1
|
Sousa MLA, Menga LS, Schreiber A, Docci M, Vieira F, Katira BH, Pellegrini M, Dubo S, Douflé G, Costa ELV, Post M, Amato MBP, Brochard L. Individualized PEEP can improve both pulmonary hemodynamics and lung function in acute lung injury. Crit Care 2025; 29:107. [PMID: 40065461 PMCID: PMC11892255 DOI: 10.1186/s13054-025-05325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
RATIONALE There are several approaches to select the optimal positive end-expiratory pressure (PEEP), resulting in different PEEP levels. The impact of different PEEP settings may extend beyond respiratory mechanics, affecting pulmonary hemodynamics. OBJECTIVES To compare PEEP levels obtained with three titration strategies-(i) highest respiratory system compliance (CRS), (ii) electrical impedance tomography (EIT) crossing point; (iii) positive end-expiratory transpulmonary pressure (PL)-in terms of regional respiratory mechanics and pulmonary hemodynamics. METHODS Experimental studies in two porcine models of acute lung injury: (I) bilateral injury induced in both lungs, generating a highly recruitable model (n = 37); (II) asymmetrical injury, generating a poorly recruitable model (n = 13). In all experiments, a decremental PEEP titration was performed monitoring PL, EIT (collapse, overdistention, and regional ventilation), respiratory mechanics, and pulmonary and systemic hemodynamics. MEASUREMENTS AND MAIN RESULTS PEEP titration methods resulted in different levels of median optimal PEEP in bilateral lung injury: 14(12-14) cmH2O for CRS, 11(10-12) cmH2O for EIT, and 8(8-10) cmH2O for PL, p < 0.001. Differences were less pronounced in asymmetrical lung injury. PEEP had a quadratic U-shape relationship with pulmonary artery pressure (R2 = 0.94, p < 0.001), right-ventricular systolic transmural pressure, and pulmonary vascular resistance. Minimum values of pulmonary vascular resistance were found around individualized PEEP, when ventilation distribution and pulmonary circulation were simultaneously optimized. CONCLUSIONS In porcine models of acute lung injury with variable lung recruitability, both low and high levels of PEEP can impair pulmonary hemodynamics. Optimized ventilation and hemodynamics can be obtained simultaneously at PEEP levels individualized based on respiratory mechanics, especially by EIT and esophageal pressure.
Collapse
Affiliation(s)
- Mayson L A Sousa
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Canada.
- Department of Respiratory Therapy, Rady Faculty of Health Sciences, University of Manitoba, 771 McDermot Avenue, Room 338, Winnipeg, Manitoba, R3M 1S1, Canada.
| | - Luca S Menga
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Annia Schreiber
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Mattia Docci
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Fernando Vieira
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Bhushan H Katira
- Pediatric Critical Care Medicine, Department of Pediatrics, Washington University in St Louis, St Louis, USA
| | - Mariangela Pellegrini
- Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sebastian Dubo
- Department of Physiotherapy, Universidad de Concepción, Concepción, Chile
| | - Ghislaine Douflé
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Canada
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Canada
| | | | - Martin Post
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | | | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Francovich JE, Katira BH, Jonkman AH. Electrical impedance tomography to set positive end-expiratory pressure. Curr Opin Crit Care 2025; 31:00075198-990000000-00250. [PMID: 39976222 PMCID: PMC12052045 DOI: 10.1097/mcc.0000000000001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
PURPOSE OF REVIEW To summarize the rationale and concepts for positive end-expiratory pressure (PEEP) setting with electrical impedance tomography (EIT) and the effects of EIT-based PEEP setting on cardiopulmonary function. RECENT FINDINGS EIT allows patient-specific and regional assessment of PEEP effects on recruitability and overdistension, including its impact on ventilation-perfusion (V̇/Q) mismatch. The overdistension and collapse (OD-CL) method is the most used EIT-based approach for PEEP setting. In the RECRUIT study of 108 COVID-19 ARDS patients, the PEEP level corresponding to the OD-CL crossing point showed low overdistension and collapse (below 10% and 5%, respectively) regardless of recruitability. In a porcine model of acute respiratory distress syndrome (ARDS), it was shown that at this crossing point, respiratory mechanics (compliance, ΔP) were consistent, with adequate preload, lower right ventricular afterload, normal cardiac output, and sufficient gas exchange. A recent meta-analysis found that EIT based PEEP setting improved lung mechanics and potentially outcomes in ARDS patients. EIT thus provides critical insights beyond respiratory mechanics and oxygenation for individualized PEEP optimization. EIT-based methods for PEEP setting during assisted ventilation have also been proposed. SUMMARY EIT is a valuable technique to guide individualized PEEP setting utilizing cardiopulmonary information that is not captured by respiratory mechanics and oxygenation response alone.
Collapse
Affiliation(s)
| | - Bhushan H. Katira
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Annemijn H. Jonkman
- Department of Adult Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Zhai R, Su H, Wu Y, Tan R, Zhang X, Tian Y, Hu M. Airway clearance technique therapy for atelectasis induced by scoliosis surgery: a case report. Front Med (Lausanne) 2025; 12:1518935. [PMID: 40007586 PMCID: PMC11850244 DOI: 10.3389/fmed.2025.1518935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The patient, a 55-year-old female presenting with spinal deformity and exertional dyspnea, was referred to the hospital. Radiographic evaluation of her spine revealed an "S"-shaped scoliosis with a Cobb angle measuring 68°, indicative of severe scoliosis. Despite receiving medication for expectoration, postoperative symptoms including chest tightness, breathlessness, and ineffective coughing persisted and progressively worsened. Subsequent chest CT scans demonstrated extensive atelectasis, and pharmacological interventions proved to be ineffective. Considering the patient's clinical condition, we implemented airway clearance technique (ACT) along with prone ventilation to optimize cough effectiveness and mitigate atelectasis formation. The airway clearance techniques (ACT) employed include nebulization, continuous positive expiratory pressure (CPEP), and continuous high frequency oscillation (CHFO). Chest CT imaging confirmed that ACT substantially alleviated the patient's pulmonary atelectasis. Moreover, blood gas analysis indicated significant improvements in both the PaO2/FiO2 ratio and base excess of whole blood. Follow-up evaluation 1 year post-discharge revealed a favorable prognosis for the patient. We anticipate that our experience utilizing these novel therapeutic modalities will provide valuable insights for clinicians managing similar complications.
Collapse
Affiliation(s)
- Rui Zhai
- Department of Critical Care Medicine, Ninth Medical Center, General Hospital of the People’s Liberation Army, Beijing, China
| | - Hairong Su
- Department of Critical Care Medicine, Ninth Medical Center, General Hospital of the People’s Liberation Army, Beijing, China
| | - Yaxu Wu
- Department of Critical Care Medicine, Ninth Medical Center, General Hospital of the People’s Liberation Army, Beijing, China
| | - Rong Tan
- Department of Spinal Surgery, Ninth Medical Center, General Hospital of the People’s Liberation Army, Beijing, China
| | - Xiaoli Zhang
- Department of Critical Care Medicine, Ninth Medical Center, General Hospital of the People’s Liberation Army, Beijing, China
| | - Ye Tian
- Department of Critical Care Medicine, Ninth Medical Center, General Hospital of the People’s Liberation Army, Beijing, China
| | - Mei Hu
- Department of Critical Care Medicine, Ninth Medical Center, General Hospital of the People’s Liberation Army, Beijing, China
| |
Collapse
|
4
|
Min S, Yoon S, Choe HW, Jung H, Seo JH, Bahk JH. An optimal protective ventilation strategy in lung resection surgery: a prospective, single-center, three-arm randomized controlled trial. Updates Surg 2025:10.1007/s13304-025-02091-7. [PMID: 39838183 DOI: 10.1007/s13304-025-02091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Protective ventilation reduces ventilator-induced acute lung injury postoperatively; however, the optimal strategy for one-lung ventilation (OLV) remains unclear. This study compared three protective ventilation strategies with a postoperative partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio to reduce the incidence of immediate postoperative pulmonary complications (PPCs) in patients undergoing lung resection surgery. Eighty-seven patients with ASA physical status I-III requiring OLV for lung resection surgery were randomized into three groups according to the applied ventilation strategies: low tidal volume (VT) of 4 mL/kg of predicted body weight (PBW) (LV group), medium VT of 6 mL/kg of PBW (MV group), and high VT of 8 mL/kg of PBW (HV group). All patients received 5 cmH2O of positive end-expiratory pressure (PEEP). The primary outcome was the mean difference of PaO2/FiO2 ratio after surgery. The radiologic findings of acute lung injuries were also evaluated. The incidence of immediate PPCs was determined by PaO2/FiO2 ratio of < 300 mmHg and/or newly developed radiological findings within 72 h after surgery. The MV group showed the highest PaO2/FiO2 ratio at 6 h postoperatively (P = 0.010). There were no significant among-group differences in radiological findings in 3 postoperative days. The MV group showed the lowest incidence of immediate PPCs among the three groups (P = 0.007). During OLV in lung resection surgery, protective ventilation at a VT of 6 mL/kg with PEEP of 5 cmH2O may achieve a higher postoperative PaO2/FiO2 ratio, reducing the incidence of immediate PPCs.
Collapse
Affiliation(s)
- Seihee Min
- Department of Anesthesiology and Pain Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, 110 Deokan-ro, Gwangmyeong-si, Gyeonggi-do, 14353, Republic of Korea
| | - Susie Yoon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyun Woo Choe
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Haesun Jung
- Department of Anesthesiology and Pain Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, 110 Deokan-ro, Gwangmyeong-si, Gyeonggi-do, 14353, Republic of Korea
| | - Jeong-Hwa Seo
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jae-Hyon Bahk
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
5
|
Zakynthinos GE, Tsolaki V, Mantzarlis K, Xanthopoulos A, Oikonomou E, Kalogeras K, Siasos G, Vavuranakis M, Makris D, Zakynthinos E. Navigating Heart-Lung Interactions in Mechanical Ventilation: Pathophysiology, Diagnosis, and Advanced Management Strategies in Acute Respiratory Distress Syndrome and Beyond. J Clin Med 2024; 13:7788. [PMID: 39768712 PMCID: PMC11728210 DOI: 10.3390/jcm13247788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Patients in critical condition who require mechanical ventilation experience intricate interactions between their respiratory and cardiovascular systems. These complex interactions are crucial for clinicians to understand as they can significantly influence therapeutic decisions and patient outcomes. A deep understanding of heart-lung interactions is essential, particularly under the stress of mechanical ventilation, where the right ventricle plays a pivotal role and often becomes a primary concern. Positive pressure ventilation, commonly used in mechanical ventilation, impacts right and left ventricular pre- and afterload as well as ventricular interplay. The right ventricle is especially susceptible to these changes, and its function can be critically affected, leading to complications such as right heart failure. Clinicians must be adept at recognizing and managing these interactions to optimize patient care. This perspective will analyze this matter comprehensively, covering the pathophysiology of these interactions, the monitoring of heart-lung dynamics using the latest methods (including ECHO), and management and treatment strategies for related conditions. In particular, the analysis will delve into the efficacy and limitations of various treatment modalities, including pharmaceutical interventions, nuanced ventilator management strategies, and advanced devices such as extracorporeal membrane oxygenation (ECMO). Each approach will be examined for its impact on optimizing right ventricular function, mitigating complications, and ultimately improving patient outcomes in the context of mechanical ventilation.
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Kostantinos Mantzarlis
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (G.S.); (M.V.)
| | - Demosthenes Makris
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (V.T.); (K.M.); (D.M.)
| |
Collapse
|
6
|
Boesing C, Rocco PRM, Luecke T, Krebs J. Positive end-expiratory pressure management in patients with severe ARDS: implications of prone positioning and extracorporeal membrane oxygenation. Crit Care 2024; 28:277. [PMID: 39187853 PMCID: PMC11348554 DOI: 10.1186/s13054-024-05059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
The optimal strategy for positive end-expiratory pressure (PEEP) titration in the management of severe acute respiratory distress syndrome (ARDS) patients remains unclear. Current guidelines emphasize the importance of a careful risk-benefit assessment for PEEP titration in terms of cardiopulmonary function in these patients. Over the last few decades, the primary goal of PEEP usage has shifted from merely improving oxygenation to emphasizing lung protection, with a growing focus on the individual pattern of lung injury, lung and chest wall mechanics, and the hemodynamic consequences of PEEP. In moderate-to-severe ARDS patients, prone positioning (PP) is recommended as part of a lung protective ventilation strategy to reduce mortality. However, the physiologic changes in respiratory mechanics and hemodynamics during PP may require careful re-assessment of the ventilation strategy, including PEEP. For the most severe ARDS patients with refractory gas exchange impairment, where lung protective ventilation is not possible, veno-venous extracorporeal membrane oxygenation (V-V ECMO) facilitates gas exchange and allows for a "lung rest" strategy using "ultraprotective" ventilation. Consequently, the importance of lung recruitment to improve oxygenation and homogenize ventilation with adequate PEEP may differ in severe ARDS patients treated with V-V ECMO compared to those managed conservatively. This review discusses PEEP management in severe ARDS patients and the implications of management with PP or V-V ECMO with respect to respiratory mechanics and hemodynamic function.
Collapse
Affiliation(s)
- Christoph Boesing
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Thomas Luecke
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
7
|
Sousa MLA, Katira BH, Bouch S, Hsing V, Engelberts D, Amato MBP, Post M, Brochard LJ. Limiting Overdistention or Collapse When Mechanically Ventilating Injured Lungs: A Randomized Study in a Porcine Model. Am J Respir Crit Care Med 2024; 209:1441-1452. [PMID: 38354065 DOI: 10.1164/rccm.202310-1895oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/14/2024] [Indexed: 02/16/2024] Open
Abstract
Rationale: It is unknown whether preventing overdistention or collapse is more important when titrating positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS). Objectives: To compare PEEP targeting minimal overdistention or minimal collapse or using a compromise between collapse and overdistention in a randomized trial and to assess the impact on respiratory mechanics, gas exchange, inflammation, and hemodynamics. Methods: In a porcine model of ARDS, lung collapse and overdistention were estimated using electrical impedance tomography during a decremental PEEP titration. Pigs were randomized to three groups and ventilated for 12 hours: PEEP set at ⩽3% of overdistention (low overdistention), ⩽3% of collapse (low collapse), and the crossing point of collapse and overdistention. Measurements and Main Results: Thirty-six pigs (12 per group) were included. Median (interquartile range) values of PEEP were 7 (6-8), 11 (10-11), and 15 (12-16) cm H2O in the three groups (P < 0.001). With low overdistension, 6 (50%) pigs died, whereas survival was 100% in both other groups. Cause of death was hemodynamic in nature, with high transpulmonary vascular gradient and high epinephrine requirements. Compared with the other groups, pigs surviving with low overdistension had worse respiratory mechanics and gas exchange during the entire protocol. Minimal differences existed between crossing-point and low-collapse animals in physiological parameters, but postmortem alveolar density was more homogeneous in the crossing-point group. Inflammatory markers were not significantly different. Conclusions: PEEP to minimize overdistention resulted in high mortality in an animal model of ARDS. Minimizing collapse or choosing a compromise between collapse and overdistention may result in less lung injury, with potential benefits of the compromise approach.
Collapse
Affiliation(s)
- Mayson L A Sousa
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bhushan H Katira
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Pediatric Critical Care Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Sheena Bouch
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vanessa Hsing
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Doreen Engelberts
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcelo B P Amato
- Divisão de Pneumologia, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
- Instituto do Coração - InCor, Hospital das Clinicas, Faculade de Medicina da Universidade de São Paulo, São Paulo, Brazil; and
| | - Martin Post
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laurent J Brochard
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
| |
Collapse
|
8
|
Ribeiro BM, Tucci MR, Victor Júnior MH, Melo JR, Gomes S, Nakamura MAM, Morais CCA, Beraldo MA, Lima CAS, Alcala GC, Amato MBP. Influence of Fractional Inspired Oxygen Tension on Lung Perfusion Distribution, Regional Ventilation, and Lung Volume during Mechanical Ventilation of Supine Healthy Swine. Anesthesiology 2024; 140:752-764. [PMID: 38207290 DOI: 10.1097/aln.0000000000004903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND Lower fractional inspired oxygen tension (Fio2) during general anesthesia can reduce lung atelectasis. The objectives are to evaluate the effect of two Fio2 (0.4 and 1) during low positive end-expiratory pressure (PEEP) ventilation over lung perfusion distribution, volume, and regional ventilation. These variables were evaluated at two PEEP levels and unilateral lung atelectasis. METHODS In this exploratory study, 10 healthy female piglets (32.3 ± 3.4 kg) underwent mechanical ventilation in two atelectasis models: (1) bilateral gravitational atelectasis (n = 6), induced by changes in PEEP and Fio2 in three combinations: high PEEP with low Fio2 (Fio2 = 0.4), zero PEEP (PEEP0) with low Fio2 (Fio2 = 0.4), and PEEP0 with high Fio2 (Fio2 = 1); and (2) unilateral atelectasis (n = 6), induced by left bronchial occlusion, with the left lung aerated (Fio2 = 0.21) and low aerated (Fio2 = 1; n = 5 for this step). Measurements were conducted after 10 min in each step, encompassing assessment of respiratory mechanics, oxygenation, and hemodynamics; lung ventilation and perfusion by electrical impedance tomography; and lung aeration and perfusion by computed tomography. RESULTS During bilateral gravitational atelectasis, PEEP reduction increased atelectasis in dorsal regions, decreased respiratory compliance, and distributed lung ventilation to ventral regions with a parallel shift of perfusion to the same areas. With PEEP0, there were no differences between low and high Fio2 in respiratory compliance (23.9 ± 6.5 ml/cm H2O vs. 21.9 ± 5.0; P = 0.441), regional ventilation, and regional perfusion, despite higher lung collapse (18.6 ± 7.6% vs. 32.7 ± 14.5%; P = 0.045) with high Fio2. During unilateral lung atelectasis, the deaerated lung had a lower shunt (19.3 ± 3.6% vs. 25.3 ± 5.5%; P = 0.045) and lower computed tomography perfusion to the left lung (8.8 ± 1.8% vs. 23.8 ± 7.1%; P = 0.007). CONCLUSIONS PEEP0 with low Fio2, compared with high Fio2, did not produce significant changes in respiratory system compliance, regional lung ventilation, and perfusion despite significantly lower lung collapse. After left bronchial occlusion, the shrinkage of the parenchyma with Fio2 = 1 enhanced hypoxic pulmonary vasoconstriction, reducing intrapulmonary shunt and perfusion of the nonventilated areas. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Bruno M Ribeiro
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Mauro R Tucci
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marcus H Victor Júnior
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil; Electronics Engineering, Aeronautics Institute of Technology, Sao Jose dos Campos, Brazil
| | - Jose R Melo
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Susimeire Gomes
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria A M Nakamura
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caio C A Morais
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marcelo A Beraldo
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cristhiano A S Lima
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Glasiele C Alcala
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marcelo B P Amato
- Laboratorio de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto de Cardiologia (Incor), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Al-Khalisy H, Nieman GF, Kollisch-Singule M, Andrews P, Camporota L, Shiber J, Manougian T, Satalin J, Blair S, Ghosh A, Herrmann J, Kaczka DW, Gaver DP, Bates JHT, Habashi NM. Time-Controlled Adaptive Ventilation (TCAV): a personalized strategy for lung protection. Respir Res 2024; 25:37. [PMID: 38238778 PMCID: PMC10797864 DOI: 10.1186/s12931-023-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/25/2023] [Indexed: 01/22/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Gary F Nieman
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | - Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, USA
| | | | - Joshua Satalin
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Auyon Ghosh
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | | | | | | | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
10
|
Rehman TA, John K, Maslow A. Protective Lung Ventilation: What Do We Know?-"In An Investigation, Details Matter"-Jack Reacher TV Series. J Cardiothorac Vasc Anesth 2023; 37:2572-2576. [PMID: 37423839 PMCID: PMC10264327 DOI: 10.1053/j.jvca.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Affiliation(s)
- T A Rehman
- Department of Anesthesiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - K John
- Department of Anesthesiology, Rhode Island Hospital, Providence, RI
| | - A Maslow
- Department of Anesthesiology, Rhode Island Hospital, Providence, RI.
| |
Collapse
|
11
|
Nieman GF, Kaczka DW, Andrews PL, Ghosh A, Al-Khalisy H, Camporota L, Satalin J, Herrmann J, Habashi NM. First Stabilize and then Gradually Recruit: A Paradigm Shift in Protective Mechanical Ventilation for Acute Lung Injury. J Clin Med 2023; 12:4633. [PMID: 37510748 PMCID: PMC10380509 DOI: 10.3390/jcm12144633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed "baby lung"); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a "protective lung approach" (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an "open lung approach" (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP). A more recent understanding of ARDS pathophysiology identifies regional alveolar instability and collapse (i.e., hidden micro-atelectasis) in both lung compartments as a primary VILI mechanism. Based on this understanding, we propose an alternative strategy to ventilating the injured lung, which we term a "stabilize lung approach" (SLA). The SLA is designed to immediately stabilize the lung and reduce RACE while gradually reopening collapsed tissue over hours or days. At the core of SLA is time-controlled adaptive ventilation (TCAV), a method to adjust the parameters of the airway pressure release ventilation (APRV) modality. Since the acutely injured lung at any given airway pressure requires more time for alveolar recruitment and less time for alveolar collapse, SLA adjusts inspiratory and expiratory durations and inflation pressure levels. The TCAV method SLA reverses the open first and stabilize second OLA method by: (i) immediately stabilizing lung tissue using a very brief exhalation time (≤0.5 s), so that alveoli simply do not have sufficient time to collapse. The exhalation duration is personalized and adaptive to individual respiratory mechanical properties (i.e., elastic recoil); and (ii) gradually recruiting collapsed lung tissue using an inflate and brake ratchet combined with an extended inspiratory duration (4-6 s) method. Translational animal studies, clinical statistical analysis, and case reports support the use of TCAV as an efficacious lung protective strategy.
Collapse
Affiliation(s)
- Gary F. Nieman
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - David W. Kaczka
- Departments of Anesthesia, Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Penny L. Andrews
- Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Auyon Ghosh
- Department of Medicine, Upstate Medical University, Syracuse, NY 13210, USA
| | - Hassan Al-Khalisy
- Brody School of Medicine, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Partners, St Thomas’ Hospital, London SE1 7EH, UK
| | - Joshua Satalin
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - Jacob Herrmann
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Nader M. Habashi
- Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Vieillard-Baron A, Boissier F, Pesenti A. Hemodynamic impact of prone position. Let's protect the lung and its circulation to improve prognosis. Intensive Care Med 2023; 49:692-694. [PMID: 36820879 DOI: 10.1007/s00134-023-07001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Antoine Vieillard-Baron
- Service de Médecine Intensive Réanimation, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, 92100, Boulogne-Billancourt, France.
- INSERM UMR 1018, Clinical Epidemiology Team, CESP, Université de Paris Saclay, Villejuif, France.
| | - Florence Boissier
- Service de Médecine Intensive Réanimation, Centre Hospitalo-Universitaire de Poitiers, Poitiers, France
- INSERM CIC 1402 (IS-ALIVE Group), Université de Poitiers, Poitiers, France
| | - Antonio Pesenti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
13
|
Andrews P, Shiber J, Madden M, Nieman GF, Camporota L, Habashi NM. Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal. Front Physiol 2022; 13:928562. [PMID: 35957991 PMCID: PMC9358044 DOI: 10.3389/fphys.2022.928562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.
Collapse
Affiliation(s)
- Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, United States
| | - Maria Madden
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, United Kingdom
| | - Nader M. Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Millington SJ, Cardinal P, Brochard L. Setting and Titrating Positive End-Expiratory Pressure. Chest 2022; 161:1566-1575. [DOI: 10.1016/j.chest.2022.01.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
|
15
|
Katira BH, Engelberts D, Bouch S, Fliss J, Bastia L, Osada K, Connelly KA, Amato MBP, Ferguson ND, Kuebler WM, Kavanagh BP, Brochard LJ, Post M. Repeated endo-tracheal tube disconnection generates pulmonary edema in a model of volume overload: an experimental study. Crit Care 2022; 26:47. [PMID: 35180891 PMCID: PMC8857825 DOI: 10.1186/s13054-022-03924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An abrupt lung deflation in rodents results in lung injury through vascular mechanisms. Ventilator disconnections during endo-tracheal suctioning in humans often cause cardio-respiratory instability. Whether repeated disconnections or lung deflations cause lung injury or oedema is not known and was tested here in a porcine large animal model. METHODS Yorkshire pigs (~ 12 weeks) were studied in three series. First, we compared PEEP abruptly deflated from 26 cmH2O or from PEEP 5 cmH2O to zero. Second, pigs were randomly crossed over to receive rapid versus gradual PEEP removal from 20 cmH2O. Third, pigs with relative volume overload, were ventilated with PEEP 15 cmH2O and randomized to repeated ETT disconnections (15 s every 15 min) or no disconnection for 3 h. Hemodynamics, pulmonary variables were monitored, and lung histology and bronchoalveolar lavage studied. RESULTS As compared to PEEP 5 cmH2O, abrupt deflation from PEEP 26 cmH2O increased PVR, lowered oxygenation, and increased lung wet-to-dry ratio. From PEEP 20 cmH2O, gradual versus abrupt deflation mitigated the changes in oxygenation and vascular resistance. From PEEP 15, repeated disconnections in presence of fluid loading led to reduced compliance, lower oxygenation, higher pulmonary artery pressure, higher lung wet-to-dry ratio, higher lung injury score and increased oedema on morphometry, compared to no disconnects. CONCLUSION Single abrupt deflation from high PEEP, and repeated short deflations from moderate PEEP cause pulmonary oedema, impaired oxygenation, and increased PVR, in this large animal model, thus replicating our previous finding from rodents. Rapid deflation may thus be a clinically relevant cause of impaired lung function, which may be attenuated by gradual pressure release.
Collapse
Affiliation(s)
- Bhushan H Katira
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
- The Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division of Critical Care Medicine, Department of Paediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Doreen Engelberts
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
| | - Sheena Bouch
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
| | - Jordan Fliss
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Luca Bastia
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Kohei Osada
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Sciences, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Niall D Ferguson
- Division of Respirology, Department of Medicine, University Health Network and Sinai Health Systems, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Brian P Kavanagh
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada
- The Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Departments of Critical Care Medicine and Anaesthesiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Laurent J Brochard
- Keenan Research Centre for Biomedical Sciences, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., 9th Floor, Toronto, ON, M5G 0A4, Canada.
- The Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Petit M, Jullien E, Vieillard-Baron A. Right Ventricular Function in Acute Respiratory Distress Syndrome: Impact on Outcome, Respiratory Strategy and Use of Veno-Venous Extracorporeal Membrane Oxygenation. Front Physiol 2022; 12:797252. [PMID: 35095561 PMCID: PMC8795709 DOI: 10.3389/fphys.2021.797252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by protein-rich alveolar edema, reduced lung compliance and severe hypoxemia. Despite some evidence of improvements in mortality over recent decades, ARDS remains a major public health problem with 30% 28-day mortality in recent cohorts. Pulmonary vascular dysfunction is one of the pivot points of the pathophysiology of ARDS, resulting in a certain degree of pulmonary hypertension, higher levels of which are associated with morbidity and mortality. Pulmonary hypertension develops as a result of endothelial dysfunction, pulmonary vascular occlusion, increased vascular tone, extrinsic vessel occlusion, and vascular remodeling. This increase in right ventricular (RV) afterload causes uncoupling between the pulmonary circulation and RV function. Without any contractile reserve, the right ventricle has no adaptive reserve mechanism other than dilatation, which is responsible for left ventricular compression, leading to circulatory failure and worsening of oxygen delivery. This state, also called severe acute cor pulmonale (ACP), is responsible for excess mortality. Strategies designed to protect the pulmonary circulation and the right ventricle in ARDS should be the cornerstones of the care and support of patients with the severest disease, in order to improve prognosis, pending stronger evidence. Acute cor pulmonale is associated with higher driving pressure (≥18 cmH2O), hypercapnia (PaCO2 ≥ 48 mmHg), and hypoxemia (PaO2/FiO2 < 150 mmHg). RV protection should focus on these three preventable factors identified in the last decade. Prone positioning, the setting of positive end-expiratory pressure, and inhaled nitric oxide (INO) can also unload the right ventricle, restore better coupling between the right ventricle and the pulmonary circulation, and correct circulatory failure. When all these strategies are insufficient, extracorporeal membrane oxygenation (ECMO), which improves decarboxylation and oxygenation and enables ultra-protective ventilation by decreasing driving pressure, should be discussed in seeking better control of RV afterload. This review reports the pathophysiology of pulmonary hypertension in ARDS, describes right heart function, and proposes an RV protective approach, ranging from ventilatory settings and prone positioning to INO and selection of patients potentially eligible for veno-venous extracorporeal membrane oxygenation (VV ECMO).
Collapse
Affiliation(s)
- Matthieu Petit
- Medical Intensive Care Unit, University Hospital Ambroise Paré, APHP, Boulogne-Billancourt, France
- UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Edouard Jullien
- Medical Intensive Care Unit, University Hospital Ambroise Paré, APHP, Boulogne-Billancourt, France
- UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Antoine Vieillard-Baron
- Medical Intensive Care Unit, University Hospital Ambroise Paré, APHP, Boulogne-Billancourt, France
- UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay, Montigny-le-Bretonneux, France
- *Correspondence: Antoine Vieillard-Baron,
| |
Collapse
|
17
|
Zeng C, Lagier D, Lee JW, Melo MFV. Perioperative Pulmonary Atelectasis: Part I. Biology and Mechanisms. Anesthesiology 2022; 136:181-205. [PMID: 34499087 PMCID: PMC9869183 DOI: 10.1097/aln.0000000000003943] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pulmonary atelectasis is common in the perioperative period. Physiologically, it is produced when collapsing forces derived from positive pleural pressure and surface tension overcome expanding forces from alveolar pressure and parenchymal tethering. Atelectasis impairs blood oxygenation and reduces lung compliance. It is increasingly recognized that it can also induce local tissue biologic responses, such as inflammation, local immune dysfunction, and damage of the alveolar-capillary barrier, with potential loss of lung fluid clearance, increased lung protein permeability, and susceptibility to infection, factors that can initiate or exaggerate lung injury. Mechanical ventilation of a heterogeneously aerated lung (e.g., in the presence of atelectatic lung tissue) involves biomechanical processes that may precipitate further lung damage: concentration of mechanical forces, propagation of gas-liquid interfaces, and remote overdistension. Knowledge of such pathophysiologic mechanisms of atelectasis and their consequences in the healthy and diseased lung should guide optimal clinical management.
Collapse
Affiliation(s)
- Congli Zeng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Lagier
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jae-Woo Lee
- Department of Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Marcos F. Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Amado-Rodríguez L, Del Busto C, López-Alonso I, Parra D, Mayordomo-Colunga J, Arias-Guillén M, Albillos-Almaraz R, Martín-Vicente P, López-Martínez C, Huidobro C, Camporota L, Slutsky AS, Albaiceta GM. Biotrauma during ultra-low tidal volume ventilation and venoarterial extracorporeal membrane oxygenation in cardiogenic shock: a randomized crossover clinical trial. Ann Intensive Care 2021; 11:132. [PMID: 34453620 PMCID: PMC8397875 DOI: 10.1186/s13613-021-00919-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
Background Cardiogenic pulmonary oedema (CPE) may contribute to ventilator-associated lung injury (VALI) in patients with cardiogenic shock. The appropriate ventilatory strategy remains unclear. We aimed to evaluate the impact of ultra-low tidal volume ventilation with tidal volume of 3 ml/kg predicted body weight (PBW) in patients with CPE and veno–arterial extracorporeal membrane oxygenation (V–A ECMO) on lung inflammation compared to conventional ventilation. Methods A single-centre randomized crossover trial was performed in the Cardiac Intensive Care Unit (ICU) at a tertiary university hospital. Seventeen adults requiring V–A ECMO and mechanical ventilation due to cardiogenic shock were included from February 2017 to December 2018. Patients were ventilated for two consecutive periods of 24 h with tidal volumes of 6 and 3 ml/kg of PBW, respectively, applied in random order. Primary outcome was the change in proinflammatory mediators in bronchoalveolar lavage fluid (BALF) between both ventilatory strategies. Results Ventilation with 3 ml/kg PBW yielded lower driving pressures and end-expiratory lung volumes. Overall, there were no differences in BALF cytokines. Post hoc analyses revealed that patients with high baseline levels of IL-6 showed statistically significant lower levels of IL-6 and IL-8 during ultra-low tidal volume ventilation. This reduction was significantly proportional to the decrease in driving pressure. In contrast, those with lower IL-6 baseline levels showed a significant increase in these biomarkers. Conclusions Ultra-low tidal volume ventilation in patients with CPE and V–A ECMO may attenuate inflammation in selected cases. VALI may be driven by an interaction between the individual proinflammatory profile and the mechanical load overimposed by the ventilator. Trial registration The trial was registered in ClinicalTrials.gov (identifier NCT03041428, Registration date: 2nd February 2017). Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00919-0.
Collapse
Affiliation(s)
- Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain. .,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Cecilia Del Busto
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Parra
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Juan Mayordomo-Colunga
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Cuidados Intensivos Pediátricos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Miguel Arias-Guillén
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Neumología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Rodrigo Albillos-Almaraz
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, King's College, London, UK
| | - Arthur S Slutsky
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
19
|
Bastia L, Engelberts D, Osada K, Katira BH, Damiani LF, Yoshida T, Chen L, Ferguson ND, Amato MBP, Post M, Kavanagh BP, Brochard L. Role of Positive End-Expiratory Pressure and Regional Transpulmonary Pressure in Asymmetrical Lung Injury. Am J Respir Crit Care Med 2021; 203:969-976. [PMID: 33091317 DOI: 10.1164/rccm.202005-1556oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Asymmetrical lung injury is a frequent clinical presentation. Regional distribution of Vt and positive end-expiratory pressure (PEEP) could result in hyperinflation of the less-injured lung. The validity of esophageal pressure (Pes) is unknown.Objectives: To compare, in asymmetrical lung injury, Pes with directly measured pleural pressures (Ppl) of both sides and investigate how PEEP impacts ventilation distribution and the regional driving transpulmonary pressure (inspiratory - expiratory).Methods: Fourteen mechanically ventilated pigs with lung injury were studied. One lung was blocked while the contralateral one underwent surfactant lavage and injurious ventilation. Airway pressure and Pes were measured, as was Ppl in the dorsal and ventral pleural space adjacent to each lung. Distribution of ventilation was assessed by electrical impedance tomography. PEEP was studied through decremental steps.Measurements and Results: Ventral and dorsal Ppl were similar between the injured and the noninjured lung across all PEEP levels. Dorsal Ppl and Pes were similar. The driving transpulmonary pressure was similar in the two lungs. Vt distribution between lungs was different at zero end-expiratory pressure (≈70% of Vt going in noninjured lung) owing to different respiratory system compliance (8.3 ml/cm H2O noninjured lung vs. 3.7 ml/cm H2O injured lung). PEEP at 10 cm H2O with transpulmonary pressure around zero homogenized Vt distribution opening the lungs. PEEP ≥16 cm H2O equalized distribution of Vt but with overdistension for both lungs.Conclusions: Despite asymmetrical lung injury, Ppl between injured and noninjured lungs is equalized and esophageal pressure is a reliable estimate of dorsal Ppl. Driving transpulmonary pressure is similar for both lungs. Vt distribution results from regional respiratory system compliance. Moderate PEEP homogenizes Vt distribution between lungs without generating hyperinflation.
Collapse
Affiliation(s)
- Luca Bastia
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Doreen Engelberts
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kohei Osada
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bhushan H Katira
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,The Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Institute of Medical Science
| | - L Felipe Damiani
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Takeshi Yoshida
- The Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Lu Chen
- Interdepartmental Division of Critical Care Medicine.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada; and
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,The Institute of Medical Science
| | - Brian P Kavanagh
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Institute of Medical Science.,Department of Critical Care Medicine, Hospital for Sick Children, and.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Nguyen TK, Mai DH, Le AN, Nguyen QH, Nguyen CT, Vu TA. A review of intraoperative lung-protective mechanical ventilation strategy. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2021. [DOI: 10.1016/j.tacc.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Gaver DP, Nieman GF, Gatto LA, Cereda M, Habashi NM, Bates JHT. The POOR Get POORer: A Hypothesis for the Pathogenesis of Ventilator-induced Lung Injury. Am J Respir Crit Care Med 2020; 202:1081-1087. [PMID: 33054329 DOI: 10.1164/rccm.202002-0453cp] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Protective ventilation strategies for the injured lung currently revolve around the use of low Vt, ostensibly to avoid volutrauma, together with positive end-expiratory pressure to increase the fraction of open lung and reduce atelectrauma. Protective ventilation is currently applied in a one-size-fits-all manner, and although this practical approach has reduced acute respiratory distress syndrome deaths, mortality is still high and improvements are at a standstill. Furthermore, how to minimize ventilator-induced lung injury (VILI) for any given lung remains controversial and poorly understood. Here we present a hypothesis of VILI pathogenesis that potentially serves as a basis upon which minimally injurious ventilation strategies might be developed. This hypothesis is based on evidence demonstrating that VILI begins in isolated lung regions manifesting a Permeability-Originated Obstruction Response (POOR) in which alveolar leak leads to surfactant dysfunction and increases local tissue stresses. VILI progresses topographically outward from these regions in a POOR-get-POORer fashion unless steps are taken to interrupt it. We propose that interrupting the POOR-get-POORer progression of lung injury relies on two principles: 1) open the lung to minimize the presence of heterogeneity-induced stress concentrators that are focused around the regions of atelectasis, and 2) ventilate in a patient-dependent manner that minimizes the number of lung units that close during each expiration so that they are not forced to rerecruit during the subsequent inspiration. These principles appear to be borne out in both patient and animal studies in which expiration is terminated before derecruitment of lung units has enough time to occur.
Collapse
Affiliation(s)
- Donald P Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care and.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Maryland; and
| | - Jason H T Bates
- Department of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
22
|
Zeng C, Motta-Ribeiro GC, Hinoshita T, Lessa MA, Winkler T, Grogg K, Kingston NM, Hutchinson JN, Sholl LM, Fang X, Varelas X, Layne MD, Baron RM, Vidal Melo MF. Lung Atelectasis Promotes Immune and Barrier Dysfunction as Revealed by Transcriptome Sequencing in Female Sheep. Anesthesiology 2020; 133:1060-1076. [PMID: 32796202 PMCID: PMC7572680 DOI: 10.1097/aln.0000000000003491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pulmonary atelectasis is frequent in clinical settings. Yet there is limited mechanistic understanding and substantial clinical and biologic controversy on its consequences. The authors hypothesize that atelectasis produces local transcriptomic changes related to immunity and alveolar-capillary barrier function conducive to lung injury and further exacerbated by systemic inflammation. METHODS Female sheep underwent unilateral lung atelectasis using a left bronchial blocker and thoracotomy while the right lung was ventilated, with (n = 6) or without (n = 6) systemic lipopolysaccharide infusion. Computed tomography guided samples were harvested for NextGen RNA sequencing from atelectatic and aerated lung regions. The Wald test was used to detect differential gene expression as an absolute fold change greater than 1.5 and adjusted P value (Benjamini-Hochberg) less than 0.05. Functional analysis was performed by gene set enrichment analysis. RESULTS Lipopolysaccharide-unexposed atelectatic versus aerated regions presented 2,363 differentially expressed genes. Lipopolysaccharide exposure induced 3,767 differentially expressed genes in atelectatic lungs but only 1,197 genes in aerated lungs relative to the corresponding lipopolysaccharide-unexposed tissues. Gene set enrichment for immune response in atelectasis versus aerated tissues yielded negative normalized enrichment scores without lipopolysaccharide (less than -1.23, adjusted P value less than 0.05) but positive scores with lipopolysaccharide (greater than 1.33, adjusted P value less than 0.05). Leukocyte-related processes (e.g., leukocyte migration, activation, and mediated immunity) were enhanced in lipopolysaccharide-exposed atelectasis partly through interferon-stimulated genes. Furthermore, atelectasis was associated with negatively enriched gene sets involving alveolar-capillary barrier function irrespective of lipopolysaccharide (normalized enrichment scores less than -1.35, adjusted P value less than 0.05). Yes-associated protein signaling was dysregulated with lower nuclear distribution in atelectatic versus aerated lung (lipopolysaccharide-unexposed: 10.0 ± 4.2 versus 13.4 ± 4.2 arbitrary units, lipopolysaccharide-exposed: 8.1 ± 2.0 versus 11.3 ± 2.4 arbitrary units, effect of lung aeration, P = 0.003). CONCLUSIONS Atelectasis dysregulates the local pulmonary transcriptome with negatively enriched immune response and alveolar-capillary barrier function. Systemic lipopolysaccharide converts the transcriptomic immune response into positive enrichment but does not affect local barrier function transcriptomics. Interferon-stimulated genes and Yes-associated protein might be novel candidate targets for atelectasis-associated injury. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Congli Zeng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
| | - Gabriel C. Motta-Ribeiro
- Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Engineering Research, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Takuga Hinoshita
- Department of Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marcos Adriano Lessa
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
| | - Kira Grogg
- Department of Radiology, Massachusetts General Hospital, Boston, United States
| | - Nathan M Kingston
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - John N. Hutchinson
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, United States
| | - Lynette Marie Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Matthew D. Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Rebecca M. Baron
- Department of Medicine (Pulmonary and Critical Care), Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Marcos F. Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
23
|
Szabari MV, Takahashi K, Feng Y, Locascio JJ, Chao W, Carter EA, Vidal Melo MF, Musch G. Relation between Respiratory Mechanics, Inflammation, and Survival in Experimental Mechanical Ventilation. Am J Respir Cell Mol Biol 2019; 60:179-188. [PMID: 30199644 DOI: 10.1165/rcmb.2018-0100oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Low-tidal volume (Vt) ventilation might protect healthy lungs from volutrauma but lead to inflammation resulting from other mechanisms, namely alveolar derecruitment and the ensuing alveolar collapse and tidal reexpansion. We hypothesized that the different mechanisms of low- and high-volume injury would be reflected in different mechanical properties being associated with development of pulmonary inflammation and mortality: an increase of hysteresis, reflecting progressive alveolar derecruitment, at low Vt; an increase of elastance, as a result of overdistension, at higher Vt. Mice were allocated to "protective" (6 ml/kg) or "injurious" (15-20 ml/kg) Vt groups and ventilated for 16 hours or until death. We measured elastance and hysteresis; pulmonary IL-6, IL-1β, and MIP-2 (macrophage inflammatory protein 2); wet-to-dry ratio; and blood gases. Survival was greater in the protective group (60%) than in the injurious group (25%). Nonsurvivors showed increased pulmonary cytokines, particularly in the injurious group, with the increase of elastance reflecting IL-6 concentration. Survivors instead showed only modest increases of cytokines, independent of Vt and unrelated to the increase of elastance. No single lung strain threshold could discriminate survivors from nonsurvivors. Hysteresis increased faster in the protective group, but, contrary to our hypothesis, its change was inversely related to the concentration of cytokines. In this model, significant mortality associated with pulmonary inflammation occurred even for strain values as low as about 0.8. Low Vt improved survival. The accompanying increase of hysteresis was not associated with greater inflammation.
Collapse
Affiliation(s)
- Margit V Szabari
- 1 Department of Anesthesia, Critical Care and Pain Medicine.,2 Department of Medicine
| | | | - Yan Feng
- 1 Department of Anesthesia, Critical Care and Pain Medicine.,4 Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | | | - Wei Chao
- 1 Department of Anesthesia, Critical Care and Pain Medicine.,4 Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Edward A Carter
- 6 Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Guido Musch
- 1 Department of Anesthesia, Critical Care and Pain Medicine.,7 Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
24
|
Janz DR, Casey JD, Semler MW, Russell DW, Dargin J, Vonderhaar DJ, Dischert KM, West JR, Stempek S, Wozniak J, Caputo N, Heideman BE, Zouk AN, Gulati S, Stigler WS, Bentov I, Joffe AM, Rice TW, Janz DR, Vonderhaar DJ, Hoffman R, Turlapati N, Samant S, Clark P, Krishnan A, Gresens J, Hill C, Matthew B, Henry J, Miller J, Paccione R, Majid-Moosa A, Santanilla JI, Semler MW, Rice TW, Casey JD, Heideman BE, Wilfong EM, Hewlett JC, Halliday SJ, Kerchberger VE, Brown RM, Huerta LE, Merrick CM, Atwater T, Kocurek EG, McKown AC, Winters NI, Habegger LE, Mart MF, Berg JZ, Noblit CC, Flemmons LN, Dischert K, Joffe A, Bentov I, Archibald T, Arenas A, Baldridge C, Bansal G, Barnes C, Bishop N, Bryce B, Byrne L, Clement R, DeLaCruz C, Deshpande P, Gong Z, Green J, Henry A, Herstein A, Huang J, Heier J, Jenson B, Johnston L, Langeland C, Lee C, Nowlin A, Reece-Nguyen T, Schultz H, Segal G, Slade I, Solomon S, Stehpey S, Thompson R, Trausch D, Welker C, Zhang R, Russell D, Zouk A, Gulati S, Stigler W, Fain J, Garcia B, Lafon D, He C, O'Connor J, Campbell D, Powner J, McElwee S, et alJanz DR, Casey JD, Semler MW, Russell DW, Dargin J, Vonderhaar DJ, Dischert KM, West JR, Stempek S, Wozniak J, Caputo N, Heideman BE, Zouk AN, Gulati S, Stigler WS, Bentov I, Joffe AM, Rice TW, Janz DR, Vonderhaar DJ, Hoffman R, Turlapati N, Samant S, Clark P, Krishnan A, Gresens J, Hill C, Matthew B, Henry J, Miller J, Paccione R, Majid-Moosa A, Santanilla JI, Semler MW, Rice TW, Casey JD, Heideman BE, Wilfong EM, Hewlett JC, Halliday SJ, Kerchberger VE, Brown RM, Huerta LE, Merrick CM, Atwater T, Kocurek EG, McKown AC, Winters NI, Habegger LE, Mart MF, Berg JZ, Noblit CC, Flemmons LN, Dischert K, Joffe A, Bentov I, Archibald T, Arenas A, Baldridge C, Bansal G, Barnes C, Bishop N, Bryce B, Byrne L, Clement R, DeLaCruz C, Deshpande P, Gong Z, Green J, Henry A, Herstein A, Huang J, Heier J, Jenson B, Johnston L, Langeland C, Lee C, Nowlin A, Reece-Nguyen T, Schultz H, Segal G, Slade I, Solomon S, Stehpey S, Thompson R, Trausch D, Welker C, Zhang R, Russell D, Zouk A, Gulati S, Stigler W, Fain J, Garcia B, Lafon D, He C, O'Connor J, Campbell D, Powner J, McElwee S, Bardita C, D'Souza K, Pereira GB, Robinson S, Blumhof S, Dargin J, Stempek S, Wozniak J, Pataramekin P, Desai D, Yayarovich E, DeMatteo R, Somalaraiu S, Adler C, Reid C, Plourde M, Winnicki J, Noland T, Geva T, Gazourian L, Patel A, Eissa K, Giacotto J, Fitelson D, Colancecco M, Gray A, West JR, Caputo N, Ryan M, Parry T, Azan B, Khairat A, Morton R, Lewandowski D, Vaca C. Effect of a fluid bolus on cardiovascular collapse among critically ill adults undergoing tracheal intubation (PrePARE): a randomised controlled trial. THE LANCET RESPIRATORY MEDICINE 2019; 7:1039-1047. [DOI: 10.1016/s2213-2600(19)30246-2] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023]
|
25
|
Katira BH, Engelberts D, Otulakowski G, Giesinger RE, Yoshida T, Post M, Kuebler WM, Connelly KA, Kavanagh BP. Abrupt Deflation after Sustained Inflation Causes Lung Injury. Am J Respir Crit Care Med 2019; 198:1165-1176. [PMID: 29902384 DOI: 10.1164/rccm.201801-0178oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Ventilator management in acute respiratory distress syndrome usually focuses on setting parameters, but events occurring at ventilator disconnection are not well understood. OBJECTIVES To determine if abrupt deflation after sustained inflation causes lung injury. METHODS Male Sprague-Dawley rats were ventilated (low Vt, 6 ml/kg) and randomized to control (n = 6; positive end-expiratory pressure [PEEP], 3 cm H2O; 100 min) or intervention (n = 6; PEEP, 3-11 cm H2O over 70 min; abrupt deflation to zero PEEP; ventilation for 30 min). Lung function and injury was assessed, scanning electron microscopy performed, and microvascular leak timed by Evans blue dye (n = 4/group at 0, 2, 5, 10, and 20 min after deflation). Hemodynamic assessment included systemic arterial pressure (n = 6), echocardiography (n = 4), and right (n = 6) and left ventricular pressures (n = 6). MEASUREMENTS AND MAIN RESULTS Abrupt deflation after sustained inflation (vs. control) caused acute lung dysfunction (compliance 0.48 ± 1.0 vs. 0.82 ± 0.2 m/cm H2O, oxygen saturation as measured by pulse oximetry 67 ± 23.5 vs. 91 ± 4.4%; P < 0.05) and injury (wet/dry ratio 6.1 ± 0.6 vs. 4.6 ± 0.4; P < 0.01). Vascular leak was absent before deflation and maximal 5-10 minutes thereafter; injury was predominantly endothelial. At deflation, left ventricular preload, systemic blood pressure, and left ventricular end-diastolic pressure increased precipitously in proportion to the degree of injury. Injury caused later right ventricular failure. Sodium nitroprusside prevented the increase in systemic blood pressure and left ventricular end-diastolic pressure associated with deflation, and prevented injury. Injury did not occur with gradual deflation. CONCLUSIONS Abrupt deflation after sustained inflation can cause acute lung injury. It seems to be mediated by acute left ventricular decompensation (caused by increased left ventricular preload and afterload) that elevates pulmonary microvascular pressure; this directly injures the endothelium and causes edema, which is potentiated by the surge in pulmonary perfusion.
Collapse
Affiliation(s)
- Bhushan H Katira
- 1 Translational Medicine, The Research Institute.,2 Department of Critical Care Medicine.,3 Department of Anesthesiology, and.,4 Interdepartmental Division of Critical Care Medicine
| | | | | | - Regan E Giesinger
- 5 Division of Neonatology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Takeshi Yoshida
- 1 Translational Medicine, The Research Institute.,2 Department of Critical Care Medicine.,3 Department of Anesthesiology, and.,4 Interdepartmental Division of Critical Care Medicine
| | - Martin Post
- 1 Translational Medicine, The Research Institute
| | - Wolfgang M Kuebler
- 7 Department of Surgery, and.,8 Department of Physiology, University of Toronto, Toronto, Canada.,6 Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Canada; and.,9 Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Kim A Connelly
- 6 Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Canada; and
| | - Brian P Kavanagh
- 1 Translational Medicine, The Research Institute.,2 Department of Critical Care Medicine.,3 Department of Anesthesiology, and.,4 Interdepartmental Division of Critical Care Medicine
| |
Collapse
|
26
|
Marini JJ, Gattinoni L. Protecting the Ventilated Lung: Vascular Surge and Deflation Energetics. Am J Respir Crit Care Med 2019; 198:1112-1114. [PMID: 29966100 DOI: 10.1164/rccm.201806-1082ed] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- John J Marini
- 1 Department of Pulmonary and Critical Care Medicine University of Minnesota Minneapolis/St. Paul, Minnesota and
| | - Luciano Gattinoni
- 2 Department of Anesthesiology, Emergency and Intensive Care Medicine University of Göttingen, Germany Göttingen, Germany
| |
Collapse
|
27
|
Driving-pressure-independent protective effects of open lung approach against experimental acute respiratory distress syndrome. Crit Care 2018; 22:228. [PMID: 30243301 PMCID: PMC6151188 DOI: 10.1186/s13054-018-2154-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background The open lung approach (OLA) reportedly has lung-protective effects against acute respiratory distress syndrome (ARDS). Recently, lowering of the driving pressure (ΔP), rather than improvement in lung aeration per se, has come to be considered as the primary lung-protective mechanism of OLA. However, the driving pressure-independent protective effects of OLA have never been evaluated in experimental studies. We here evaluated whether OLA shows protective effects against experimental ARDS even when the ΔP is not lowered. Methods Lipopolysaccharide was intratracheally administered to rats to establish experimental ARDS. After 24 h, rats were mechanically ventilated and randomly allocated to the OLA or control group. In the OLA group, 5 cmH2O positive end-expiratory pressure (PEEP) and recruitment maneuver (RM) were applied. Neither PEEP nor RM was applied to the rats in the control group. Dynamic ΔP was kept at 15 cmH2O in both groups. After 6 h of mechanical ventilation, rats in both groups received RM to inflate reversible atelectasis of the lungs. Arterial blood gas analysis, lung computed tomography, histological evaluation, and comprehensive biochemical analysis were performed. Results OLA significantly improved lung aeration, arterial oxygenation, and gas exchange. Even after RM in both groups, the differences in these parameters between the two groups persisted, indicating that the atelectasis-induced respiratory dysfunction observed in the control group is not an easily reversible functional problem. Lung histological damage was severe in the dorsal dependent area in both groups, but was attenuated by OLA. White blood cell counts, protein concentrations, and tissue injury markers in the broncho-alveolar lavage fluid (BALF) were higher in the control than in the OLA group. Furthermore, levels of CXCL-7, a platelet-derived chemokine, were higher in the BALF from the control group, indicating that OLA protects the lungs by suppressing platelet activation. Conclusions OLA shows protective effects against experimental ARDS, even when the ΔP is not decreased. In addition to reducing ΔP, maintaining lung aeration seems to be important for lung protection in ARDS. Electronic supplementary material The online version of this article (10.1186/s13054-018-2154-2) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Nasrala MLS, Bolzan DW, Lage YG, Prado FS, Arena R, Lima PRL, Feguri G, Silva AMC, Marcondi NO, Hossne N, Guizilini S, Gomes WJ. Extended-time of Noninvasive Positive Pressure Ventilation Improves Tissue Perfusion after Coronary Artery Bypass Surgery: a Randomized Clinical Trial. Braz J Cardiovasc Surg 2018; 33:250-257. [PMID: 30043917 PMCID: PMC6089129 DOI: 10.21470/1678-9741-2017-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/20/2018] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To compare the effects of extended- versus short-time noninvasive positive pressure ventilation on pulmonary function, tissue perfusion, and clinical outcomes in the early postoperative period following coronary artery bypass surgery in patients with preserved left ventricular function. METHODS Patients were randomized into two groups according to noninvasive positive pressure ventilation intensity: short-time noninvasive positive pressure ventilation n=20 (S-NPPV) and extended-time noninvasive positive pressure ventilation n=21 (E-NPPV). S-NPPV was applied for 60 minutes during immediate postoperative period and 10 minutes, twice daily, from postoperative days 1-5. E-NPPV was performed for at least six hours during immediate postoperative period and 60 minutes, twice daily, from postoperative days 1-5. As a primary outcome, tissue perfusion was determined by central venous oxygen saturation and blood lactate level measured after anesthetic induction, immediately after extubation and following noninvasive positive pressure ventilation protocols. As a secondary outcome, pulmonary function tests were performed preoperatively and in the postoperative days 1, 3, and 5; clinical outcomes were recorded. RESULTS Significant drop in blood lactate levels and an improvement in central venous oxygen saturation values in the E-NPPV group were observed when compared with S-NPPV group after study protocol (P<0.01). The E-NPPV group presented higher preservation of postoperative pulmonary function as well as lower incidence of respiratory events and shorter postoperative hospital stay (P<0.05). CONCLUSION Prophylactic E-NPPV administered in the early postoperative period of coronary artery bypass surgery resulted in greater improvements in tissue perfusion, pulmonary function and clinical outcomes than S-NPPV, in patients with preserved left ventricular function. TRIAL REGISTRATION Brazilian Registry of Clinical trial - RBR7sqj78 - http://www.ensaiosclinicos.gov.br.
Collapse
Affiliation(s)
- Mara L S Nasrala
- Cardiology and Cardiovascular Surgery Disciplines, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil.,Physical Therapy Department, Hospital Santa Rosa, Cuiabá, MT, Brazil
| | - Douglas W Bolzan
- Cardiology and Cardiovascular Surgery Disciplines, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Yumi G Lage
- Physical Therapy Department, Hospital Santa Rosa, Cuiabá, MT, Brazil.,Physical Therapy Department, Hospital São Mateus, Cuiabá, MT, Brazil
| | - Fabiana S Prado
- Physical Therapy Department, Hospital Santa Rosa, Cuiabá, MT, Brazil.,Physical Therapy Department, Hospital São Mateus, Cuiabá, MT, Brazil
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Paulo R L Lima
- Physical Therapy Department, Hospital Santa Rosa, Cuiabá, MT, Brazil.,Physical Therapy Department, Hospital São Mateus, Cuiabá, MT, Brazil
| | - Gibran Feguri
- Physical Therapy Department, Hospital Santa Rosa, Cuiabá, MT, Brazil.,Physical Therapy Department, Hospital São Mateus, Cuiabá, MT, Brazil
| | - Ageo M C Silva
- Public Health Department, Universidade Federal do Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Natasha O Marcondi
- Cardiology and Cardiovascular Surgery Disciplines, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Nelson Hossne
- Cardiology and Cardiovascular Surgery Disciplines, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Solange Guizilini
- Cardiology and Cardiovascular Surgery Disciplines, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil.,Department of the Human Movement Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Walter J Gomes
- Cardiology and Cardiovascular Surgery Disciplines, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
29
|
Mirza H, Garcia JA, Crawford E, Pepe J, Zussman M, Wadhawan R, Oh W. Natural History of Postnatal Cardiopulmonary Adaptation in Infants Born Extremely Preterm and Risk for Death or Bronchopulmonary Dysplasia. J Pediatr 2018; 198:187-193.e1. [PMID: 29625730 DOI: 10.1016/j.jpeds.2018.02.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/04/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study the natural history of postnatal cardiopulmonary adaptation in infants born extremely preterm and establish its association with death or bronchopulmonary dysplasia (BPD). STUDY DESIGN This was a prospective, observational, cohort study of infants born extremely preterm (<29 weeks). Initial echocardiogram was performed at <48 hours of life, followed by serial echocardiograms every 24-48 hours until 14 days of life. Resolution or no resolution of pulmonary hypertension (PH) at 72-96 hours was considered normal or delayed postnatal cardiopulmonary adaptation, respectively. PH between 96 hours and 14 days was defined as subsequent PH. Elevated pulmonary artery pressure throughout the 14 days of life was considered persistent PH. BPD was assessed at 36 weeks of postmenstrual age. RESULTS Sixty infants were enrolled; 2 died before a sequential echocardiogram could be done at 72-96 hours. Normal and delayed cardiopulmonary adaptation were noted in 26 (45%) and 32 (55%) infants, respectively. Five patterns of postnatal cardiopulmonary adaptation were recognized: normal without subsequent PH (n = 20), normal with subsequent PH (n = 6), delayed adaptation without subsequent PH (n = 6), delayed adaptation with subsequent PH (n = 16), and persistent PH (n = 10). Infants with delayed cardiopulmonary adaptation were of lower gestation and birth weight and required prolonged ventilation and supplemental oxygen (P < .05). On multivariate analysis, the incidence of death or BPD was significantly greater among infants with delayed adaptation (P < .001). CONCLUSION Infants born extremely preterm have normal or delayed postnatal cardiopulmonary adaptation that can be complicated by subsequent or persistent PH. Delayed cardiopulmonary adaptation is associated independently with death or BPD.
Collapse
Affiliation(s)
- Hussnain Mirza
- Center for Neonatal Care, Florida Hospital for Children/University of Central Florida College of Medicine, Orlando, FL.
| | - Jorge A Garcia
- Division of Pediatric Cardiology, Florida Hospital for Children, Orlando, FL
| | - Elizabeth Crawford
- Division of Pediatric Echocardiography, Florida Hospital Cardiovascular Institute, Orlando, FL
| | - Julie Pepe
- Office of Research Advancement and Support, Florida Hospital, Orlando, FL
| | - Matthew Zussman
- Division of Pediatric Cardiology, Florida Hospital for Children, Orlando, FL
| | - Rajan Wadhawan
- Center for Neonatal Care, Florida Hospital for Children/University of Central Florida College of Medicine, Orlando, FL
| | - William Oh
- Center for Pediatric Research, Florida Hospital for Children, Orlando, FL
| |
Collapse
|
30
|
Okada S, Ito K, Shimada J, Kato D, Shimomura M, Tsunezuka H, Miyata N, Ishihara S, Furuya T, Inoue M. Clinical application of postoperative non-invasive positive pressure ventilation after lung cancer surgery. Gen Thorac Cardiovasc Surg 2018; 66:565-572. [DOI: 10.1007/s11748-018-0963-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/21/2018] [Indexed: 01/26/2023]
|
31
|
Nieman GF, Andrews P, Satalin J, Wilcox K, Kollisch-Singule M, Madden M, Aiash H, Blair SJ, Gatto LA, Habashi NM. Acute lung injury: how to stabilize a broken lung. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:136. [PMID: 29793554 PMCID: PMC5968707 DOI: 10.1186/s13054-018-2051-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathophysiology of acute respiratory distress syndrome (ARDS) results in heterogeneous lung collapse, edema-flooded airways and unstable alveoli. These pathologic alterations in alveolar mechanics (i.e. dynamic change in alveolar size and shape with each breath) predispose the lung to secondary ventilator-induced lung injury (VILI). It is our viewpoint that the acutely injured lung can be recruited and stabilized with a mechanical breath until it heals, much like casting a broken bone until it mends. If the lung can be "casted" with a mechanical breath, VILI could be prevented and ARDS incidence significantly reduced.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Penny Andrews
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Kailyn Wilcox
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Michaela Kollisch-Singule
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Maria Madden
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Hani Aiash
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Sarah J Blair
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.,Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nader M Habashi
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| |
Collapse
|
32
|
Rousset D, Riu-Poulenc B, Silva S. Monitorage hémodynamique dans le SDRA : que savoir en 2018. MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/rea-2018-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environ deux tiers des patients atteints de syndrome de détresse respiratoire aiguë (SDRA) présenteront une instabilité hémodynamique avec recours aux vasopresseurs. Sous ventilation mécanique, la diminution de précharge du ventricule droit (VD) suite à l’augmentation de la pression pleurale et l’augmentation de la postcharge du VD secondaire à l’élévation de la pression transpulmonaire seront des phénomènes exacerbés en cas de SDRA. Les risques encourus sont une diminution du débit cardiaque global et l’évolution vers un cœur pulmonaire aigu (CPA). Le contrôle de la pression motrice, de la pression expiratoire positive et la lutte contre l’hypoxémie et l’hypercapnie auront un impact autant respiratoire qu’hémodynamique. L’échographie cardiaque tient un rôle central au sein du monitorage hémodynamique au cours du SDRA, à travers l’évaluation du débit cardiaque, des différentes pressions de remplissage intracardiaques et le diagnostic de CPA. Le cathéter artériel pulmonaire est un outil de monitorage complet, indiqué en cas de défaillance cardiaque droite ou hypertension artérielle pulmonaire sévère ; mais le risque d’effets indésirables est élevé. Les moniteurs utilisant la thermodilution transpulmonaire permettent un monitorage du débit cardiaque en temps réel et sont d’une aide précieuse dans l’évaluation du statut volumique. L’évaluation de la précharge dépendance ne doit pas s’effectuer sur les variabilités respiratoires de la pression pulsée ou du diamètre des veines caves, mais à travers l’épreuve de lever de jambe passif, le test d’occlusion télé-expiratoire ou encore les épreuves de remplissage titrées.
Collapse
|
33
|
Bunge JJH, Caliskan K, Gommers D, Reis Miranda D. Right ventricular dysfunction during acute respiratory distress syndrome and veno-venous extracorporeal membrane oxygenation. J Thorac Dis 2018; 10:S674-S682. [PMID: 29732186 DOI: 10.21037/jtd.2017.10.75] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Severe ARDS can be complicated by right ventricular (RV) failure. The etiology of RV failure in ARDS is multifactorial. Vascular alterations, hypoxia, hypercapnia and effects of mechanical ventilation may play a role. Echocardiography has an important role in diagnosing RV failure in ARDS patients. Once extracorporeal membrane oxygenation (ECMO) is indicated in these patients, the right ECMO modus needs to be chosen. In this review, the etiology, diagnosis and management of RV failure in ARDS will be briefly outlined. The beneficial effect of veno-venous (VV) ECMO on RV function in these patients will be illustrated. Based on this, we will give recommendations regarding choice of ECMO modus and provide an algorithm for management of RV failure in VV ECMO supported patients.
Collapse
Affiliation(s)
- Jeroen J H Bunge
- Department of Intensive Care, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kadir Caliskan
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Diederik Gommers
- Department of Intensive Care, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Dinis Reis Miranda
- Department of Intensive Care, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Spieth P, Güldner A, Uhlig C, Bluth T, Kiss T, Conrad C, Bischlager K, Braune A, Huhle R, Insorsi A, Tarantino F, Ball L, Schultz M, Abolmaali N, Koch T, Pelosi P, Gama de Abreu M. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery (PROVAR): a randomised controlled trial. Br J Anaesth 2018; 120:581-591. [DOI: 10.1016/j.bja.2017.11.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 07/31/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022] Open
|
35
|
Pourfathi M, Cereda M, Chatterjee S, Xin Y, Kadlecek S, Duncan I, Hamedani H, Siddiqui S, Profka H, Ehrich J, Ruppert K, Rizi RR. Lung Metabolism and Inflammation during Mechanical Ventilation; An Imaging Approach. Sci Rep 2018; 8:3525. [PMID: 29476083 PMCID: PMC5824838 DOI: 10.1038/s41598-018-21901-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of mortality in critically ill patients. Patients are currently managed by protective ventilation and alveolar recruitment using positive-end expiratory pressure (PEEP). However, the PEEP's effect on both pulmonary metabolism and regional inflammation is poorly understood. Here, we demonstrate the effect of PEEP on pulmonary anaerobic metabolism in mechanically ventilated injured rats, using hyperpolarized carbon-13 imaging. Pulmonary lactate-to-pyruvate ratio was measured in 21 rats; 14 rats received intratracheal instillation of hydrochloric-acid, while 7 rats received sham saline. 1 hour after acid/saline instillation, PEEP was lowered to 0 cmH2O in 7 injured rats (ZEEP group) and in all sham rats; PEEP was continued in the remaining 7 injured rats (PEEP group). Pulmonary compliance, oxygen saturation, histological injury scores, ICAM-1 expression and myeloperoxidase expression were measured. Lactate-to-pyruvate ratio progressively increased in the dependent lung during mechanical ventilation at ZEEP (p < 0.001), but remained unchanged in PEEP and sham rats. Lactate-to-pyruvate ratio was correlated with hyaline membrane deposition (r = 0.612), edema severity (r = 0.663), ICAM-1 (r = 0.782) and myeloperoxidase expressions (r = 0.817). Anaerobic pulmonary metabolism increases during lung injury progression and is contained by PEEP. Pulmonary lactate-to-pyruvate ratio may indicate in-vivo neutrophil activity due to atelectasis.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Ehrich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Protective effects of continuous positive airway pressure on a nonventilated lung during one-lung ventilation: A prospective laboratory study in rats. Eur J Anaesthesiol 2018; 33:776-83. [PMID: 27139568 DOI: 10.1097/eja.0000000000000460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The use of one-lung ventilation (OLV) to facilitate intrathoracic surgery is a cause of lung injury. OBJECTIVE We hypothesised that application of continuous positive airway pressure (CPAP) to a nonventilated lung during OLV would prevent alveolar hypoxia and blood flow shift from the nonventilated to the ventilated lung, thereby attenuating lung injury. DESIGN Controlled animal study. SETTINGS University laboratory. STUDY PARTICIPANTS Adult male Sprague-Dawley rats (n = 4 to 8 per group, depending on experiments). INTERVENTIONS Rats were alternately assigned to one of two ventilation protocol groups: control and CPAP groups. Rats received 240 min of OLV followed by 240 min of two-lung reventilation (re-TLV). The nonventilated lungs of rats in the control group were collapsed during OLV whereas rats in the CPAP group received CPAP (5 cmH2O with 100% oxygen) to the nonventilated lungs. MAIN OUTCOME MEASURES Pulmonary blood flow during OLV was measured by quantification of lung radioactivity after intravenous infusion of indium-labelled macroaggregated albumin. Inflammatory cytokines in the lungs after 240 min of OLV, and after the subsequent 240 min of re-TLV were measured. Additionally, we measured lung wet-to-dry weight ratios after re-TLV. We also measured lung malondialdehyde levels after re-TLV as an indicator of reactive oxygen species produced by reoxygenation. RESULTS Application of CPAP attenuated the pulmonary blood flow shift from the nonventilated to the ventilated lung. CPAP decreased the levels of IL-6, CXC chemokine ligand-1 and CC chemokine ligand-2 in both lungs after 240 min of OLV. CPAP also decreased CXC chemokine ligand-1 in the nonventilated lung and CC chemokine ligand-2 in both lungs after re-TLV. Moreover, wet-to-dry weight ratios of both lungs were decreased by application of CPAP. However, lung malondialdehyde concentrations were not affected by CPAP. CONCLUSIONS CPAP applied to the nonventilated lung during OLV suppresses blood flow shift and decreases inflammatory cytokines and water content in both lungs. Application of CPAP may attenuate lung injury during and after OLV.
Collapse
|
37
|
Cagle LA, Franzi LM, Linderholm AL, Last JA, Adams JY, Harper RW, Kenyon NJ. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model. PLoS One 2017; 12:e0187419. [PMID: 29112971 PMCID: PMC5675408 DOI: 10.1371/journal.pone.0187419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency of recruitment maneuvers to help ameloriate ventilator-induced lung injury.
Collapse
Affiliation(s)
- Laura A. Cagle
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
- * E-mail:
| | - Lisa M. Franzi
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
| | - Angela L. Linderholm
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
| | - Jerold A. Last
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
| | - Jason Y. Adams
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, Davis, Davis, CA, United States of America
| | - Richart W. Harper
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, Davis, Davis, CA, United States of America
| | - Nicholas J. Kenyon
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
38
|
Hottenrott MC, Krebs J, Pelosi P, Luecke T, Rocco PRM, Sticht C, Breedijk A, Yard B, Tsagogiorgas C. Effects of mechanical ventilation on gene expression profiles in renal allografts from brain dead rats. Respir Physiol Neurobiol 2017; 246:17-25. [PMID: 28768153 DOI: 10.1016/j.resp.2017.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Pathophysiological changes of brain death (BD) are impairing distal organ function and harming potential renal allografts. Whether ventilation strategies influence the quality of renal allografts from BD donors has not been thoroughly studied. 28 adult male Wistar rats were randomly assigned to four groups: 1) no brain death (NBD) with low tidal volume/low positive endexpiratory pressure (PEEP) titrated to minimal static elastance of the respiratory system (LVT/OLPEEP); 2) NBD with high tidal volume/low PEEP (HVT/LPEEP); 3) brain death (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. We hypothesized that HVT/LPEEP in BD leads to increased interleukin 6 (IL-6) gene expression and impairs potential renal allografts after six hours of mechanical ventilation. We assessed inflammatory cytokines in serum, genome wide gene expression profiles and quantitative PCR (qPCR) in kidney tissue. The influence of BD on renal gene-expression profiles was greater than the influence of the ventilation strategy. In BD, LVT ventilation did not influence the inflammatory parameters or kidney function in our experimental model.
Collapse
Affiliation(s)
- Maximilia C Hottenrott
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Joerg Krebs
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino- IST, University of Genoa, Genoa, Italy
| | - Thomas Luecke
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carsten Sticht
- Centre for Medical Research (ZMF), University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annette Breedijk
- Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Internal Medicine V, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Charalambos Tsagogiorgas
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
39
|
Pelosi P, Ball L, de Abreu MG, Rocco PRM. Better Physiology does not Necessarily Translate Into Improved Clinical Outcome. Turk J Anaesthesiol Reanim 2016; 44:165-166. [PMID: 27909588 DOI: 10.5152/tjar.2016.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, IRCCS San Martino - IST, Genoa, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, IRCCS San Martino - IST, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Therapy, Technische Universität Dresden, Dresden, Germany
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophisics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Critical care ultrasonography in acute respiratory failure. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:228. [PMID: 27524204 PMCID: PMC4983787 DOI: 10.1186/s13054-016-1400-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/01/2016] [Indexed: 12/12/2022]
Abstract
Acute respiratory failure (ARF) is a leading indication for performing critical care ultrasonography (CCUS) which, in these patients, combines critical care echocardiography (CCE) and chest ultrasonography. CCE is ideally suited to guide the diagnostic work-up in patients presenting with ARF since it allows the assessment of left ventricular filling pressure and pulmonary artery pressure, and the identification of a potential underlying cardiopathy. In addition, CCE precisely depicts the consequences of pulmonary vascular lesions on right ventricular function and helps in adjusting the ventilator settings in patients sustaining moderate-to-severe acute respiratory distress syndrome. Similarly, CCE helps in identifying patients at high risk of ventilator weaning failure, depicts the mechanisms of weaning pulmonary edema in those patients who fail a spontaneous breathing trial, and guides tailored therapeutic strategy. In all these clinical settings, CCE provides unparalleled information on both the efficacy and tolerance of therapeutic changes. Chest ultrasonography provides further insights into pleural and lung abnormalities associated with ARF, irrespective of its origin. It also allows the assessment of the effects of treatment on lung aeration or pleural effusions. The major limitation of lung ultrasonography is that it is currently based on a qualitative approach in the absence of standardized quantification parameters. CCE combined with chest ultrasonography rapidly provides highly relevant information in patients sustaining ARF. A pragmatic strategy based on the serial use of CCUS for the management of patients presenting with ARF of various origins is detailed in the present manuscript.
Collapse
|
41
|
Shah TG, Wadia SK, Kovach J, Fogg L, Tandon R. Echocardiographic parameters of right ventricular function predict mortality in acute respiratory distress syndrome: a pilot study. Pulm Circ 2016; 6:155-60. [PMID: 27252840 DOI: 10.1086/685549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Right ventricular (RV) dysfunction in acute respiratory distress syndrome (ARDS) contributes to increased mortality. Our aim is to identify reproducible transthoracic echocardiography (TTE) parameters of RV dysfunction that can be used to predict outcomes in ARDS. We performed a retrospective single-center cohort pilot study measuring tricuspid annular plane systolic excursion (TAPSE), Tei index, RV-fractional area change (RV-FAC), pulmonary artery systolic pressure (PASP), and septal shift, reevaluated by an independent blinded cardiologist (JK). Thirty-eight patients were included. Patients were divided on the basis of 30-day survival. Thirty-day mortality was 47%. Survivors were younger than nonsurvivors. Survivors had a higher pH, PaO2∶FiO2 ratio, and TAPSE. Acute Physiology and Chronic Health Evaluation II (APACHE II), Simplified Acute Physiology Score II (SAPS II), and Sequential Organ Failure Assessment (SOFA) scores were lower in survivors. TAPSE has the strongest association with increased 30-day mortality from date of TTE. Accordingly, TAPSE has a strong positive correlation with PaO2∶FiO2 ratios, and Tei index has a strong negative correlation with PaO2∶FiO2 ratios. Septal shift was associated with lower PaO2∶FiO2 ratios. Decrease in TAPSE, increase in Tei index, and septal shift were seen in the severe ARDS group. In multivariate logistic regression models, TAPSE maintained a significant association with mortality independent of age, pH, PaO2∶FiO2 ratios, positive end expiratory pressure, PCO2, serum bicarbonate, plateau pressures, driving pressures, APACHE II, SAPS II, and SOFA scores. In conclusion, TAPSE and other TTE parameters should be used as novel predictive indicators for RV dysfunction in ARDS. These parameters can be used as surrogate noninvasive RV hemodynamic measurements to be manipulated to improve mortality in patients with ARDS and contributory RV dysfunction.
Collapse
Affiliation(s)
- Trushil G Shah
- Department of Internal Medicine, Section of Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Subeer K Wadia
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie Kovach
- Department of Internal Medicine, Section of Cardiology, Rush University Medical Center, Chicago, Illinois, USA
| | - Louis Fogg
- Rush University College of Nursing, Rush University, Chicago, Illinois, USA
| | - Rajive Tandon
- Department of Internal Medicine, Section of Pulmonary and Critical Care Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
42
|
Mekontso Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 2016; 42:862-870. [PMID: 26650055 DOI: 10.1007/s00134-015-4141-2] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
Abstract
RATIONALE Increased right ventricle (RV) afterload during acute respiratory distress syndrome (ARDS) may induce acute cor pulmonale (ACP). OBJECTIVES To determine the prevalence and prognosis of ACP and build a clinical risk score for the early detection of ACP. METHODS This was a prospective study in which 752 patients with moderate-to-severe ARDS receiving protective ventilation were assessed using transesophageal echocardiography in 11 intensive care units. The study cohort was randomly split in a derivation (n = 502) and a validation (n = 250) cohort. MEASUREMENTS AND MAIN RESULTS ACP was defined as septal dyskinesia with a dilated RV [end-diastolic RV/left ventricle (LV) area ratio >0.6 (≥1 for severe dilatation)]. ACP was found in 164 of the 752 patients (prevalence of 22 %; 95 % confidence interval 19-25 %). In the derivation cohort, the ACP risk score included four variables [pneumonia as a cause of ARDS, driving pressure ≥18 cm H2O, arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) ratio <150 mmHg, and arterial carbon dioxide partial pressure ≥48 mmHg]. The ACP risk score had a reasonable discrimination and a good calibration. Hospital mortality did not differ between patients with or without ACP, but it was significantly higher in patients with severe ACP than in the other patients [31/54 (57 %) vs. 291/698 (42 %); p = 0.03]. Independent risk factors for hospital mortality included severe ACP along with male gender, age, SAPS II, shock, PaO2/FiO2 ratio, respiratory rate, and driving pressure, while prone position was protective. CONCLUSIONS We report a 22 % prevalence of ACP and a poor outcome of severe ACP. We propose a simple clinical risk score for early identification of ACP that could trigger specific therapeutic strategies to reduce RV afterload.
Collapse
Affiliation(s)
- Armand Mekontso Dessap
- Service de Réanimation Médicale, DHU ATVB, Hôpitaux Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51 Av Mal de Lattre de Tassigny, 94010, Créteil Cedex, France.
- Groupe de Recherche Clinique CARMAS, Institut Mondor de Recherche Biomédicale, Faculté de Médecine de Créteil, Université Paris Est Créteil Val de Marne, 94010, Créteil, France.
| | - Florence Boissier
- Service de Réanimation Médicale, DHU ATVB, Hôpitaux Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51 Av Mal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Institut Mondor de Recherche Biomédicale, Faculté de Médecine de Créteil, Université Paris Est Créteil Val de Marne, 94010, Créteil, France
| | - Cyril Charron
- Service de Réanimation, Pôle Thorax-Maladies Cardiovasculaires-Abdomen-Métabolisme, Hôpital Ambroise Paré, Assistance Publique - Hôpitaux de Paris, 92104, Boulogne-Billancourt, France
| | - Emmanuelle Bégot
- Réanimation polyvalente, Hôpital Dupuytren, Centre hospitalier et universitaire de Limoges, 87042, Limoges, France
- Centre d'Investigation Clinique - INSERM 1435, Hôpital Dupuytren, CHU Limoges, Limoges, France
- University of Limoges, Limoges, France
| | - Xavier Repessé
- Service de Réanimation, Pôle Thorax-Maladies Cardiovasculaires-Abdomen-Métabolisme, Hôpital Ambroise Paré, Assistance Publique - Hôpitaux de Paris, 92104, Boulogne-Billancourt, France
| | - Annick Legras
- Réanimation médicale, CHU de Tours, 37044, Tours, France
| | - Christian Brun-Buisson
- Service de Réanimation Médicale, DHU ATVB, Hôpitaux Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51 Av Mal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Institut Mondor de Recherche Biomédicale, Faculté de Médecine de Créteil, Université Paris Est Créteil Val de Marne, 94010, Créteil, France
| | | | - Antoine Vieillard-Baron
- Service de Réanimation, Pôle Thorax-Maladies Cardiovasculaires-Abdomen-Métabolisme, Hôpital Ambroise Paré, Assistance Publique - Hôpitaux de Paris, 92104, Boulogne-Billancourt, France
- Faculté de Medicine, Université de Versailles Saint-Quentin en Yvelines, 78280, Saint-Quentin en Yvelines, France
- Equipe 5 (EpReC, Epidémiologie Rénale et Cardiovasculaire), Centre de recherche en épidémiologie et santé des populations - INSERM U-1018, 94807, Villejuif, France
| |
Collapse
|
43
|
Vieillard-Baron A, Matthay M, Teboul JL, Bein T, Schultz M, Magder S, Marini JJ. Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med 2016; 42:739-749. [PMID: 27038480 DOI: 10.1007/s00134-016-4326-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) is frequently associated with hemodynamic instability which appears as the main factor associated with mortality. Shock is driven by pulmonary hypertension, deleterious effects of mechanical ventilation (MV) on right ventricular (RV) function, and associated-sepsis. Hemodynamic effects of ventilation are due to changes in pleural pressure (Ppl) and changes in transpulmonary pressure (TP). TP affects RV afterload, whereas changes in Ppl affect venous return. Tidal forces and positive end-expiratory pressure (PEEP) increase pulmonary vascular resistance (PVR) in direct proportion to their effects on mean airway pressure (mPaw). The acutely injured lung has a reduced capacity to accommodate flowing blood and increases of blood flow accentuate fluid filtration. The dynamics of vascular pressure may contribute to ventilator-induced injury (VILI). In order to optimize perfusion, improve gas exchange, and minimize VILI risk, monitoring hemodynamics is important. RESULTS During passive ventilation pulse pressure variations are a predictor of fluid responsiveness when conditions to ensure its validity are observed, but may also reflect afterload effects of MV. Central venous pressure can be helpful to monitor the response of RV function to treatment. Echocardiography is suitable to visualize the RV and to detect acute cor pulmonale (ACP), which occurs in 20-25 % of cases. Inserting a pulmonary artery catheter may be useful to measure/calculate pulmonary artery pressure, pulmonary and systemic vascular resistance, and cardiac output. These last two indexes may be misleading, however, in cases of West zones 2 or 1 and tricuspid regurgitation associated with RV dilatation. Transpulmonary thermodilution may be useful to evaluate extravascular lung water and the pulmonary vascular permeability index. To ensure adequate intravascular volume is the first goal of hemodynamic support in patients with shock. The benefit and risk balance of fluid expansion has to be carefully evaluated since it may improve systemic perfusion but also may decrease ventilator-free days, increase pulmonary edema, and promote RV failure. ACP can be prevented or treated by applying RV protective MV (low driving pressure, limited hypercapnia, PEEP adapted to lung recruitability) and by prone positioning. In cases of shock that do not respond to intravascular fluid administration, norepinephrine infusion and vasodilators inhalation may improve RV function. Extracorporeal membrane oxygenation (ECMO) has the potential to be the cause of, as well as a remedy for, hemodynamic problems. Continuous thermodilution-based and pulse contour analysis-based cardiac output monitoring are not recommended in patients treated with ECMO, since the results are frequently inaccurate. Extracorporeal CO2 removal, which could have the capability to reduce hypercapnia/acidosis-induced ACP, cannot currently be recommended because of the lack of sufficient data.
Collapse
Affiliation(s)
- A Vieillard-Baron
- Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Service de Réanimation, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, 9, avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France.
- University of Versailles Saint-Quentin en Yvelines, Faculty of Medicine Paris Ile-de-France Ouest, 78280, Saint-Quentin en Yvelines, France.
- INSERM U-1018, CESP, Team 5 (EpReC, Renal and Cardiovascular Epidemiology), UVSQ, 94807, Villejuif, France.
| | - M Matthay
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - J L Teboul
- Assistance Publique-Hôpitaux de Paris, Hôpitaux universitaires Paris-Sud, Hôpital de Bicêtre, service de réanimation médicale, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR S_999, Le Kremlin-Bicêtre, France
| | - T Bein
- Department of Anesthesia, Operative Intensive Care, University Hospital Regensburg, 93042, Regensburg, Germany
| | - M Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands
| | - S Magder
- Department of Critical Care, McGill University Health Centre (Glen Site Campus), Montreal, Canada
| | - J J Marini
- Departments of Pulmonary and Critical Care Medicine, University of Minnesota and Regions Hospital, Minneapolis/St. Paul, MN, USA
| |
Collapse
|
44
|
He HW, Liu DW. Permissive hypoxemia/conservative oxygenation strategy: Dr. Jekyll or Mr. Hyde? J Thorac Dis 2016; 8:748-750. [PMID: 27162643 PMCID: PMC4842825 DOI: 10.21037/jtd.2016.03.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Huai-Wu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Da-Wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
45
|
Cherpanath TGV, Smeding L, Hirsch A, Lagrand WK, Schultz MJ, Groeneveld ABJ. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury. BMC Anesthesiol 2015; 15:140. [PMID: 26446079 PMCID: PMC4597388 DOI: 10.1186/s12871-015-0123-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/03/2015] [Indexed: 01/06/2023] Open
Abstract
Background High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Methods Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Results Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p < 0.001). Eed increased over time in all groups except for the rats receiving low tidal volume ventilation without LPS (p = 0.223). A significant interaction (p < 0.001) was found between tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Conclusions Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.
Collapse
Affiliation(s)
- Thomas G V Cherpanath
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Lonneke Smeding
- Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Alexander Hirsch
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Wim K Lagrand
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A B Johan Groeneveld
- Department of Intensive Care Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Krebs J, Kolz A, Tsagogiorgas C, Pelosi P, Rocco PR, Luecke T. Effects of lipopolysaccharide-induced inflammation on initial lung fibrosis during open-lung mechanical ventilation in rats. Respir Physiol Neurobiol 2015; 212-214:25-32. [DOI: 10.1016/j.resp.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/12/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
|
47
|
Hodgson LE, Murphy PB, Hart N. Respiratory management of the obese patient undergoing surgery. J Thorac Dis 2015; 7:943-52. [PMID: 26101653 DOI: 10.3978/j.issn.2072-1439.2015.03.08] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/30/2015] [Indexed: 01/05/2023]
Abstract
As a reflection of the increasing global incidence of obesity, there has been a corresponding rise in the proportion of obese patients undergoing major surgery. This review reports the physiological effect of these changes in body composition on the respiratory system and discusses the clinical approach required to maximize safety and minimize the risk to the patient. The changes in respiratory system compliance and lung volumes, which can adversely affect pulmonary gas exchange, combined with upper airways obstruction and sleep-disordered breathing need to be considered carefully in the peri-operative period. Indeed, these challenges in the obese patient have led to a clear focus on the clinical management strategy and development of peri-operative pathways, including pre-operative risk assessment, patient positioning at induction and under anesthesia, modified approach to intraoperative ventilation and the peri-operative use of non-invasive ventilation (NIV) and continuous positive airways pressure.
Collapse
Affiliation(s)
- Luke E Hodgson
- 1 Lane Fox Respiratory Unit Guy's & St Thomas' NHS Foundation Trust, London, UK ; 2 Division of Asthma, Allergy and Lung Biology, King's College London, UK ; 3 Lane Fox Clinical Respiratory Physiology Research Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Patrick B Murphy
- 1 Lane Fox Respiratory Unit Guy's & St Thomas' NHS Foundation Trust, London, UK ; 2 Division of Asthma, Allergy and Lung Biology, King's College London, UK ; 3 Lane Fox Clinical Respiratory Physiology Research Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Nicholas Hart
- 1 Lane Fox Respiratory Unit Guy's & St Thomas' NHS Foundation Trust, London, UK ; 2 Division of Asthma, Allergy and Lung Biology, King's College London, UK ; 3 Lane Fox Clinical Respiratory Physiology Research Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
48
|
Tojo K, Nagamine Y, Yazawa T, Mihara T, Baba Y, Ota S, Goto T, Kurahashi K. Atelectasis causes alveolar hypoxia-induced inflammation during uneven mechanical ventilation in rats. Intensive Care Med Exp 2015. [PMID: 26215820 PMCID: PMC4480346 DOI: 10.1186/s40635-015-0056-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Patients with acute respiratory distress syndrome receiving mechanical ventilation show inhomogeneous lung aeration. Atelectasis during uneven mechanical ventilation leads to alveolar hypoxia and could therefore result in lung inflammation and injury. We aimed to elucidate whether and how atelectasis causes alveolar hypoxia-induced inflammation during uneven mechanical ventilation in an open-chest differential-ventilation rat model. METHODS We first investigated inflammatory and histological changes in the bilateral lungs of unilaterally ventilated rats, in which the right lung was atelectatic and the left lung was ventilated with high tidal volume (HTV). In the next series, we investigated the effects of normal tidal volume (NTV) ventilation of the right lungs with 60 % O2 or 100 % N2 during HTV ventilation of the left lungs. Then, proinflammatory cytokine secretions were quantified from murine lung epithelial (MLE15) and murine alveolar macrophage (MH-S) cells cultured under a hypoxic condition (5 % O2) mimicking atelectasis. Further, activities of nuclear factor (NF)-κB and hypoxia-inducible factor (HIF)-1 were assessed in the nonventilated atelectatic lung and MLE15 cells cultured under the hypoxic condition. Finally, effects of NF-κB inhibition and HIF-1α knockdown on the cytokine secretions from MLE15 cells cultured under the hypoxic condition were assessed. RESULTS The nonventilated atelectatic lungs showed inflammatory responses and minimal histological changes comparable to those of the HTV-ventilated lungs. NTV ventilation with 60 % O2 attenuated the increase in chemokine (C-X-C motif) ligand (CXCL)-1 secretion and neutrophil accumulation observed in the atelectatic lungs, but that with 100 % N2 did not. MLE15 cells cultured with tumor necrosis factor (TNF)-α under the hypoxic condition showed increased CXCL-1 secretion. NF-κB and HIF-1α were activated in the nonventilated atelectatic lungs and MLE15 cells cultured under the hypoxic condition. NF-κB inhibition abolished the hypoxia-induced increase in CXCL-1 secretion from MLE15 cells, while HIF-1α knockdown augmented it. CONCLUSIONS Atelectasis causes alveolar hypoxia-induced inflammatory responses including NF-κB-dependent CXCL-1 secretion from lung epithelial cells. HIF-1 activation in lung epithelial cells is an anti-inflammatory response to alveolar hypoxia in atelectatic lungs.
Collapse
Affiliation(s)
- Kentaro Tojo
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama-city, Kanagawa, 236-0004, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. RECENT FINDINGS Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, <5 cm H2O), or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. SUMMARY The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.
Collapse
|
50
|
Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 2015; 147:259-265. [PMID: 25560864 DOI: 10.1378/chest.14-0877] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ventilatory strategy for ARDS has been regularly amended over the last 40 years as knowledge of the pathophysiology of ARDS has increased. Initially focused mainly on the lung with the objectives of "opening the lung" and optimizing arterial oxygen saturation, this strategy now also takes into account pulmonary vascular injury and its effects on the right ventricle and on hemodynamics. Hemodynamic devices now available at the bedside, such as echocardiography, allow intensivists to evaluate respiratory settings according to right ventricular tolerance. Here, we review the pathophysiology of pulmonary vascular dysfunction in ARDS, consider the beneficial and deleterious effects of mechanical ventilation, describe the incidence and meaning of acute cor pulmonale based on recent studies in large series of patients, and propose a new, although not strictly validated, approach based on the protection of both the lung and right ventricle. One of our conclusions is that evaluating the right ventricle may help intensivists to assess the balance between recruitment and overdistension induced by the ventilatory strategy. Prone positioning with its beneficial effects on the lung and also on hemodynamics (the right ventricle) is a good illustration of this. Readers should be aware that most of the information given in this article reflects the point of view of the authors. Although based on clinical observations, clinical studies, and well-known pathophysiology, there is no evidence-based medicine to support this clinical commentary. Other approaches may be favored, in which case our article should be read as another attempt to help intensivists to improve management of ARDS.
Collapse
Affiliation(s)
- Xavier Repessé
- Section Thorax-Vascular Disease-Abdomen-Metabolism, Université de Versailles Saint-Quentin-en-Yvelines, Saint-Quentin en Yvelines, France
| | - Cyril Charron
- Section Thorax-Vascular Disease-Abdomen-Metabolism, Université de Versailles Saint-Quentin-en-Yvelines, Saint-Quentin en Yvelines, France
| | - Antoine Vieillard-Baron
- Intensive Care Unit, Ambroise-Paré, Hôpitaux Universitaires Paris Ile-de-France Ouest, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt; and Faculty of Medicine Paris Ile-de-France Ouest, Université de Versailles Saint-Quentin-en-Yvelines, Saint-Quentin en Yvelines, France.; Section Thorax-Vascular Disease-Abdomen-Metabolism, Université de Versailles Saint-Quentin-en-Yvelines, Saint-Quentin en Yvelines, France..
| |
Collapse
|