1
|
Prendergast C, Wray S, Dungate D, Martin C, Vaida A, Brook E, Chioma CA, Wallace H. Investigating the role of CFTR in human and mouse myometrium. Curr Res Physiol 2024; 7:100122. [PMID: 38501132 PMCID: PMC10945125 DOI: 10.1016/j.crphys.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Background Abnormal cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) has been linked to airway smooth muscle abnormalities including bronchial hyperresponsiveness. However, a role for CFTR in other types of smooth muscle, including myometrium, remains largely unexplored. As CF life expectancy and the number of pregnancies increases, there is a need for an understanding of the potential role of CFTR in myometrial function. Methods We investigated the role of CFTR in human and mouse myometrium. We used immunofluorescence to identify CFTR expression, and carried out contractility studies on spontaneously contracting term pregnant and non-pregnant mouse myometrium and term pregnant human myometrial biopsies from caesarean sections. Results CFTR was found to be expressed in term pregnant mouse myometrium. Inhibition of CFTR, with the selective inhibitor CFTRinh-172, significantly reduced contractility in pregnant mouse and human myometrium in a concentration-dependent manner (44.89 ± 11.02 term pregnant mouse, 9.23 ± 4.75 term-pregnant human; maximal effect at 60 μM expressed as a percentage of the pre-treatment control period). However, there was no effect of CFTRinh-172 in non-pregnant myometrium. Conclusion These results demonstrate decreased myometrial function when CFTR is inhibited, which may have implications on pregnancy and labour outcome and therapeutic decisions for labour in CF patients.
Collapse
Affiliation(s)
- Clodagh Prendergast
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Susan Wray
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Daniella Dungate
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Christine Martin
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andra Vaida
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Elizabeth Brook
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Cecilia Ani Chioma
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Helen Wallace
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Abstract
Cystic fibrosis (CF) is a recessively inherited condition caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Characterization of the genetic defect has improved understanding of the condition and, in the majority of cases, diagnosis is straightforward. However, in a significant number, diagnosis remains a challenge. This paper will discuss the management of these issues and reflect on atypical presentations. In addition we will discuss situations in which genetic variations of the CFTR gene are not associated with a classical CF phenotype and the implications for practice in both paediatric and adult clinics.
Collapse
Affiliation(s)
- K W Southern
- Institute of Child Health, University of Liverpool, Royal Liverpool Children's Hospital, Eaton Road, Alder Hey, Liverpool L12 2AP, UK.
| | | |
Collapse
|
3
|
Sad IR, Higa LYS, Leal T, Martins RDS, de Almeida AC, Ramos EG, de Cabello GMK, Peixoto MVM. Repeatability and Diagnostic Value of Nasal Potential Difference in a Genetically Admixed Population. J Clin Med Res 2015; 8:15-24. [PMID: 26668678 PMCID: PMC4676341 DOI: 10.14740/jocmr2312w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The genetic diversity of the Brazilian population results from three ethnic groups admixture: Europeans, Africans and Amerindians, thus increasing the difficulty of performing cystic fibrosis (CF) diagnosis. The nasal potential difference (NPD) evaluates the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) activity. Despite being a useful CF diagnostic test and a biomarker of CFTR-modulator drugs, it is also highly operator dependent. Therefore, it may be difficult to get accurate results and to interpret them. Wilschanski and Sermet scores were proposed to address these issues. This study aimed to evaluate repeatability and diagnostic value of NPD parameters and Wilschanski and Sermet scores in a CF center in Rio de Janeiro. METHODS NPD was performed in 78 subjects. Maximal PD, amiloride response, total chloride response, and Wilschanski and Sermet scores were explored as means (confidence interval, CI). One-way ANOVA was used to compare mean differences and Scheffe test was used to pair-wise comparisons. Repeatability was evaluated by scatter and Bland-Altman plots. The Ethics Committee of the CF Center has approved the study protocol. Parents and adult participants signed an informed consent form. RESULTS Forty-eight healthy-volunteers, 19 non-CF and 11 CF patients were enrolled in this study. Significant differences were found when comparing CF patients' NPD parameters to the other two groups (P = 0.000). Moreover, no significant differences were found when parameters from non-CF patients were compared with those from healthy volunteers (P > 0.05). The means of NPD parameters and diagnostic scores of each group were in concordance with disease/non-disease conditions. The repeatability data - Wilschanski and Sermet and NPD - allow NPD to be performed in this Brazilian CF Center. CONCLUSIONS The present study gathered consistent data for Bland-Altman plots. The results of Wilschanski and Sermet diagnostic scores suggest that they were concordant with CF/non-CF conditions. More NPD tests should be performed in the Rio de Janeiro CF dynamic cohort to contribute to international NPD validation studies and to provide NPD as a biomarker in Brazil.
Collapse
Affiliation(s)
- Izabela Rocha Sad
- Pediatric Pulmonology, Pediatric Department, Fernandes Figueira National Institute of Woman, Child and Adolescent Health, Oswaldo Cruz Foundation/FIOCRUZ, Rio de Janeiro, Brazil
| | - Laurinda Yoko Shinzato Higa
- Pediatric Pulmonology, Pediatric Department, Fernandes Figueira National Institute of Woman, Child and Adolescent Health, Oswaldo Cruz Foundation/FIOCRUZ, Rio de Janeiro, Brazil
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC) Universite Catholique de Louvain, Brussels, Belgium
| | - Raisa da Silva Martins
- Pediatric Pulmonology, Pediatric Department, Fernandes Figueira National Institute of Woman, Child and Adolescent Health, Oswaldo Cruz Foundation/FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana Claudia de Almeida
- Laboratory of Quantitative Methods, Fernandes Figueira National Institute of Woman, Child and Adolescent Health, Oswaldo Cruz Foundation/FIOCRUZ, Rio de Janeiro, Brazil
| | - Eloane Goncalves Ramos
- Clinical Research Unit, Fernandes Figueira National Institute of Woman, Child and Adolescent Health, Oswaldo Cruz Foundation/FIOCRUZ, Rio de Janeiro, Brazil
| | - Giselda Maria Kalil de Cabello
- Laboratory of Human Genetics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation/FIOCRUZ, Pavilhao Leonidas Deane, sala 611, Rio de Janeiro, Brazil
| | - Maria Virginia Marques Peixoto
- Laboratory of Quantitative Methods, Fernandes Figueira National Institute of Woman, Child and Adolescent Health, Oswaldo Cruz Foundation/FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Accurso FJ, Van Goor F, Zha J, Stone AJ, Dong Q, Ordonez CL, Rowe SM, Clancy JP, Konstan MW, Hoch HE, Heltshe SL, Ramsey BW, Campbell PW, Ashlock MA. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data. J Cyst Fibros 2014; 13:139-47. [PMID: 24660233 DOI: 10.1016/j.jcf.2013.09.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We examined data from a Phase 2 trial {NCT00457821} of ivacaftor, a CFTR potentiator, in cystic fibrosis (CF) patients with aG551D mutation to evaluate standardized approaches to sweat chloride measurement and to explore the use of sweat chloride and nasal potential difference (NPD) to estimate CFTR activity. METHODS Sweat chloride and NPD were secondary endpoints in this placebo-controlled, multicenter trial. Standardization of sweat collection, processing,and analysis was employed for the first time. Sweat chloride and chloride ion transport (NPD) were integrated into a model of CFTR activity. RESULTS Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects. Analysis of changes in sweat chloride and NPD demonstrated that patients treated with ivacaftor achieved CFTR activity equivalent to approximately 35%–40% of normal. CONCLUSIONS Sweat chloride is useful in multicenter trials as a biomarker of CFTR activity and to test the effect of CFTR potentiators.
Collapse
|
5
|
Keenan K, Avolio J, Rueckes-Nilges C, Tullis E, Gonska T, Naehrlich L. Nasal potential difference: Best or average result for CFTR function as diagnostic criteria for cystic fibrosis? J Cyst Fibros 2014; 14:310-6. [PMID: 25300456 DOI: 10.1016/j.jcf.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND The current practice of averaging the nasal potential difference (NPD) results of right and left nostril measurements reduce inter-individual variability but may underestimate individual CFTR function. METHODS Best NPD response to Cl(-)-free and isoproterenol perfusion (=largest ΔPD(0Cl/Iso)) from the right and left nostril was compared to the average result in 13 cystic fibrosis (CF), 78 query-CF patients and 22 healthy controls from 2 cohorts. RESULTS Despite moderate to good correlation (p<0.001) between right and left measured ΔPD(0Cl/Iso), we observed large differences in some individuals. A comparison of average versus best ΔPD(0Cl/Iso) showed only moderate agreement (Giessen κ=0.538; Toronto κ=0.607). Averaging ΔPD(0Cl/Iso) showed a lower composite chloride response compared to best ΔPD(0Cl/Iso) and altered diagnostic NPD interpretation in 30 of 113 (27%) subjects. CONCLUSIONS The current practice of averaging the NPD results of right and left nostril measurements leads to an underestimation of the individual CFTR function and should be reconsidered.
Collapse
Affiliation(s)
- Katherine Keenan
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, University of Toronto and Physiology and Experimental Medicine, Research Institute, the Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Julie Avolio
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, University of Toronto and Physiology and Experimental Medicine, Research Institute, the Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | - Elizabeth Tullis
- Department of Medicine, University of Toronto and Division of Respirology and Keenan Research Centre of Li Ka Shing Knowledge Institute St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Tanja Gonska
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, University of Toronto and Physiology and Experimental Medicine, Research Institute, the Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
6
|
Bagheri-Hanson A, Nedwed S, Rueckes-Nilges C, Naehrlich L. Intestinal current measurement versus nasal potential difference measurements for diagnosis of cystic fibrosis: a case-control study. BMC Pulm Med 2014; 14:156. [PMID: 25280757 PMCID: PMC4199064 DOI: 10.1186/1471-2466-14-156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
Background Nasal potential difference (NPD) and intestinal current measurement (ICM) are functional CFTR tests that are used as adjunctive diagnostic tools for cystic fibrosis (CF). Smoking has a systemic negative impact on CFTR function. A diagnostic comparison between NPD and ICM and the impact of smoking on both CFTR tests has not been done. Methods The sweat chloride test, NPD, and ICM were performed in 18 patients with CF (sweat chloride >60 mmol/l), including 6 pancreatic sufficient (PS) patients, and 13 healthy controls, including 8 smokers. The NPD CFTR response to Cl-free and isoproterenol perfusion (Δ0Cl- + Iso) was compared to the ICM CFTR response to forskolin/IBMX, carbachol, and histamine (ΔIsc, forskolin/IBMX+ carbachol+histamine). Results The mean NPD CFTR response and ICM CFTR response between patients with CF and healthy controls was significantly different (p <0.001), but not between patients with CF who were PS and those who were pancreatic insufficient (PI). Smokers have a decreased CFTR response measured by NPD (p = 0.049). For ICM there is a trend towards decreased CFTR response (NS). Three healthy control smokers had NPD responses within the CF-range. In contrast to NPD, there was no overlap of the ICM response between patients with CF and controls. Conclusions ICM is superior to NPD in distinguishing between patients with CF who have a sweat chloride > 60 mmol/l and healthy controls, including smokers. Neither NPD nor ICM differentiated between patients with CF who were PS from those who were PI. Smoking has a negative impact on CFTR function in healthy controls measured by NPD and challenges the diagnostic interpretation of NPD, but not ICM. Electronic supplementary material The online version of this article (doi:10.1186/1471-2466-14-156) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Feulgenstrasse 12, 35385 Giessen, Germany.
| |
Collapse
|
7
|
Leonard A, Leal T, Lebecque P. [Mucoviscidosis: CFTR mutation-specific therapy: a ray of sunshine in a cloudy sky]. Arch Pediatr 2012. [PMID: 23199563 DOI: 10.1016/j.arcped.2012.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need to find a cure for pulmonary disease in cystic fibrosis (CF), though full benefit of this approach will be restricted to those patients with well-preserved lungs. The most promising route is currently that of a pharmacological mutation-specific approach aiming at correcting the mechanism by which mutations lead to impairment of chloride conductance across respiratory epithelial cells. In the past 14years, 7 candidate drugs (CPX, 4PBA, gentamicin, PTC124, VX-770 or Ivacaftor, VX-809 or Lumacaftor, and Miglustat) have been investigated in CF patients. A postulate of 14 out of the 15 published studies has been that an effective agent had to improve total chloride secretion as assessed in vivo by nasal potential difference measurements. The present review casts a critical look at these studies. Apparent inconsistencies are discussed as well as possible limitations of nasal potential difference measurements as outcome parameters in these trials. Primarily targeting a mutation carried by less than 2% of French CF patients, the 2 Ivacaftor studies could well be a milestone on the long road toward a cure for CF. However, further data on safety and long-term efficacy are obviously needed and the current price of this medication in the US would make it unaffordable for European patients.
Collapse
Affiliation(s)
- A Leonard
- Unité de pneumologie pédiatrique et mucoviscidose, cliniques Saint-Luc, université de Louvain, Bruxelles, Belgique.
| | | | | |
Collapse
|
8
|
Sousa M, Servidoni MF, Vinagre AM, Ramalho AS, Bonadia LC, Felício V, Ribeiro MA, Uliyakina I, Marson FA, Kmit A, Cardoso SR, Ribeiro JD, Bertuzzo CS, Sousa L, Kunzelmann K, Ribeiro AF, Amaral MD. Measurements of CFTR-mediated Cl- secretion in human rectal biopsies constitute a robust biomarker for Cystic Fibrosis diagnosis and prognosis. PLoS One 2012; 7:e47708. [PMID: 23082198 PMCID: PMC3474728 DOI: 10.1371/journal.pone.0047708] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 09/14/2012] [Indexed: 01/14/2023] Open
Abstract
Background Cystic Fibrosis (CF) is caused by ∼1,900 mutations in the CF transmembrane conductance regulator (CFTR) gene encoding for a cAMP-regulated chloride (Cl−) channel expressed in several epithelia. Clinical features are dominated by respiratory symptoms, but there is variable organ involvement thus causing diagnostic dilemmas, especially for non-classic cases. Methodology/Principal Findings To further establish measurement of CFTR function as a sensitive and robust biomarker for diagnosis and prognosis of CF, we herein assessed cholinergic and cAMP-CFTR-mediated Cl− secretion in 524 freshly excised rectal biopsies from 118 individuals, including patients with confirmed CF clinical diagnosis (n = 51), individuals with clinical CF suspicion (n = 49) and age-matched non-CF controls (n = 18). Conclusive measurements were obtained for 96% of cases. Patients with “Classic CF”, presenting earlier onset of symptoms, pancreatic insufficiency, severe lung disease and low Shwachman-Kulczycki scores were found to lack CFTR-mediated Cl− secretion (<5%). Individuals with milder CF disease presented residual CFTR-mediated Cl− secretion (10–57%) and non-CF controls show CFTR-mediated Cl− secretion ≥30–35% and data evidenced good correlations with various clinical parameters. Finally, comparison of these values with those in “CF suspicion” individuals allowed to confirm CF in 16/49 individuals (33%) and exclude it in 28/49 (57%). Statistical discriminant analyses showed that colonic measurements of CFTR-mediated Cl− secretion are the best discriminator among Classic/Non-Classic CF and non-CF groups. Conclusions/Significance Determination of CFTR-mediated Cl− secretion in rectal biopsies is demonstrated here to be a sensitive, reproducible and robust predictive biomarker for the diagnosis and prognosis of CF. The method also has very high potential for (pre-)clinical trials of CFTR-modulator therapies.
Collapse
Affiliation(s)
- Marisa Sousa
- BioFIG - Centre for Biodiversity, Functional and Integrative Genomics; Faculty of Sciences, University of Lisboa, Lisboa, Portugal
- Department of Genetics - National Institute of Health, Lisboa, Portugal
| | - Maria F. Servidoni
- Gastrocentro - Endoscopy Unit - State University of Campinas, Campinas, Brazil
- Pediatrics Department - State University of Campinas, Campinas, Brazil
| | - Adriana M. Vinagre
- Faculty of Medical Sciences - State University of Campinas, Campinas, Brazil
| | - Anabela S. Ramalho
- BioFIG - Centre for Biodiversity, Functional and Integrative Genomics; Faculty of Sciences, University of Lisboa, Lisboa, Portugal
- Department of Genetics - National Institute of Health, Lisboa, Portugal
| | - Luciana C. Bonadia
- Faculty of Medical Sciences - State University of Campinas, Campinas, Brazil
| | - Verónica Felício
- BioFIG - Centre for Biodiversity, Functional and Integrative Genomics; Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Maria A. Ribeiro
- CIPED - Research Center in Pediatrics - State University of Campinas, Campinas, Brazil
| | - Inna Uliyakina
- BioFIG - Centre for Biodiversity, Functional and Integrative Genomics; Faculty of Sciences, University of Lisboa, Lisboa, Portugal
- Department of Genetics - National Institute of Health, Lisboa, Portugal
| | - Fernando A. Marson
- Faculty of Medical Sciences - State University of Campinas, Campinas, Brazil
| | - Arthur Kmit
- Faculty of Medical Sciences - State University of Campinas, Campinas, Brazil
| | - Silvia R. Cardoso
- Pediatrics Department - State University of Campinas, Campinas, Brazil
- Endoscopy Unit – University Hospital of Campinas, Campinas, Brazil
| | - José D. Ribeiro
- Pediatrics Department - State University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences - State University of Campinas, Campinas, Brazil
- CIPED - Research Center in Pediatrics - State University of Campinas, Campinas, Brazil
| | - Carmen S. Bertuzzo
- Faculty of Medical Sciences - State University of Campinas, Campinas, Brazil
| | - Lisete Sousa
- CEAUL - Center of Statistics and Applications of the University of Lisboa; Department of Statistics and Operation Research, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Karl Kunzelmann
- Institut für Physiologie – University of Regensburg, Regensburg, Germany
| | - Antônio F. Ribeiro
- Pediatrics Department - State University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences - State University of Campinas, Campinas, Brazil
- CIPED - Research Center in Pediatrics - State University of Campinas, Campinas, Brazil
| | - Margarida D. Amaral
- BioFIG - Centre for Biodiversity, Functional and Integrative Genomics; Faculty of Sciences, University of Lisboa, Lisboa, Portugal
- Department of Genetics - National Institute of Health, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
9
|
De Boeck K, Derichs N, Fajac I, de Jonge H, Bronsveld I, Sermet I, Vermeulen F, Sheppard D, Cuppens H, Hug M, Melotti P, Middleton P, Wilschanski M. New clinical diagnostic procedures for cystic fibrosis in Europe. J Cyst Fibros 2011; 10 Suppl 2:S53-66. [DOI: 10.1016/s1569-1993(11)60009-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Taylor CJ, Hardcastle J, Southern KW. Physiological measurements confirming the diagnosis of cystic fibrosis: the sweat test and measurements of transepithelial potential difference. Paediatr Respir Rev 2009; 10:220-6. [PMID: 19879513 DOI: 10.1016/j.prrv.2009.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 11/15/2022]
Abstract
Post-natal screening allied with genetic mutation testing has altered our perception of cystic fibrosis (CF) as a clinical entity. Increasingly, infants identified through screening programmes have few or no symptoms or present with atypical forms of the disease. We review how the sweat test has evolved to be the gold standard for confirming the diagnosis of CF and examine its limitations. Other physiological measurements, including nasal potential difference and intestinal current measurement, which might aid in establishing the diagnosis, particularly in patients exhibiting a mild phenotype, are also considered.
Collapse
Affiliation(s)
- C J Taylor
- Sheffield Paediatric Cystic Fibrosis Centre, Sheffield, Academic Unit of Child Health, University of Sheffield, UK.
| | | | | |
Collapse
|
11
|
Leal T, Fajac I, Wallace HL, Lebecque P, Lebacq J, Hubert D, Dall'Ava J, Dusser D, Ganesan AP, Knoop C, Cumps J, Wallemacq P, Southern KW. Airway ion transport impacts on disease presentation and severity in cystic fibrosis. Clin Biochem 2008; 41:764-72. [PMID: 18424267 DOI: 10.1016/j.clinbiochem.2008.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 03/15/2008] [Accepted: 03/23/2008] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Abnormal airway ion transport is a feature of cystic fibrosis. The aim of this study was to investigate whether distinct components of ion transport are associated with the clinical expression and severity of the disease. DESIGN AND METHODS Univariate and multivariate analyses were used to study interaction effects between nasal potential difference parameters and clinical status, recorded at stable conditions, in 75 F508del homozygous young adults. RESULTS All patients demonstrated increased sodium and reduced chloride conductances. Less sodium transport abnormalities were related to better respiratory function and nutrition. Presentation with digestive symptoms at diagnosis was associated with lower chloride conductance. With an accuracy of 85% good nutritional status was linked to more preserved lung function, increasing age and more preserved chloride conductance. CONCLUSIONS Ion transport abnormalities have distinct clinical outcomes. Sodium conductance relates to respiratory function and nutrition; chloride conductance to nutrition and presentation with digestive symptoms at diagnosis.
Collapse
Affiliation(s)
- Teresinha Leal
- Clinical Chemistry, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rowe SM, Accurso F, Clancy JP. Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Ann Am Thorac Soc 2007; 4:387-98. [PMID: 17652506 PMCID: PMC2647604 DOI: 10.1513/pats.200703-043br] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Advances in our understanding of cystic fibrosis pathogenesis have led to strategies directed toward treatment of underlying causes of the disease rather than treatments of disease-related symptoms. To expedite evaluation of these emerging therapies, early-phase clinical trials require extension of in vivo cystic fibrosis transmembrane conductance regulator (CFTR)-detecting assays to multicenter trial formats, including nasal potential difference and sweat chloride measurements. Both of these techniques can be used to fulfill diagnostic criteria for the disease, and can discriminate various levels of CFTR function. Full realization of these assays in multicenter clinical trials requires identification of sources of nonbiological intra- and intersite variability, and careful attention to study design and statistical analysis of study-generated data. In this review, we discuss several issues important to the performance of these assays, including efforts to identify and address aspects that can contribute to inconsistent and/or potentially erroneous results. Adjunctive means of detecting CFTR including mRNA expression, immunocytochemical localization, and other methods are also discussed. Recommendations are presented to advance our understanding of these biomarkers and to improve their capacity to predict cystic fibrosis outcomes.
Collapse
Affiliation(s)
- Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA.
| | | | | |
Collapse
|
13
|
Texereau J, Fajac I, Hubert D, Coste J, Dusser DJ, Bienvenu T, Dall'Ava-Santucci J, Dinh-Xuan AT. Reduced exhaled NO is related to impaired nasal potential difference in patients with cystic fibrosis. Vascul Pharmacol 2005; 43:385-9. [PMID: 16182611 DOI: 10.1016/j.vph.2005.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) plays a central role in many airway physiological functions, and its production appears to be related with progression of lung disease in patients with cystic fibrosis (CF). However, underlying mechanisms which specifically link NO and CF-related lung disease remain unclear. Following in vitro and animal studies suggesting a role for NO in ion transport in various epithelia, this work investigates the relationship between transepithelial baseline potential difference (BPD), an index of airway ion transport, and exhaled NO in the airways of adult patients with CF. Association with other phenotypic traits, lung function tests and CFTR genotype was also assessed. Using simple linear regression, F(E)NO and transepithelial BPD values were significantly inversely correlated (p<0.001, r=-0.53). Polynomial analysis evidenced an asymptotic relationship between F(E)NO and BPD values, yielding a plateau for absolute BPD values above 50 mV. This relation was not altered by adjustment for clinical and genetic characteristics of the patients. The relationship between exhaled NO and transepithelial BPD suggests that low NO concentrations likely worsens airway ion transport impairment resulting from CFTR defect. These results fit with experimental studies that suggest the inhibitory effect of NO on sodium absorption, which is the main determinant of airway basal transepithelial conductance.
Collapse
Affiliation(s)
- J Texereau
- Service de Physiologie-Explorations Fonctionnelles, Centre Hospitalier Universitaire Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris 5-René Descartes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Amaral MD. Processing of CFTR: traversing the cellular maze--how much CFTR needs to go through to avoid cystic fibrosis? Pediatr Pulmonol 2005; 39:479-91. [PMID: 15765539 DOI: 10.1002/ppul.20168] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Biosynthesis of the cystic fibrosis transmembrane conductance regulator (CFTR), like other proteins aimed at the cell surface, involves transport through a series of membranous compartments, the first of which is the endoplasmic reticulum (ER), where CFTR encounters the appropriate environment for folding, oligomerization, maturation, and export from the ER. After exiting the ER, CFTR has to traffic through complex pathways until it reaches the cell surface. Although not yet fully understood, the fine details of these pathways are starting to emerge, partially through identification of an increasing number of CFTR-interacting proteins (CIPs) and the clarification of their roles in CFTR trafficking and function. These aspects of CFTR biogenesis/degradation and by membrane traffic and CIPs are discussed in this review. Following this description of complex pathways and multiple checkpoints to which CFTR is subjected in the cell, the basic question remains of how much CFTR has to overcome these barriers and be functionally expressed at the plasma membrane to avoid CF. This question is also discussed here.
Collapse
Affiliation(s)
- Margarida D Amaral
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, and Centre of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|
15
|
Fajac I, Hubert D, Guillemot D, Honoré I, Bienvenu T, Volter F, Dall'Ava-Santucci J, Dusser DJ. Nasal airway ion transport is linked to the cystic fibrosis phenotype in adult patients. Thorax 2004; 59:971-6. [PMID: 15516474 PMCID: PMC1746881 DOI: 10.1136/thx.2003.020933] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study was conducted to determine whether the major nasal airway ion transport abnormalities in cystic fibrosis (that is, defective cAMP regulated chloride secretion and basal sodium hyperabsorption) are related to the clinical expression of cystic fibrosis and/or to the genotype. METHODS Nasal potential difference was measured in 79 adult patients with cystic fibrosis for whom clinical status, respiratory function, and CFTR genotype were determined. RESULTS In univariate and multivariate analysis, patients with pancreatic insufficiency were more likely to have low responses to low chloride (odds ratio (OR) 8.6 (95% CI 1.3 to 58.5), p = 0.03) and isoproterenol (OR 11.2 (95% CI 1.3 to 93.9), p = 0.03) solutions. Similarly, in univariate and multivariate analysis, patients with poor respiratory function (forced expiratory volume in 1 second <50% of predicted value) were more likely to have an enhanced response to amiloride solution (OR 3.7 (95% CI 1.3 to 11.0), p = 0.02). However, there was no significant relationship between nasal potential difference and the severity of the genotype. CONCLUSIONS Nasal epithelial ion transport in cystic fibrosis is linked to the clinical expression of the disease. The pancreatic status appears to be mostly related to the defect in epithelial chloride secretion whereas the respiratory status is mostly related to abnormal sodium transport and the regulatory function of the CFTR protein.
Collapse
Affiliation(s)
- I Fajac
- Service d'Explorations Fonctionnelles, CHU Cochin, AP-HP-Université, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hirtz S, Gonska T, Seydewitz HH, Thomas J, Greiner P, Kuehr J, Brandis M, Eichler I, Rocha H, Lopes AI, Barreto C, Ramalho A, Amaral MD, Kunzelmann K, Mall M. CFTR Cl- channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology 2004; 127:1085-95. [PMID: 15480987 DOI: 10.1053/j.gastro.2004.07.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Cystic fibrosis (CF) is caused by over 1000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and presents with a widely variable phenotype. Genotype-phenotype studies identified CFTR mutations that were associated with pancreatic sufficiency (PS). Residual Cl- channel function was shown for selected PS mutations in heterologous cells. However, the functional consequences of most CFTR mutations in native epithelia are not well established. METHODS To elucidate the relationships between epithelial CFTR function, CFTR genotype, and patient phenotype, we measured cyclic adenosine monophosphate (cAMP)-mediated Cl- secretion in rectal biopsy specimens from 45 CF patients who had at least 1 non-DeltaF508 mutation carrying a wide spectrum of CFTR mutations. We compared CFTR genotypes and clinical manifestations of CF patients who expressed residual CFTR-mediated Cl- secretion with patients in whom Cl- secretion was absent. RESULTS Residual anion secretion was detected in 40% of CF patients, and was associated with later disease onset (P < 0.0001), higher frequency of PS (P < 0.0001), and less severe lung disease (P < 0.05). Clinical outcomes correlated with the magnitude of residual CFTR activity, which was in the range of approximately 12%-54% of controls. CONCLUSIONS Specific CFTR mutations confer residual CFTR function to rectal epithelia, which is related closely to a mild disease phenotype. Quantification of rectal CFTR-mediated Cl- secretion may be a sensitive test to predict the prognosis of CF disease and identify CF patients who would benefit from therapeutic strategies that would increase residual CFTR activity.
Collapse
Affiliation(s)
- Stephanie Hirtz
- Department of Pediatrics and Adolescent Medicine, ALbert Ludwigs University, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Salinas DB, Pedemonte N, Muanprasat C, Finkbeiner WF, Nielson DW, Verkman AS. CFTR involvement in nasal potential differences in mice and pigs studied using a thiazolidinone CFTR inhibitor. Am J Physiol Lung Cell Mol Physiol 2004; 287:L936-43. [PMID: 15246976 DOI: 10.1152/ajplung.00354.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nasal potential difference (PD) measurements have been used to demonstrate defective CFTR function in cystic fibrosis (CF) and to evaluate potential CF therapies. We used the selective thiazolidinone CFTR inhibitor CFTR(inh)-172 to define the involvement of CFTR in nasal PD changes in mice and pigs. In normal mice infused intranasally with a physiological saline solution containing amiloride, nasal PD was -4.7 +/- 0.7 mV, hyperpolarizing by 15 +/- 1 mV after a low-Cl- solution, and a further 3.9 +/- 0.5 mV after forskolin. CFTR(inh)-172 produced 1.1 +/- 0.9- and 4.3 +/- 0.7-mV depolarizations when added after low Cl- and forskolin, respectively. Systemically administered CFTR(inh)-172 reduced the forskolin-induced hyperpolarization from 4.7 +/- 0.4 to 0.9 +/- 0.1 mV but did not reduce the low Cl(-)-induced hyperpolarization. Nasal PD was -12 +/- 1 mV in CF mice after amiloride, changing by <0.5 mV after low Cl- or forskolin. In pigs, nasal PD was -14 +/- 3 mV after amiloride, hyperpolarizing by 13 +/- 2 mV after low Cl- and a further 9 +/- 1 mV after forskolin. CFTR(inh)-172 and glibenclamide did not affect nasal PD in pigs. Our results suggest that cAMP-dependent nasal PDs in mice primarily involve CFTR-mediated Cl- conductance, whereas cAMP-independent PDs are produced by a different, but CFTR-dependent, Cl- channel. In pigs, CFTR may not be responsible for Cl- channel-dependent nasal PDs. These results have important implications for interpreting nasal PDs in terms of CFTR function in animal models of CFTR activation and inhibition.
Collapse
Affiliation(s)
- Danieli B Salinas
- Department of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mekus F, Tümmler B. Genes, Environment, Ion Transport, and Cystic Fibrosis. Am J Respir Crit Care Med 2004; 169:770; author reply 770. [PMID: 15003951 DOI: 10.1164/ajrccm.169.6.950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Hines Veterans Affairs Hospital, Hines, IL 60141, USA.
| |
Collapse
|