shioya Hospital, Yaita, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Atsumi Mochida
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Yasumasa Okada
- Department of Internal Medicine, National Hospital Organization Murayama Medical Center, Musashimurayama, Japan
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, MU Women's and Children's Hospital, University of Missouri, Columbia, MO, United States
| |
Collapse
|
32
|
Wuest W, May MS, Wiesmueller M, Uder M, Schmid A. Effect of long term CPAP therapy on cardiac parameters assessed with cardiac MRI. Int J Cardiovasc Imaging 2020; 37:613-621. [PMID: 32926309 PMCID: PMC8423704 DOI: 10.1007/s10554-020-02024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
The obstructive sleep apnoea syndrome (OSAS) is a disorder with a high prevalence and is associated with an elevated cardiovascular risk and increased morbidity and mortality. For longitudinal studies and functional analysis cardiac MRI is regarded as the gold standard. Aim of this study was to evaluate the long-term effect of continuous positive airway pressure (CPAP) therapy on cardiac functional parameters with cardiac Magnetic Resonance Imaging (cMRI). 54 patients with OSAS (mean apnea hypopnea index-AHI: 31) were prospectively enrolled in this study and cMRI was performed before and after 7 months of CPAP therapy. Data were acquired on a 1.5 T MRI and right and left ventricular cardiac function were analysed. CPAP treatment was considered compliant when used ≥ 4 h per night. 24-h blood pressure was measured at baseline and follow up. 33 patients could be assigned to the compliance group. Left ventricular stroke volume (LV SV) and right ventricular ejection fraction (RV EF) improved significantly with CPAP therapy (LV SV from 93 ± 19 to 99 ± 20 ml, p = 0.02; RV EF from 50 ± 6 to 52 ± 6%, p = 0.04). All other cardiac parameters did not change significantly while mean systolic and diastolic blood pressure improved significantly (p < 0.01). 21 patients were assigned to the non-compliance group and were considered as a control group. There were no relevant differences in cardiac parameters between baseline and follow up examination in these patients. CPAP therapy seems to improve LV SV, RV EF, systolic and diastolic blood pressure in OSAS patients, but reproducibility of our results need to be confirmed in a larger patient population.
Collapse
Affiliation(s)
- W Wuest
- Radioloical Institute, Friedrich-Alexander-University-Erlangen-Nuremberg, Maximiliansplatz 1, 91054, Erlangen, Germany.
| | - M S May
- Radioloical Institute, Friedrich-Alexander-University-Erlangen-Nuremberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - M Wiesmueller
- Radioloical Institute, Friedrich-Alexander-University-Erlangen-Nuremberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - M Uder
- Radioloical Institute, Friedrich-Alexander-University-Erlangen-Nuremberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| | - A Schmid
- Radioloical Institute, Friedrich-Alexander-University-Erlangen-Nuremberg, Maximiliansplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
33
|
Mesarwi O, Malhotra A. Obstructive sleep apnea and pulmonary hypertension: a bidirectional relationship. J Clin Sleep Med 2020; 16:1223-1224. [PMID: 32807290 PMCID: PMC7446089 DOI: 10.5664/jcsm.8660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022]
Abstract
Mesarwi O, Malhotra A. Obstructive sleep apnea and pulmonary hypertension: a bidirectional relationship. J Clin Sleep Med . 2020;16(8):1223–1224.
Collapse
Affiliation(s)
- Omar Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, San Diego, California
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
34
|
Adir Y, Humbert M, Chaouat A. Sleep-related breathing disorders and pulmonary hypertension. Eur Respir J 2020; 57:13993003.02258-2020. [PMID: 32747397 DOI: 10.1183/13993003.02258-2020] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Sleep-related breathing disorders (SBDs) include obstructive apnoea, central apnoea and sleep-related hypoventilation. These nocturnal events have the potential to increase pulmonary arterial pressure (PAP) during sleep but also in the waking state. "Pure" obstructive sleep apnoea syndrome (OSAS) is responsible for a small increase in PAP whose clinical impact has not been demonstrated. By contrast, in obesity hypoventilation syndrome (OHS) or overlap syndrome (the association of chronic obstructive pulmonary disease (COPD) with obstructive sleep apnoea (OSA)), nocturnal respiratory events contribute to the development of pulmonary hypertension (PH), which is often severe. In the latter circumstances, treatment of SBDs is essential in order to improve pulmonary haemodynamics.Patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) are at risk of developing SBDs. Obstructive and central apnoea, as well as a worsening of ventilation-perfusion mismatch, can be observed during sleep. There should be a strong suspicion of SBDs in such a patient population; however, the precise indications for sleep studies and the type of recording remain to be specified. The diagnosis of OSAS in patients with PAH or CTEPH should encourage treatment with continuous positive airway pressure (CPAP). The presence of isolated nocturnal hypoxaemia should also prompt the initiation of long-term oxygen therapy. These treatments are likely to avoid worsening of PH; however, it is prudent not to treat central apnoea and Cheyne-Stokes respiration (CSR) with adaptive servo-ventilation in patients with chronic right-heart failure because of a potential risk of serious adverse effects from such treatment.In this review we will consider the current knowledge of the consequences of SBDs on pulmonary haemodynamics in patients with and without chronic respiratory disease (group 3 of the clinical classification of PH) and the effect of treatments of respiratory events during sleep on PH. The prevalence and consequences of SBDs in PAH and CTEPH (groups 1 and 4 of the clinical classification of PH, respectively), as well as therapeutic options, will also be discussed.
Collapse
Affiliation(s)
- Yochai Adir
- Pulmonary Division, Lady Davis Carmel Medical Center, Haifa, Israel.,Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Marc Humbert
- Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM, UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Dept of Respiratory and Intensive Care Medicine, and the Pulmonary Hypertension National Referral Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Ari Chaouat
- Dept of Pulmonology and the Multidisciplinary Sleep Disorders Centre, CHRU Nancy, Nancy, France.,INSERM, UMR_S 1116 (Acute and Chronic Cardiovascular Failure), Université de Lorraine, Nancy, France
| |
Collapse
|
35
|
Masa JF, Mokhlesi B, Benítez I, Mogollon MV, Gomez de Terreros FJ, Sánchez-Quiroga MÁ, Romero A, Caballero-Eraso C, Alonso-Álvarez ML, Ordax-Carbajo E, Gomez-Garcia T, González M, López-Martín S, Marin JM, Martí S, Díaz-Cambriles T, Chiner E, Egea C, Barca J, Vázquez-Polo FJ, Negrín MA, Martel-Escobar M, Barbe F, Corral J. Echocardiographic Changes with Positive Airway Pressure Therapy in Obesity Hypoventilation Syndrome. Long-Term Pickwick Randomized Controlled Clinical Trial. Am J Respir Crit Care Med 2020; 201:586-597. [PMID: 31682462 DOI: 10.1164/rccm.201906-1122oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: Obesity hypoventilation syndrome (OHS) has been associated with cardiac dysfunction. However, randomized trials assessing the impact of long-term noninvasive ventilation (NIV) or continuous positive airway pressure (CPAP) on cardiac structure and function assessed by echocardiography are lacking.Objectives: In a prespecified secondary analysis of the largest multicenter randomized controlled trial of OHS (Pickwick Project; N = 221 patients with OHS and coexistent severe obstructive sleep apnea), we compared the effectiveness of three years of NIV and CPAP on structural and functional echocardiographic changes.Methods: At baseline and annually during three sequential years, patients underwent transthoracic two-dimensional and Doppler echocardiography. Echocardiographers at each site were blinded to the treatment allocation. Statistical analysis was performed using a linear mixed-effects model with a treatment group and repeated measures interaction to determine the differential effect between CPAP and NIV.Measurements and Main Results: A total of 196 patients were analyzed: 102 were treated with CPAP and 94 were treated with NIV. Systolic pulmonary artery pressure decreased from 40.5 ± 1.47 mm Hg at baseline to 35.3 ± 1.33 mm Hg at three years with CPAP, and from 41.5 ± 1.56 mm Hg to 35.5 ± 1.42 with NIV (P < 0.0001 for longitudinal intragroup changes for both treatment arms). However, there were no significant differences between groups. NIV and CPAP therapies similarly improved left ventricular diastolic dysfunction and reduced left atrial diameter. Both NIV and CPAP improved respiratory function and dyspnea.Conclusions: In patients with OHS who have concomitant severe obstructive sleep apnea, long-term treatment with NIV and CPAP led to similar degrees of improvement in pulmonary hypertension and left ventricular diastolic dysfunction.Clinical trial registered with www.clinicaltrials.gov (NCT01405976).
Collapse
Affiliation(s)
- Juan F Masa
- Respiratory Department, San Pedro de Alcántara Hospital, Cáceres, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | - Babak Mokhlesi
- Medicine/Pulmonary and Critical Care, University of Chicago, Chicago, Illinois
| | - Iván Benítez
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut de Recerca Biomédica de Lleida (IRBLLEIDA), Lleida, Spain
| | | | - Francisco Javier Gomez de Terreros
- Respiratory Department, San Pedro de Alcántara Hospital, Cáceres, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | - Maria Ángeles Sánchez-Quiroga
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain.,Respiratory Department, Virgen del Puerto Hospital, Plasencia, Cáceres, Spain
| | - Auxiliadora Romero
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Candela Caballero-Eraso
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Maria Luz Alonso-Álvarez
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, University Hospital, Burgos, Spain
| | - Estrella Ordax-Carbajo
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, University Hospital, Burgos, Spain
| | - Teresa Gomez-Garcia
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Mónica González
- Respiratory Department, Valdecilla Hospital, Santander, Spain
| | | | - José M Marin
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Miguel Servet Hospital, Zaragoza, Spain
| | - Sergi Martí
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Valld'Hebron Hospital, Barcelona, Spain
| | - Trinidad Díaz-Cambriles
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Doce de Octubre Hospital, Madrid, Spain
| | - Eusebi Chiner
- Respiratory Department, San Juan Hospital, Alicante, Spain
| | - Carlos Egea
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Alava University Hospital IRB, Vitoria, Spain
| | - Javier Barca
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain.,Nursing Department, Extremadura University, Cáceres, Spain; and
| | | | - Miguel A Negrín
- Department of Quantitative Methods, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - María Martel-Escobar
- Department of Quantitative Methods, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ferran Barbe
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut de Recerca Biomédica de Lleida (IRBLLEIDA), Lleida, Spain
| | - Jaime Corral
- Respiratory Department, San Pedro de Alcántara Hospital, Cáceres, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | | |
Collapse
|
36
|
Nokes B, Raza H, Malhotra A. Pulmonary hypertension and obstructive sleep apnea. J Clin Sleep Med 2020; 16:649. [PMID: 32022678 PMCID: PMC7161446 DOI: 10.5664/jcsm.8302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 11/13/2022]
Abstract
Nokes B, Raza H, Malhotra A. Pulmonary hypertension and obstructive sleep apnea. J Clin Sleep Med . 2020;16(4):649.
Collapse
Affiliation(s)
- Brandon Nokes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, California
| | - Hassan Raza
- Division of Pulmonary Medicine, Mayo Clinic Hospital, Phoenix, Arizona
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, California
| |
Collapse
|
37
|
Tietjens JR, Claman D, Kezirian EJ, De Marco T, Mirzayan A, Sadroonri B, Goldberg AN, Long C, Gerstenfeld EP, Yeghiazarians Y. Obstructive Sleep Apnea in Cardiovascular Disease: A Review of the Literature and Proposed Multidisciplinary Clinical Management Strategy. J Am Heart Assoc 2020; 8:e010440. [PMID: 30590966 PMCID: PMC6405725 DOI: 10.1161/jaha.118.010440] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - David Claman
- 1 Department of Medicine University of California San Francisco CA
| | - Eric J Kezirian
- 4 USC Caruso Department of Otolaryngology - Head & Neck Surgery Keck School of Medicine University of Southern California Los Angeles CA
| | - Teresa De Marco
- 1 Department of Medicine University of California San Francisco CA
| | | | - Bijan Sadroonri
- 6 Division of Pulmonary Diseases and Sleep Medicine Holy Family Hospital Methuen MA
| | - Andrew N Goldberg
- 7 Department of Otolaryngology - Head & Neck Surgery University of California San Francisco CA
| | - Carlin Long
- 1 Department of Medicine University of California San Francisco CA
| | | | - Yerem Yeghiazarians
- 1 Department of Medicine University of California San Francisco CA.,2 Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research University of California San Francisco CA.,3 Cardiovascular Research Institute University of California San Francisco CA
| |
Collapse
|
38
|
Pulmonary Hypertension and Left Ventricular Diastolic Dysfunction in Patients with Obesity Hypoventilation Syndrome. CURRENT SLEEP MEDICINE REPORTS 2019. [DOI: 10.1007/s40675-019-00161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Sleep-Disordered Breathing and Diastolic Heart Disease. CURRENT SLEEP MEDICINE REPORTS 2019. [DOI: 10.1007/s40675-019-00160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Abstract
Synchronization of molecular, metabolic, and cardiovascular circadian oscillations is fundamental to human health. Sleep-disordered breathing, which disrupts such temporal congruence, elicits hemodynamic, autonomic, chemical, and inflammatory disturbances with acute and long-term consequences for heart, brain, and circulatory and metabolic function. Sleep apnea afflicts a substantial proportion of adult men and women but is more prevalent in those with established cardiovascular diseases and especially fluid-retaining states. Despite the experimental, epidemiological, observational, and interventional evidence assembled in support of these concepts, this substantial body of work has had relatively modest pragmatic impact, thus far, on the discipline of cardiology. Contemporary estimates of cardiovascular risk still are derived typically from data acquired during wakefulness. The impact of sleep-related breathing disorders rarely is entered into such calculations or integrated into diagnostic disease-specific algorithms or therapeutic recommendations. Reasons for this include absence of apnea-related symptoms in most with cardiovascular disease, impediments to efficient diagnosis at the population level, debate as to target, suboptimal therapies, difficulties mounting large randomized trials of sleep-specific interventions, and the challenging results of those few prospective cardiovascular outcome trials that have been completed and reported. The objectives of this review are to delineate the bidirectional interrelationship between sleep-disordered breathing and cardiovascular disease, consider the findings and implications of observational and randomized trials of treatment, frame the current state of clinical equipoise, identify principal current controversies and potential paths to their resolution, and anticipate future directions.
Collapse
Affiliation(s)
- John S Floras
- From the University Health Network and Sinai Health System Division of Cardiology, Department of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Jaffey JA, Wiggen K, Leach SB, Masseau I, Girens RE, Reinero CR. Pulmonary hypertension secondary to respiratory disease and/or hypoxia in dogs: Clinical features, diagnostic testing and survival. Vet J 2019; 251:105347. [PMID: 31492386 DOI: 10.1016/j.tvjl.2019.105347] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022]
Abstract
Pulmonary hypertension (PH) is associated with substantial morbidity and if untreated, mortality. The human classification of PH is based on pathological, hemodynamic characteristics, and therapeutic approaches. Despite being a leading cause of PH, little is known about dogs with respiratory disease and/or hypoxia (RD/H)-associated PH. Therefore, our objectives were to retrospectively describe clinical features, diagnostic evaluations, final diagnoses and identify prognostic variables in dogs with RD/H and PH. In 47 dogs identified with RD/H and PH, chronic airway obstructive disorders, bronchiectasis, bronchiolar disease, emphysema, pulmonary fibrosis, neoplasia and other parenchymal disorders were identified using thoracic radiography, computed tomography, fluoroscopy, tracheobronchoscopy, bronchoalveolar lavage, and histopathology. PH was diagnosed using transthoracic echocardiography. Overall median survival was 276.0 days (SE, 95% CI; 216, 0-699 days). Dogs with an estimated systolic pulmonary arterial pressure (sPAP) ≥47mmHg (n=21; 9 days; 95% CI, 0-85 days) had significantly shorter survival times than those <47mmHg (n=16; P=0.001). Estimated sPAP at a cutoff of ≥47mmHg was a fair predictor of non-survival with sensitivity of 0.78 (95% CI, 0.52-0.94) and specificity of 0.63 (95% CI, 0.38-0.84). Phosphodiesterase-5 (PDE5) inhibitor administration was the sole independent predictor of survival in a multivariable analysis (hazard ratio: 4.0, P=0.02). Canine PH is present in a diverse spectrum of respiratory diseases, most commonly obstructive disorders. Similar to people, severity of PH is prognostic in dogs with RD/H and PDE5 inhibition could be a viable therapy to improve outcome.
Collapse
Affiliation(s)
- J A Jaffey
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO, 65211, USA
| | - K Wiggen
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO, 65211, USA
| | - S B Leach
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO, 65211, USA
| | - I Masseau
- Department of Science Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - R E Girens
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO, 65211, USA
| | - C R Reinero
- Department of Veterinary Medicine and Surgery, Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
42
|
Balloon pulmonary angioplasty attenuates sleep apnea in patients with chronic thromboembolic pulmonary hypertension. Heart Lung 2019; 48:321-324. [DOI: 10.1016/j.hrtlng.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 11/23/2022]
|
43
|
Apneas of Heart Failure and Phenotype-Guided Treatments: Part One: OSA. Chest 2019; 157:394-402. [PMID: 31047953 DOI: 10.1016/j.chest.2019.02.407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Sleep-disordered breathing (SDB), including OSA and central sleep apnea, is highly prevalent in patients with heart failure (HF). Multiple studies have reported this high prevalence in asymptomatic as well as symptomatic patients with reduced left ventricular ejection fraction (HFrEF), as well as in those with HF with preserved ejection fraction. The acute pathobiologic consequences of OSA, including exaggerated sympathetic activity, oxidative stress, and inflammation, eventually could lead to progressive left ventricular dysfunction, repeated hospitalization, and excessive mortality. Large numbers of observational studies and a few small randomized controlled trials have shown improvement in various cardiovascular consequences of SDB with treatment. There are no long-term randomized controlled trials to show improved survival of patients with HF and treatment of OSA. One trial of positive airway pressure treatment of OSA included patients with HF and showed no improvement in clinical outcomes. However, any conclusions derived from this trial must take into account several important pitfalls that have been extensively discussed in the literature. With the role of positive airway pressure as the sole therapy for SDB in HF increasingly questioned, a critical examination of long-accepted concepts in this field is needed. The objective of this review was to incorporate recent advances in the field into a phenotype-based approach to the management of OSA in HF.
Collapse
|
44
|
Peker Y, Balcan B. Cardiovascular outcomes of continuous positive airway pressure therapy for obstructive sleep apnea. J Thorac Dis 2018; 10:S4262-S4279. [PMID: 30687542 DOI: 10.21037/jtd.2018.11.48] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obstructive sleep apnea is a common disorder with increased risk for cardiovascular morbidity and mortality. The first choice of treatment of obstructive sleep apnea is continuous positive airway pressure, which reduces excessive daytime sleepiness and improves quality of life in sleep clinic cohorts. Nevertheless, the majority of patients with cardiovascular disease and concomitant obstructive sleep apnea do not report daytime sleepiness, and adherence to treatment is insufficient particularly in this group. The current article aims to give an updated overview of the impact of continuous positive airway pressure therapy on cardiovascular outcomes mainly based on the observational studies and the recent randomized controlled trials.
Collapse
Affiliation(s)
- Yüksel Peker
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey.,Department of Clinical Sciences, Respiratory Medicine and Allergology, Faculty of Medicine, Lund University, Lund, Sweden.,Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Baran Balcan
- Department of Pulmonary Medicine, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Although obstructive sleep apnea (OSA)-associated pulmonary hypertension is not uncommon and carries a worse prognosis if left untreated, it is less well recognized by clinicians. This review provides information on prevalence, pathophysiology, clinical presentation, treatment, and prognosis of pulmonary hypertension in OSA. RECENT FINDINGS The prevalence of pulmonary hypertension in OSA ranges from 17 to 53%. The underlying pathophysiology is complex and yet to be fully understood. Continuous positive airway pressure has been proven to be efficacious in the treatment of OSA-associated pulmonary hypertension. SUMMARY There is still lack of research in this field. We look forward to more well designed studies to help us understand this disease entity better.
Collapse
|
46
|
Nakamoto T. Sleep-Disordered Breathing―a Real Therapeutic Target for Hypertension, Pulmonary Hypertension, Ischemic Heart Disease, and Chronic Heart Failure? J NIPPON MED SCH 2018; 85:70-77. [DOI: 10.1272/jnms.2018_85-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Abstract
Pulmonary hypertension that develops in the setting of underlying lung diseases such as COPD or idiopathic pulmonary fibrosis (IPF) is associated with decreased functional status, worsening hypoxemia and quality of life, and increased mortality. This complication of lung disease is complex in its origin and carries a unique set of diagnostic and therapeutic issues. This review attempts to provide an overview of mechanisms associated with the onset of pulmonary hypertension in COPD and IPF, touches on appropriate evaluation, and reviews the state of knowledge on treating pulmonary hypertension related to underlying lung disease.
Collapse
Affiliation(s)
- Michael J Cuttica
- Northwestern Pulmonary Hypertension Program, 676 St Claire Suite 1400, Chicago, IL, 60611, USA.
| |
Collapse
|
48
|
Orthognathic surgery in Melnick-Needles syndrome: a review of the literature and report of two siblings. Int J Oral Maxillofac Surg 2018; 47:738-742. [PMID: 29336932 DOI: 10.1016/j.ijom.2017.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/04/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022]
Abstract
Melnick-Needles syndrome (MNS) is a rare congenital X-linked dominant skeletal dysplasia, characterized by exophthalmos, a prominent forehead, and mandibular hypoplasia and retrognathism. Dental features may include anodontia, hypodontia, or oligodontia. Increased collagen content, unpredictable collagen synthesis, and abnormal bony architecture have raised concerns regarding bone splitting intraoperatively and bone healing postoperatively. This report describes the cases of two sisters with MNS, who successfully underwent orthognathic surgery consisting of bilateral mandibular ramus osteotomies combined with advancement genioplasty and iliac crest bone grafting, to correct the classical MNS facial deformity of mandibular retrognathia.
Collapse
|
49
|
Corral J, Mogollon MV, Sánchez-Quiroga MÁ, Gómez de Terreros J, Romero A, Caballero C, Teran-Santos J, Alonso-Álvarez ML, Gómez-García T, González M, López-Martínez S, de Lucas P, Marin JM, Romero O, Díaz-Cambriles T, Chiner E, Egea C, Lang RM, Mokhlesi B, Masa JF. Echocardiographic changes with non-invasive ventilation and CPAP in obesity hypoventilation syndrome. Thorax 2017; 73:361-368. [DOI: 10.1136/thoraxjnl-2017-210642] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 11/03/2022]
Abstract
RationaleDespite a significant association between obesity hypoventilation syndrome (OHS) and cardiac dysfunction, no randomised trials have assessed the impact of non-invasive ventilation (NIV) or CPAP on cardiac structure and function assessed by echocardiography.ObjectivesWe performed a secondary analysis of the data from the largest multicentre randomised controlled trial of OHS (Pickwick project, n=221) to determine the comparative efficacy of 2 months of NIV (n=71), CPAP (n=80) and lifestyle modification (control group, n=70) on structural and functional echocardiographic changes.MethodsConventional transthoracic two-dimensional and Doppler echocardiograms were obtained at baseline and after 2 months. Echocardiographers at each site were blinded to the treatment arms. Statistical analysis was performed using intention-to-treat analysis.ResultsAt baseline, 55% of patients had pulmonary hypertension and 51% had evidence of left ventricular hypertrophy. Treatment with NIV, but not CPAP, lowered systolic pulmonary artery pressure (−3.4 mm Hg, 95% CI −5.3 to –1.5; adjusted P=0.025 vs control and P=0.033 vs CPAP). The degree of improvement in systolic pulmonary artery pressure was greater in patients treated with NIV who had pulmonary hypertension at baseline (−6.4 mm Hg, 95% CI −9 to –3.8). Only NIV therapy decreased left ventricular hypertrophy with a significant reduction in left ventricular mass index (−5.7 g/m2; 95% CI −11.0 to –4.4). After adjusted analysis, NIV was superior to control group in improving left ventricular mass index (P=0.015). Only treatment with NIV led to a significant improvement in 6 min walk distance (32 m; 95% CI 19 to 46).ConclusionIn patients with OHS, medium-term treatment with NIV is more effective than CPAP and lifestyle modification in improving pulmonary hypertension, left ventricular hypertrophy and functional outcomes. Long-term studies are needed to confirm these results.Trial registration numberPre-results, NCT01405976 (https://clinicaltrials.gov/).
Collapse
|
50
|
Pulmonary Hypertension and Thrombembolism—Long-Term Management and Chronic Oral Anticoagulation. PHYSICIAN ASSISTANT CLINICS 2017. [DOI: 10.1016/j.cpha.2017.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|