1
|
Cai C, Chen Y, Feng C, Shao Y, Ye T, Yu B, Jia P, Yang S. Long-term effects of PM 2.5 constituents on metabolic syndrome and mediation effects of serum uric acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122979. [PMID: 37989407 DOI: 10.1016/j.envpol.2023.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Exposure to particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5) was associated with the risk for metabolic syndrome (MetS) in the general population, but the contributions of individual PM2.5 constituents to this association and the potential pathway between PM2.5 constituents and MetS risk are not well elaborated. This study aimed to investigate associations between PM2.5 constituents and MetS in general populations, relative importance of PM2.5 constituents to and mediation effects of serum uric acid (SUA) on those associations. The 48,148 participants from a provincially representative cohort established in southwest China were included. The 3-year average concentrations of PM2.5 and its constituents (nitrate [NO3-], sulfate [SO42-], ammonium [NH4+], organic matter [OM], and black carbon [BC]) were estimated using a series of machine-learning models. Multivariate logistic regression and weighted quantile sum regression were used to estimate effects of independent PM2.5 constituents on MetS and their contributions to the joint effect. Mediation analysis examined the potential mediation effects of SUA on the associations between PM2.5 constituents and MetS. Each interquartile range (IQR) increase in the concentration of PM2.5 constituents was all positively associated with the increased MetS odds, including SO42- (OR = 1.15 [1.11, 1.19]]), NO3- (OR = 1.12 [1.08, 1.16]), NH4+ (OR = 1.13 [1.09, 1.17]), OM (OR = 1.09 [1.06, 1.13]), and BC (OR = 1.09 [1.06, 1.13]). Their joint associations on MetS were mainly attributed to SO42- (weight=46.1%) and NH4+ (44.0%). The associations of PM2.5 constituents with abnormal MetS components were mainly attributed to NH4+ for elevated BP (51.6%) and reduced HDL-C (97.0%), SO42- for elevated FG (68.9%), NO3- for elevated TG (51.0%), and OM for elevated WC (63.0%). Percentages mediated by SUA for the associations of PM2.5, SO42-, NO3-, and BC with MetS were 13.6%, 13.1%, 10.6%, and 11.1%, respectively. Long-term exposure to PM2.5 constituents, mainly NH4+ and SO42-, was positively associated with MetS odds, partially mediated by SUA.
Collapse
Affiliation(s)
- Changwei Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yang Chen
- Yunnan Center for Disease Prevention and Control, Kunming, China; School of Public Health, Kunming Medical University, Kunming, China
| | - Chuanteng Feng
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Ying Shao
- Yunnan Center for Disease Prevention and Control, Kunming, China
| | - Tingting Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bin Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; Hubei Luojia Laboratory, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China; Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, China.
| |
Collapse
|
2
|
Yang X, Zhang Q, Sun Y, Li C, Zhou H, Jiang C, Li J, Zhang L, Chen X, Tang N. Joint effect of ambient PM 2.5 exposure and vitamin B 12 during pregnancy on the risk of gestational diabetes mellitus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162514. [PMID: 36868273 DOI: 10.1016/j.scitotenv.2023.162514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Evidence has indicated that the risk of gestational diabetes mellitus (GDM) was linked to PM2.5 exposure during pregnancy, but findings on susceptible exposure windows are inconsistent. Further, previous studies have not paid attention to B12 intake in the relationship between PM2.5 exposure and GDM. The study is aimed to identify the strength and exposure periods for associations of PM2.5 exposure with GDM, followed by exploring the potential interplay of gestational B12 levels and PM2.5 exposure on the risk of GDM. METHODS The participants were recruited in a birth cohort between 2017 and 2018, and 1396 eligible pregnant women who completed a 75-g oral glucose tolerance test (OGTT) were included. Prenatal PM2.5 concentrations were estimated using an established spatiotemporal model. Logistic and linear regression analyses were used to test associations of gestational PM2.5 exposure with GDM and OGTT-glucose levels, respectively. The joint associations of gestational PM2.5 exposure and B12 level on GDM were examined under crossed exposure combinations of PM2.5 (high versus low) and B12 (insufficient versus sufficient). RESULTS In the 1396 pregnant women, the median levels of PM2.5 exposure during the 12 weeks before pregnancy, the 1st trimester, and the 2nd trimesters were 59.33 μg/m3, 63.44 μg/m3, and 64.39 μg/m3, respectively. The risk of GDM was significantly associated with a 10 μg/m3 increase of PM2.5 during the 2nd trimester (RR = 1.44, 95 % CI: 1.01, 2.04). The percentage change in fasting glucose was also associated with PM2.5 exposure during the 2nd trimester. A higher risk of GDM was observed among women with high PM2.5 exposure and insufficient B12 levels than those with low PM2.5 and sufficient B12. CONCLUSION The study supported higher PM2.5 exposure during the 2nd trimester is significantly associated with GDM risk. It first highlighted insufficient B12 status might enhance adverse effects of air pollution on GDM.
Collapse
Affiliation(s)
- Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yao Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Hongyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
3
|
Chen C, Whitsel EA, Espeland MA, Snetselaar L, Hayden KM, Lamichhane AP, Serre ML, Vizuete W, Kaufman JD, Wang X, Chui HC, D’Alton ME, Chen JC, Kahe K. B vitamin intakes modify the association between particulate air pollutants and incidence of all-cause dementia: Findings from the Women's Health Initiative Memory Study. Alzheimers Dement 2022; 18:2188-2198. [PMID: 35103387 PMCID: PMC9339592 DOI: 10.1002/alz.12515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Particulate air pollutants may induce neurotoxicity by increasing homocysteine levels, which can be lowered by high B vitamin intakes. Therefore, we examined whether intakes of three B vitamins (folate, B12 , and B6 ) modified the association between PM2.5 exposure and incidence of all-cause dementia. METHODS This study included 7183 women aged 65 to 80 years at baseline. B vitamin intakes from diet and supplements were estimated by food frequency questionnaires at baseline. The 3-year average PM2.5 exposure was estimated using a spatiotemporal model. RESULTS During a mean follow-up of 9 years, 342 participants developed all-cause dementia. We found that residing in locations with PM2.5 exposure above the regulatory standard (12 μg/m3 ) was associated with a higher risk of dementia only among participants with lower intakes of these B vitamins. DISCUSSION This is the first study suggesting that the putative neurotoxicity of PM2.5 exposure may be attenuated by high B vitamin intakes.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, Department of Medicine, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Linda Snetselaar
- Department of Epidemiology, College of Public Health, the University of Iowa, Iowa City, Iowa, USA
| | - Kathleen M. Hayden
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Archana P. Lamichhane
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marc L. Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, Department of Medicine, and Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Xinhui Wang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Helena C. Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mary E. D’Alton
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jiu-Chiuan Chen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Miao H, Li X, Wang X, Nie S. Air pollution increases the risk of pulmonary embolism: a meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:259-266. [PMID: 34107570 DOI: 10.1515/reveh-2021-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Air pollution can lead to many cardiovascular and respiratory diseases, but the impact of air pollution on pulmonary embolism is still uncertain. We conducted a meta-analysis to assess the relationship between air pollution and pulmonary embolism. CONTENT We searched PubMed, EMBASE, Web of Science, and the Cochran Library for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone and particulate matter) and pulmonary embolism. A total of nine citations met the inclusion criteria. There is no evidence of bias. CO, SO2, PM10 and PM2.5 had no significant effect on the occurrence of pulmonary embolism. NO2 and O3 can increase the risk of pulmonary embolism to a small extent. SUMMARY This meta-analysis suggests that some air pollutants are associated with an increased risk of pulmonary embolism. OUTLOOK Reducing air pollution and improving air quality can effectively reduce the risk of pulmonary embolism.
Collapse
Affiliation(s)
- Huangtai Miao
- Beijing An Zhen Hospital, Chaoyang-qu, Beijing, China
| | - Xiaoying Li
- Beijing Jishuitan Hospital, Beijing, Beijing, China
| | - Xiao Wang
- Beijing An Zhen Hospital, Chaoyang-qu, Beijing, China
| | - Shaoping Nie
- Beijing An Zhen Hospital, 2 Anzhen Rd, Chaoyang District, 100029, Chaoyang-qu, Beijing, China
| |
Collapse
|
5
|
Yadav S, Longkumer I, Garg PR, Joshi S, Rajkumari S, Devi NK, Saraswathy KN. Association of air pollution and homocysteine with global DNA methylation: A population-based study from North India. PLoS One 2021; 16:e0260860. [PMID: 34855899 PMCID: PMC8638980 DOI: 10.1371/journal.pone.0260860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Anthropogenic air pollution has been implicated in aberrant changes of DNA methylation and homocysteine increase (>15μM/L). Folate (<3 ng/mL) and vitamin B12 (<220 pg/mL) deficiencies also reduce global DNA methylation via homocysteine increase. Although B-vitamin supplements can attenuate epigenetic effects of air pollution but such understanding in population-specific studies are lacking. Hence, the present study aims to understand the role of air pollution, homocysteine, and nutritional deficiencies on methylation. METHODS We examined cross-sectionally, homocysteine, folate, vitamin B12 (chemiluminescence) and global DNA methylation (colorimetric ELISA Assay) among 274 and 270 individuals from low- and high- polluted areas, respectively, from a single Mendelian population. Global DNA methylation results were obtained on 254 and 258 samples from low- and high- polluted areas, respectively. RESULTS Significant decline in median global DNA methylation was seen as a result of air pollution [high-0.84 (0.37-1.97) vs. low-0.96 (0.45-2.75), p = 0.01]. High homocysteine in combination with air pollution significantly reduced global DNA methylation [high-0.71 (0.34-1.90) vs. low-0.93 (0.45-3.00), p = 0.003]. Folate deficient individuals in high polluted areas [high-0.70 (0.37-1.29) vs. low-1.21 (0.45-3.65)] showed significantly reduced global methylation levels (p = 0.007). In low polluted areas, despite folate deficiency, if normal vitamin B12 levels were maintained, global DNA methylation levels improved significantly [2.03 (0.60-5.24), p = 0.007]. Conversely, in high polluted areas despite vitamin B12 deficiency, if normal folate status was maintained, global DNA methylation status improved significantly [0.91 (0.36-1.63)] compared to vitamin B12 normal individuals [0.54 (0.26-1.13), p = 0.04]. CONCLUSIONS High homocysteine may aggravate the effects of air pollution on DNA methylation. Vitamin B12 in low-polluted and folate in high-polluted areas may be strong determinants for changes in DNA methylation levels. The effect of air pollution on methylation levels may be reduced through inclusion of dietary or supplemented B-vitamins. This may serve as public level approach in natural settings to prevent metabolic adversities at community level.
Collapse
Affiliation(s)
- Suniti Yadav
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Imnameren Longkumer
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | | | - Shipra Joshi
- Manbhum Ananda Ashram Nityananda Trust-MANT, Kolkata, West Bengal, India
| | - Sunanda Rajkumari
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Naorem Kiranmala Devi
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| | - Kallur Nava Saraswathy
- Laboratory of Biochemical and Molecular Anthropology, Department of Anthropology, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Chen C, Hayden KM, Kaufman JD, Espeland MA, Whitsel EA, Serre ML, Vizuete W, Orchard TS, Wang X, Chui HC, D’Alton ME, Chen JC, Kahe K. Adherence to a MIND-Like Dietary Pattern, Long-Term Exposure to Fine Particulate Matter Air Pollution, and MRI-Based Measures of Brain Volume: The Women's Health Initiative Memory Study-MRI. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127008. [PMID: 34939828 PMCID: PMC8698852 DOI: 10.1289/ehp8036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2021] [Accepted: 12/01/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Previous studies suggest that certain dietary patterns and constituents may be beneficial to brain health. Airborne exposures to fine particulate matter [particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 )] are neurotoxic, but the combined effects of dietary patterns and PM 2.5 have not been investigated. OBJECTIVES We examined whether previously reported association between PM 2.5 exposure and lower white matter volume (WMV) differed between women whose usual diet during the last 3 months before baseline was more or less consistent with a Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND)-like diet, a dietary pattern that may slow neurodegenerative changes. METHODS This study included 1,302 U.S. women who were 65-79 y old and free of dementia in the period 1996-1998 (baseline). In the period 2005-2006, structural brain magnetic resonance imaging (MRI) scans were performed to estimate normal-appearing brain volumes (excluding areas with evidence of small vessel ischemic disease). Baseline MIND diet scores were derived from a food frequency questionnaire. Three-year average PM 2.5 exposure prior to MRI was estimated using geocoded participant addresses and a spatiotemporal model. RESULTS Average total and temporal lobe WMVs were 0.74 cm 3 [95% confidence interval (CI): 0.001, 1.48) and 0.19 cm 3 (95% CI: 0.002, 0.37) higher, respectively, with each 0.5-point increase in the MIND score and were 4.16 cm 3 (95% CI: - 6.99 , - 1.33 ) and 1.46 cm 3 (95% CI: - 2.16 , - 0.76 ) lower, respectively, with each interquartile range (IQR) (IQR = 3.22 μ g / m 3 ) increase in PM 2.5 . The inverse association between PM 2.5 per IQR and WMV was stronger (p -interaction < 0.001 ) among women with MIND scores below the median (for total WMV, - 12.47 cm 3 ; 95% CI: - 17.17 , - 7.78 ), but absent in women with scores above the median (0.16 cm 3 ; 95% CI: - 3.41 , 3.72), with similar patterns for WMV in the frontal, parietal, and temporal lobes. For total cerebral and hippocampus brain volumes or WMV in the corpus callosum, the associations with PM 2.5 were not significantly different for women with high MIND scores and women with low MIND scores. DISCUSSION In this cohort of U.S. women, PM 2.5 exposure was associated with lower MRI-based WMV, an indication of brain aging, only among women whose usual diet was less consistent with the MIND-like dietary pattern at baseline. https://doi.org/10.1289/EHP8036.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Obstetrics and Gynecology, Vagelos College of Physician and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathleen M. Hayden
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences; Department of Medicine; Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, Department of Medicine, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marc L. Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tonya S. Orchard
- Department of Human Sciences, Human Nutrition Program, Ohio State University, Columbus, Ohio, USA
| | - Xinhui Wang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Helena C. Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mary E. D’Alton
- Department of Obstetrics and Gynecology, Vagelos College of Physician and Surgeons, Columbia University, New York, New York, USA
| | - Jiu-Chiuan Chen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physician and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Du J, Shao B, Gao Y, Wei Z, Zhang Y, Li H, Wang J, Shi Y, Su J, Liu Q, Liu Y, Wang P, Xie C, Wang C, Guo X, Li G. Associations of long-term exposure to air pollution with blood pressure and homocysteine among adults in Beijing, China: A cross-sectional study. ENVIRONMENTAL RESEARCH 2021; 197:111202. [PMID: 33894236 DOI: 10.1016/j.envres.2021.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Studies on the hypertensive effect of long-term exposure to air pollution are mixed, and sparse evidence exists regarding its effects on homocysteine (Hcy), another crucial risk factor for cardiovascular disease (CVD). METHODS We collected data from 23,256 participants aged 18-74 years at baseline (years 2017-2018) from a community-based cohort in China. A linear combination of concentrations from monitoring stations at the participants' home and work addresses, weighted by the time, was used to estimate two-year exposures to particulate matter with fine particles≤2.5 μm (PM2.5), aerodynamic diameter≤10 μm (PM10), nitrogen dioxide (NO2) and sulfur dioxide (SO2). Generalized linear regressions and logistic regressions were conducted to examine the associations between air pollution and systolic blood pressure (SBP), diastolic blood pressure (DBP), Hcy, hypertension and co-occurrence of hypertension and hyperhomocysteinemia (HHcy). RESULTS The results showed that each interquartile range (IQR) increase in PM2.5 (16.1 μg/m3), PM10 (19.3 μg/m3) and SO2 (3.9 μg/m3) was significantly associated with SBP (changes: 0.64-1.86 mmHg), DBP (changes: 0.35-0.70 mmHg) and Hcy (changes: 0.77-1.04 μmol/L) in the fully adjusted model. These air pollutants were also statistically associated with the prevalence of co-occurrence of hypertension and HHcy (ORs: 1.22-1.32), which were stronger than associations with the prevalence of hypertension (ORs: 1.09-1.19). The hypertensive effects of exposure to PM2.5, PM10 and SO2 were more pronounced among elder participants, obese participants, those with established CVD or a high 10-year CVD risk and those with a family history of hypertension. However, interaction analyses of Hcy showed different patterns. Additionally, moderate level of physical activity and active travel mode benefited individuals in resisting the health impacts of air pollution on both blood pressure (BP) and Hcy. CONCLUSIONS Our study supports a positive relationship between air pollution and BP and Hcy among adults in Beijing, and close attention to vulnerable populations and healthy lifestyles could effectively benefit further cardiovascular health.
Collapse
Affiliation(s)
- Jing Du
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China; Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Bing Shao
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Yanlin Gao
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Zaihua Wei
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Yu Zhang
- Zhendui Industry Artificial Intelligence Co. Ltd, Beijing, 518101, China
| | - Hong Li
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Jing Wang
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Yunping Shi
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Jianting Su
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Qingping Liu
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Yang Liu
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Ping Wang
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Chunyan Xie
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Chao Wang
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Gang Li
- Beijing Centre for Disease Prevention and Control, Beijing, 100013, China.
| |
Collapse
|
8
|
Yang BY, Cao K, Luo YN, He ZZ, Guo PY, Ma HM, Yang M, Zhou Y, Hu LW, Chen GB, Zeng XW, Yu HY, Yu Y, Dong GH. Associations of ambient particulate matter with homocysteine metabolism markers and effect modification by B vitamins and MTHFR C677T gene polymorphism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116211. [PMID: 33348139 DOI: 10.1016/j.envpol.2020.116211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Evidence concerning effects of ambient air pollution on homocysteine (HCY) metabolism is scarce. We aimed to explore the associations between ambient particulate matter (PM) exposure and the HCY metabolism markers and to evaluate effect modifications by folate, vitamin B12, and methylenetetrahyfrofolate reductase (MTHFR) C677T gene polymorphism. Between December 1, 2017 and January 5, 2018, we conducted a panel study in 88 young college students in Guangzhou, China, and received 5 rounds of health examinations. Real-time concentrations of PMs with aerodynamic diameter ≤2.5 (PM2.5), ≤1.0 (PM1.0), and ≤0.1 (PM0.1) were monitored, and the serum HCY metabolism markers (i.e., HCY, S-Adenosylhomocysteine [SAH], and S-Adenosylmethionine [SAM]) were repeatedly measured. We applied linear mixed effect models combined with a distributed lag model to evaluate the associations of PMs with the HCY metabolism markers. We also explored effect modifications of folate, vitamin B12, and the MTHFR C677T polymorphism on the associations. We observed that higher concentrations of PM2.5 and PM1.0 were associated with higher serum levels of HCY, SAH, SAM, and SAM/SAH ratio (e.g., a 10 μg/m3 increase in PM2.5 during lag 0 day and lag 5 day was significantly associated with 1.3-19.4%, 1.3-28.2%, 6.2-64.4%, and 4.8-28.2% increase in HCY, SAH, SAM, and SAM/SAH ratio, respectively). In addition, we observed that the associations of PM2.5 with the HCY metabolism markers were stronger in participants with lower B vitamins levels. This study demonstrated that short-term exposure to PM2.5 and PM1.0 was deleteriously associated with the HCY metabolism markers, especially in people with lower B vitamins levels.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ke Cao
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Na Luo
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-Zhou He
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng-Yue Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Min Ma
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guanghou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mo Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Gong-Bo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Sun M, Liang Q, Ma Y, Wang F, Lin L, Li T, Sun Z, Duan J. Particulate matter exposure and biomarkers associated with blood coagulation: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111417. [PMID: 33010596 DOI: 10.1016/j.ecoenv.2020.111417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Find the correlation between particulate matter (PM) and biomarkers related to blood coagulation, offer medical evidence to sensitive indicators and carry out early diagnosis of cardiovascular diseases. METHOD A combination of computer and manual retrieval was used to search for the keywords in PubMed (584 records), Cochrane Library (28 records), Web of Science (162 records) and Embase (163 records). Finally, a total of 25 articles were included in this meta-analysis. Stata 13.0 was applied to examine the heterogeneity among the studies and to calculate the combined effect estimates, percent variation (%) and 95% CI by selecting corresponding models. Additionally, sensitivity analysis and publication bias test were also conducted. RESULTS Meta-analysis indicated that there was an association between PM2.5 exposure (per 10 µg/m3 increase) and fibrinogen. With the increase of PM2.5 exposure (per 10 µg/m3 increase), the content of fibrinogen revealed a high level (2.26%; 95% CI: 1.08-3.44%); and the increase of UFPs exposure (per 5000/cm3 increase) was correlated with some biomarkers such as cell surface antigen and protein ligand including ICAM-1, sCD40L, P-selectin, E-selectin and PAI-1 that indirectly related to blood coagulation, yielding a percent variation of 10.83% (95% CI: 3.49%-18.17%). CONCLUSION This meta-analysis expounded that PM-related biomarkers were associated with blood coagulation, and the relationship with fibrinogen was much stronger.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
10
|
Yang BY, Shi TX, Luo YN, Liu XX, Zhao T, Bloom MS, Jiang HZ, Heinrich J, Fan SJ, Dong GH. Ambient air pollution and homocysteine: Current epidemiological evidence and a call for further research. ENVIRONMENTAL RESEARCH 2020; 187:109679. [PMID: 32454311 DOI: 10.1016/j.envres.2020.109679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Elevated blood homocysteine (Hcy) is an independent risk factor for cardiovascular disease. A growing number of studies have evaluated the link between air pollution and blood Hcy levels, but the results are inconsistent. To date, no systematic review of the published studies has been conducted yet. We aimed to provide a comprehensive overview of these studies. We systematically searched three international databases (PubMed, Web of Science, and Embase) and four Chinese databases (Wanfang, CNKI, CBM, and VIP) for peer-reviewed epidemiological studies investigating associations between ambient air pollutants and Hcy levels published before December 2019. We screened literature, extracted data, assessed methodological quality, and evaluated the risk of bias of the included studies. Of 1157 identified articles, 10 were finally included in this systematic review. Most were cross-sectional studies and were performed in developed countries. Particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) and/or 10 μm (PM10) were investigated in all of the included studies. Overall, the evidence generally supports a positive association between higher PM concentrations and elevated Hcy levels. However, high heterogeneity in terms of study participants, study design, exposure duration, and particle components and sources, low methodological quality and probable high risk of bias in some studies, and limited literature number precluded us from drawing a robust conclusion. Associations between Hcy and gaseous pollutants were explored in only one or two studies, and the results were inconclusive. Additional, well-designed studies remain required to validate the association between air pollution and Hcy.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tong-Xing Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Ya-Na Luo
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Xuan Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstrabe 1, 80336, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Michael S Bloom
- Department of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Hai-Zhan Jiang
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming, 525000, Guangdong, China
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstrabe 1, 80336, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764, Neuherberg, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Shu-Jun Fan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
12
|
Zhang Q, Niu Y, Xia Y, Lei X, Wang W, Huo J, Zhao Q, Zhang Y, Duan Y, Cai J, Ying Z, Li S, Chen R, Fu Q, Kan H. The acute effects of fine particulate matter constituents on circulating inflammatory biomarkers in healthy adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135989. [PMID: 31874395 DOI: 10.1016/j.scitotenv.2019.135989] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Systemic inflammation is considered one of the key mechanisms in the development of cardiovascular diseases induced by fine particulate matter (PM2.5) air pollution. However, evidence concerning the effects of various PM2.5 constituents on circulating inflammatory biomarkers were limited and inconsistent. OBJECTIVES To evaluate the associations of short-term exposure to a variety of PM2.5 constituents with circulating inflammatory biomarkers. METHODS We conducted a panel study from May to October 2016 among 40 healthy adults in Shanghai, China. We monitored the concentrations of 27 constituents of PM2.5. We applied linear mixed-effect models to analyze the associations of PM2.5 and its constituents with 7 inflammatory biomarkers, and further assessed the robustness of the associations by fitting models adjusting for PM2.5 mass and/or their collinearity. Benjamini-Hochberg false discovery rate was used to correct for multiple comparisons. RESULTS The associations of PM2.5 were strongest at lag 0 d with tumor necrosis factor-α (TNF-α), at lag 1 d with interleukin-6, interleukin-8, and interleukin-17A, at lag 02 d with monocyte chemoattractant protein-1 (MCP-1) and intercellular adhesion molecule-1 (ICAM-1). After correcting for multiple comparisons in all models, Cl-, K+, Si, K, As, and Pb were significantly associated with interleukin-8; SO42- and Se were marginally significantly associated with interleukin-8; SO42-, As, and Se were marginally significantly associated with TNF-α; and Si, K, Zn, As, Se, and Pb were marginally significantly associated with MCP-1. CONCLUSIONS Our results suggested that some constituents (SO42-, Cl-, K+, and some elements) might be mainly responsible for systemic inflammation triggered by short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qianbiao Zhao
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yihua Zhang
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Wang C, Koutrakis P, Gao X, Baccarelli A, Schwartz J. Associations of annual ambient PM 2.5 components with DNAm PhenoAge acceleration in elderly men: The Normative Aging Study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113690. [PMID: 31818625 PMCID: PMC7044052 DOI: 10.1016/j.envpol.2019.113690] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 05/24/2023]
Abstract
Current studies indicate that long-term exposure to ambient fine particulate matter (PM2.5) is related with global mortality, yet no studies have explored relationships of PM2.5 and its species with DNAm PhenoAge acceleration (DNAmPhenoAccel), a new epigenetic biomarker of phenotypic age. We identified which PM2.5 species had association with DNAmPhenoAccel in a one-year exposure window in a longitudinal cohort. We collected whole blood samples from 683 elderly men in the Normative Aging Study between 1999 and 2013 (n = 1254 visits). DNAm PhenoAge was calculated using 513 CpGs retrieved from the Illumina Infinium HumanMethylation450 BeadChip. Daily concentrations of PM2.5 species were measured at a fixed air-quality monitoring site and one-year moving averages were computed. Linear mixed-effect (LME) regression and Bayesian kernel machine (BKM) regression were used to estimate the associations. The covariates included chronological age, body mass index (BMI), cigarette pack years, smoking status, estimated cell types, batch effects etc. Benjamini-Hochberg false discovery rate at a 5% false positive threshold was used to adjust for multiple comparison. During the study period, the mean DNAm PhenoAge and chronological age in our subjects were 68 and 73 years old, respectively. Using LME model, only lead and calcium were significantly associated with DNAmPhenoAccel. For example, an interquartile range (IQR, 0.0011 μg/m3) increase in lead was associated with a 1.29-year [95% confidence interval (CI): 0.47, 2.11] increase in DNAmPhenoAccel. Using BKM model, we selected PM2.5, lead, and silicon to be predictors for DNAmPhenoAccel. A subsequent LME model showed that only lead had significant effect on DNAmPhenoAccel: 1.45-year (95% CI: 0.46, 2.46) increase in DNAmPhenoAccel following an IQR increase in one-year lead. This is the first study that investigates long-term effects of PM2.5 components on DNAmPhenoAccel. The results demonstrate that lead and calcium contained in PM2.5 was robustly associated with DNAmPhenoAccel.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Xu Gao
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, 10032, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| |
Collapse
|
14
|
Signorelli SS, Oliveri Conti G, Zanobetti A, Baccarelli A, Fiore M, Ferrante M. Effect of particulate matter-bound metals exposure on prothrombotic biomarkers: A systematic review. ENVIRONMENTAL RESEARCH 2019; 177:108573. [PMID: 31323394 DOI: 10.1016/j.envres.2019.108573] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 05/25/2023]
Abstract
Environmental pollution is an important modifiable determinant for preventing cardiovascular diseases. Acute exposure to air pollution is linked to severe adverse cardiovascular events, including venous thromboembolism risk. The adverse health effects seem to arise from blood-borne metals and transition metal components from exposure to particulate matter that, when breathed, passes through the lungs into the heart and the blood stream. Pollution affects health via mechanisms including oxidative stress and inflammation, and metals may have a detrimental effect on both the blood cells, particularly platelets, and circulation. Some evidences demonstrates atherotrombotic consequences of acute and chronic exposure to air pollution, but few studies have examined exposure effects on the prothrombotic biomarkers leading to venous thromboembolism. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we performed a systematic review (14 papers) of the past twelve years, focusing on the relationship between inhalable airborne metal exposures and coagulative biomarker disorders leading to lower limb venous thromboembolisms, e.g., deep vein thrombosis. Results support the hypothesis that exposure to inhalable metals, as elemental compounds in particulate matter, cause changes or activation of a number of human prothrombotic hemostatic biomarkers.
Collapse
Affiliation(s)
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Maria Fiore
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA) - Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania University, Catania, Italy.
| |
Collapse
|
15
|
Leso V, Vetrani I, Della Volpe I, Nocera C, Iavicoli I. Welding Fume Exposure and Epigenetic Alterations: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101745. [PMID: 31108839 PMCID: PMC6571852 DOI: 10.3390/ijerph16101745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022]
Abstract
Epigenetics are heritable changes in gene expression not coded in the DNA sequence, which stand at the interface between the genome, environmental exposure and development. From an occupational health perspective, epigenetic variants may link workplace exposures and health effects. Therefore, this review aimed to overview possible epigenetic effects induced by welding fumes on exposed workers and health implications. A systematic search was performed on Pubmed, Scopus, and ISI Web of Knowledge databases. DNA methylation changes have been reported in genes responsible for the cardiac autonomic function and coagulation, i.e., LINE-1, GPR133 and F2RL3, in mitochondrial-DNA-sequences involved in the regulation of energy-generation/redox-signaling, as well as in inflammatory activated genes, i.e., iNOS. However, the limited number of retrieved articles, their cross-sectional nature, the lack of a suitable qualitative-quantitative exposure assessment, and the heterogeneity of biological-outcomes investigated, prevent the extrapolation of a definite causal relationship between welding fumes and epigenetic phenomena. Future studies should clarify the function of such epigenetic alterations as possible markers of occupational exposure and early effect, dose-response relationships, and underlying molecular mechanisms. Overall, this may be helpful to guide suitable risk assessment and management strategies to protect the health of workers exposed to welding fumes.
Collapse
Affiliation(s)
- Veruscka Leso
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Ilaria Vetrani
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Ilaria Della Volpe
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Caterina Nocera
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
16
|
Samadi MT, Khorsandi H, Bahrami Asl F, Poorolajal J, Tayebinia H. Long-term exposures to Hypersaline particles associated with increased levels of Homocysteine and white blood cells: A case study among the village inhabitants around the semi-dried Lake Urmia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:631-639. [PMID: 30496995 DOI: 10.1016/j.ecoenv.2018.11.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
The dried bed of the world's second largest permanent Hypersaline lake, Lake Urmia, acts as a Hypersaline particle emission source. In the present study we aim to assess the health impact of this disaster and examine the association of Hypersaline particles with total and differential white blood cell counts (WBC) and homocysteine (Hcy), the biomarkers of cardiovascular diseases, in the residents around Lake Urmia. Based on the previous study three regions were selected as clean and polluted regions for ambient particulate matter (APM) from 2008 to 2015. Concentration of APM (PM10, PM2.5 and PM1; particulate matter with aerodynamic diameter of less than 10, 2.5 and 1 µm, respectively) was measured in the selected regions and totally, 123 participants were selected randomly from villagers who have lived in the selected regions for at least eight years. Biomarkers and covariates were measured in the selected regions and were analyzed using multiple linear regression models. We found a statistically significant association between APM and selected biomarkers (Hcy, total WBC, neutrophil, monocyte, lymphocyte and basophile) in the polluted regions. These results are consistent with our hypothesis that long-term exposure to Hypersaline particles originated from drying Urmia Hypersaline Lake is related to increased cardiovascular risk biomarkers.
Collapse
Affiliation(s)
- Mohammad Taghi Samadi
- Research Center for Health Sciences and Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hassan Khorsandi
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farshad Bahrami Asl
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Jalal Poorolajal
- Research Center for Health Sciences and Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Heidar Tayebinia
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
17
|
Hogervorst JGF, Madhloum N, Saenen ND, Janssen BG, Penders J, Vanpoucke C, De Vivo I, Vrijens K, Nawrot TS. Prenatal particulate air pollution exposure and cord blood homocysteine in newborns: Results from the ENVIRONAGE birth cohort. ENVIRONMENTAL RESEARCH 2019; 168:507-513. [PMID: 30477822 DOI: 10.1016/j.envres.2018.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Particulate air pollution is probably causally related to increased risk of cardiovascular disease. Plasma homocysteine is an established cardiovascular disease risk factor. Recent studies show that exposure to particulate air pollution is associated with plasma homocysteine levels in adults but no studies on the association between prenatal air pollution and neonatal homocysteine levels exist. METHODS In 609 newborns of the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort, we investigated the association between prenatal particulate matter exposure with a diameter ≤ 2.5 µm (PM2.5) and cord plasma homocysteine levels, and in a subset (n = 490) we studied the interaction with 11 single nucleotide polymorphism (SNPs) in oxidative stress-related genes (CAT, COMT, GSTP1, SOD2, NQO1 and HFE), through multiple linear regression. PM2.5 levels were obtained using a high resolution spatial temporal interpolation method. Homocysteine levels were measured by the homocysteine enzymatic assay on a Roche/Hitachi cobas c system. SNPs were assessed on the Biotrove OpenArray SNP genotyping platform. RESULTS In multivariable-adjusted models, cord plasma homocysteine levels were 8.1% higher (95% CI: 1.9 to 14.3%; p = 0.01) for each 5 µg/m³ increment in average PM2.5 exposure during the entire pregnancy. With regard to pregnancy trimesters, there was only an association in the 2nd trimester: 3.6% (95% CI: 0.9% to 6.4%; p = 0.01). The positive association between PM2.5 in and homocysteine was (borderline) statistically significantly modified by genetic variants in MnSOD (p interaction = 0.02), GSTP1 (p interaction = 0.07) and the sum score of the 3 studied SNPs in the CAT gene (p interaction=0.09), suggesting oxidative stress as an underlying mechanism of action. CONCLUSIONS Exposure to particulate air pollution in utero is associated with higher cord blood homocysteine levels, possibly through generating oxidative stress. Increased air pollution-induced homocysteine levels in early life might predispose for cardiovascular and other diseases later in life.
Collapse
Affiliation(s)
| | - Narjes Madhloum
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Joris Penders
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium; Laboratory of Clinical Biology, East-Limburg Hospital, Genk, Belgium
| | | | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States; Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, United States
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
18
|
Abstract
Traffic-related particulate matter (PM) is a major source of outdoor air pollution worldwide. It has been recently hypothesized to cause cardiometabolic syndrome, including cardiovascular dysfunction, obesity, and diabetes. The environmental and toxicological factors involved in the processes, and the detailed mechanisms remain to be explored. The objective of this study is to assess the current scientific evidence of traffic-related PM-induced cardiometabolic syndrome. We conducted a literature review by searching the keywords of “traffic related air pollution”, “particulate matter”, “human health”, and “metabolic syndrome” from 1980 to 2018. This resulted in 25 independent research studies for the final review. Both epidemiological and toxicological findings reveal consistent correlations between traffic-related PM exposure and the measured cardiometabolic health endpoints. Smaller sizes of PM, particularly ultrafine particles, are shown to be more harmful due to their greater concentrations, reactive compositions, longer lung retention, and bioavailability. The active components in traffic-related PM could be attributed to metals, black carbon, elemental carbon, polyaromatic hydrocarbons, and diesel exhaust particles. Existing evidence points out that the development of cardiometabolic symptoms can occur through chronic systemic inflammation and increased oxidative stress. The elderly (especially for women), children, genetically susceptible individuals, and people with pre-existing conditions are identified as vulnerable groups. To advance the characterization of the potential health risks of traffic-related PM, additional research is needed to investigate the detailed chemical compositions of PM constituents, atmospheric transformations, and the mode of action to induce adverse health effects. Furthermore, we recommend that future studies could explore the roles of genetic and epigenetic factors in influencing cardiometabolic health outcomes by integrating multi-omics approaches (e.g., genomics, epigenomics, and transcriptomics) to provide a comprehensive assessment of biological perturbations caused by traffic-related PM.
Collapse
|
19
|
Vivanco-Hidalgo RM, Wellenius GA, Basagaña X, Cirach M, González AG, Ceballos PD, Zabalza A, Jiménez-Conde J, Soriano-Tarraga C, Giralt-Steinhauer E, Alastuey A, Querol X, Sunyer J, Roquer J. Short-term exposure to traffic-related air pollution and ischemic stroke onset in Barcelona, Spain. ENVIRONMENTAL RESEARCH 2018; 162:160-165. [PMID: 29310044 DOI: 10.1016/j.envres.2017.12.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To assess the relationship between short-term exposure to outdoor ambient air pollutants (fine particulate matter [PM2.5] and black carbon [BC]), ischemic stroke (IS) and its different subtypes, and the potential modifying effect of neighborhood greenspace and noise. METHODS This time-stratified case-crossover study was based on IS and transient ischemic attacks (TIA) recorded in a hospital-based prospective stroke register (BASICMAR 2005-2014) in Barcelona (Catalonia, Spain). Daily and hourly pollutant concentrations and meteorological data were obtained from monitoring stations in the city. Time-lags (from previous 72h to acute stroke onset) were analyzed. Greenness and noise were determined from the Normalized Difference Vegetation Index (NDVI) and daily average noise level at the street nearest to residential address, respectively. RESULTS The 2742 cases with known onset date and time, living in the study area, were analyzed. After adjusting for temperature, no statistically significant association between pollutants exposure and overall stroke risk was found. In subtype analysis, an association was detected between BC exposure at 24-47h (odds ratio, 1.251; 95% confidence interval [CI], 1.001-1.552; P = 0.042) and 48-72h (1.211; 95% CI, 0.988-1.484; P = 0.065) time-lag prior to stroke onset and large-artery atherosclerosis subtype. No clear modifying effect of greenness or noise was observed. CONCLUSIONS Overall, no association was found between PM2.5 and BC exposure and acute IS risk. By stroke subtype, large-artery atherosclerotic stroke could be triggered by daily increases in BC, a diesel fuel-related pollutant in the study area.
Collapse
Affiliation(s)
| | | | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Marta Cirach
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.
| | | | | | - Ana Zabalza
- Hospital del Mar Medical Research Institute, Barcelona, Spain.
| | | | | | | | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain.
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain.
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Jaume Roquer
- Hospital del Mar Medical Research Institute, Barcelona, Spain.
| |
Collapse
|
20
|
Gorr MW, Falvo MJ, Wold LE. Air Pollution and Other Environmental Modulators of Cardiac Function. Compr Physiol 2017; 7:1479-1495. [PMID: 28915333 PMCID: PMC7249238 DOI: 10.1002/cphy.c170017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in developed regions and a worldwide health concern. Multiple external causes of CVD are well known, including obesity, diabetes, hyperlipidemia, age, and sedentary behavior. Air pollution has been linked with the development of CVD for decades, though the mechanistic characterization remains unknown. In this comprehensive review, we detail the background and epidemiology of the effects of air pollution and other environmental modulators on the heart, including both short- and long-term consequences. Then, we provide the experimental data and current hypotheses of how pollution is able to cause the CVD, and how exposure to pollutants is exacerbated in sensitive states. Published 2017. Compr Physiol 7:1479-1495, 2017.
Collapse
Affiliation(s)
- Matthew W. Gorr
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | - Michael J. Falvo
- War Related Illness and Injury Study Center, Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey, USA
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Liang F, Tian L, Guo Q, Westerdahl D, Liu Y, Jin X, Li G, Pan X. Associations of PM 2.5 and Black Carbon with Hospital Emergency Room Visits during Heavy Haze Events: A Case Study in Beijing, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070725. [PMID: 28678202 PMCID: PMC5551163 DOI: 10.3390/ijerph14070725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
Abstract
In January 2013, severe haze events over northeastern China sparked substantial health concerns. This study explores the associations of fine particulate matter less than 2.5 μm (PM2.5) and black carbon (BC) with hospital emergency room visits (ERVs) during a haze season in Beijing. During that period, daily counts of ERVs for respiratory, cardiovascular and ocular diseases were obtained from a Level-3A hospital in Beijing from 1 December 2012 to 28 February 2013, and associations of which with PM2.5 and BC were estimated by time-stratified case-crossover analysis in single- and two-pollutant models. We found a 27.5% (95% confidence interval (CI): 13.0, 43.9%) increase in respiratory ERV (lag02), a 19.4% (95% CI: 2.5, 39.0%) increase in cardiovascular ERV (lag0), and a 12.6% (95% CI: 0.0, 26.7%) increase in ocular ERV (lag0) along with an interquartile range (IQR) increase in the PM2.5. An IQR increase of BC was associated with 27.6% (95% CI: 9.6, 48.6%) (lag02), 18.8% (95% CI: 1.4, 39.2%) (lag0) and 11.8% (95% CI: −1.4, 26.8%) (lag0) increases for changes in these same health outcomes respectively. Estimated associations were consistent after adjusting SO2 or NO2 in two-pollutant models. This study provides evidence that improving air quality and reducing haze days would greatly benefit the population health.
Collapse
Affiliation(s)
- Fengchao Liang
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Qun Guo
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Dane Westerdahl
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - Xiaobin Jin
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Guoxing Li
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Xiaochuan Pan
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Abstract
BACKGROUND Apolipoprotein A5 (APOA5) 1131 is one of the most investigated gene polymorphisms in association with cardiovascular diseases (CVD) for its roles in epigenetics pathways. OBJECTIVES The major objective of this metaprediction study was to comprehensively examine the association of polymorphism risk subtypes of APOA5 1131 gene and potential contributing factors of CVD risks in global populations. METHODS This study is a meta-analysis to determine APOA5 gene polymorphisms as risk factors for CVDs. Following the guidelines of meta-analyses, we applied big data analytics including the recursive partition tree, nonlinear association curve fit, and heat maps for data visualization-in addition to the conventional pooled analyses. RESULTS A total of 17,692 CVD cases and 23,566 controls from 50 study groups were included. The frequency of APOA5 1131 CC and TC polymorphisms in Asian populations (22.2%-52.6%) were higher than that in other populations, including Caucasians and Eurasians (10.0%-25.0%). The homozygous CC and heterozygous TC genotypes (both p < .0001) were associated with increased risks for CVD and were higher in many Western nations, including Canada, Spain, the Czech Republic, Hungary, Turkey, Egypt, France, and Iran. The CC genotype was associated with greater risks (RR > 2.00, p < .0001) for dyslipidemia and myocardial infarction, whereas RR > 1.00 was associated with metabolic syndrome, coronary artery disease, and stroke. Air pollution was significantly associated with APOA5 1131 CC and TC polymorphisms. DISCUSSION The findings of this study provided novel insight to further understand the associations among APOA5 1131 polymorphisms, air pollution, and the development of CVDs. Methylation studies are needed to examine epigenetic factors associated with APOA5 1131 polymorphisms and CVD and to suggest potential prevention strategies for CVD.
Collapse
|
23
|
Yang L, Hou XY, Wei Y, Thai P, Chai F. Biomarkers of the health outcomes associated with ambient particulate matter exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1446-1459. [PMID: 27908628 DOI: 10.1016/j.scitotenv.2016.11.146] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 05/22/2023]
Abstract
Epidemiologic evidence supports the positive association of cardiopulmonary morbidity and mortality, and lung cancer risk with exposure to airborne particulate matter (PM). Oxidative stress and inflammation have been proposed to be the major causal factors involved in mediating PM effects on both cardiovascular and pulmonary health outcomes. However, the mechanism whereby PM causes the health effects is not fully elucidated. To evaluate and investigate human exposure to PM, it is essential to have a specific, sensitive and robust characterization of individual exposure to PM. Biomarkers may mark important intermediate steps leading to overt health effects after PM exposure. Thus biomarkers are promising indicators, which could serve as representative measures of the exposure to PM for assessing the health impacts and understanding the mechanism. Indeed, a number of biomarkers are already in use in the field of epidemiological studies and toxicological research. However, we are facing now the challenges to select robust, specific and sensitive biomarkers, which can be employed in large-scale of population to assess the health risk and to monitor the effectiveness of interventions. In this review, we describe a range of biomarkers that are associated with air pollution exposure, particularly markers of oxidative stress, inflammatory factors, and microRNAs, as well as markers of pollutants metabolites. Understanding the nature of the association of these biomarkers with PM exposure may shed some light on the process of selecting biomarkers for large-scale population studies, developing novel preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Lixin Yang
- Department of Environmental Pollution and Health, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| | - Xiang-Yu Hou
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yongjie Wei
- Department of Environmental Pollution and Health, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Fahe Chai
- Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
24
|
Tang L, Wang QY, Cheng ZP, Hu B, Liu JD, Hu Y. Air pollution and venous thrombosis: a meta-analysis. Sci Rep 2016; 6:32794. [PMID: 27600652 PMCID: PMC5013712 DOI: 10.1038/srep32794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
Exposure to air pollution has been linked to cardiovascular and respiratory disorders. However, the effect of air pollution on venous thrombotic disorders is uncertain. We performed a meta-analysis to assess the association between air pollution and venous thrombosis. PubMed, Embase, EBM Reviews, Healthstar, Global Health, Nursing Database, and Web of Science were searched for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matters) and venous thrombosis. Using a random-effects model, overall risk estimates were derived for each increment of 10 μg/m3 of pollutant concentration. Of the 485 in-depth reviewed studies, 8 citations, involving approximately 700,000 events, fulfilled the inclusion criteria. All the main air pollutants analyzed were not associated with an increased risk of venous thrombosis (OR = 1.005, 95% CI = 0.998–1.012 for PM2.5; OR = 0.995, 95% CI = 0.984–1.007 for PM10; OR = 1.006, 95% CI = 0.994–1.019 for NO2). Based on exposure period and thrombosis location, additional subgroup analyses provided results comparable with those of the overall analyses. There was no evidence of publication bias. Therefore, this meta analysis does not suggest the possible role of air pollution as risk factor for venous thrombosis in general population.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qing-Yun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhi-Peng Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Bei Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing-Di Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.,Collaborative Innovation Center of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
25
|
Lin VW, Baccarelli AA, Burris HH. Epigenetics-a potential mediator between air pollution and preterm birth. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv008. [PMID: 26900485 PMCID: PMC4760696 DOI: 10.1093/eep/dvv008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 05/29/2023]
Abstract
Preterm birth is a major cause of infant morbidity and mortality and a potential risk factor for adult chronic disease. With over 15 million infants born preterm worldwide each year, preterm birth poses a global health concern. There is a possible association between air pollution and preterm birth, though studies have been inconsistent, likely due to variation in study design. How air pollution induces health effects is uncertain; however, studies have repeatedly demonstrated the effects of air pollution on epigenetic modifications. More recent evidence suggests that epigenetics may, in turn, be linked to preterm birth. Discovery of environmentally modifiable epigenetic processes connected to preterm birth may help to identify women at risk of preterm birth, and ultimately lead to development of new preterm birth prevention measures.
Collapse
Affiliation(s)
- Vania W. Lin
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064 USA
- Department of Neonatology, Beth Israel Deaconess Medical Center & Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215 USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| | - Heather H. Burris
- Department of Neonatology, Beth Israel Deaconess Medical Center & Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215 USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| |
Collapse
|
26
|
Dabass A, Talbott EO, Venkat A, Rager J, Marsh GM, Sharma RK, Holguin F. Association of exposure to particulate matter (PM2.5) air pollution and biomarkers of cardiovascular disease risk in adult NHANES participants (2001-2008). Int J Hyg Environ Health 2015; 219:301-10. [PMID: 26725170 DOI: 10.1016/j.ijheh.2015.12.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Exposure to particulate matter (PM2.5) has been associated with increased cardiovascular outcomes, mediated by a hypothesized biological mechanism of systemic inflammation and oxidation. Although PM10 has been linked to inflammatory markers in a nationally representative sample (NHANES) using data from earlier cycles (1989-1994); no study has considered these relationships for PM2.5 in more recent time periods. We examined the association of ambient PM2.5 exposure and inflammatory markers in adult NHANES participants for cycles 2001-2008. METHODS We linked each of the adult NHANES participant's address with meteorological and modeled air pollution data for each census tract in conterminous United States. The effects of short and long term PM2.5 on C-reactive protein, white blood cells, fibrinogen and homocysteine were analyzed using multiple linear regression, adjusting for cardiovascular risk factors, temperature and ozone. SAS SURVEYREG was used to account for the complex survey design of NHANES. RESULTS In the overall population, no significant positive associations were noted for either short or long term PM2.5 exposures for any of the biomarkers after controlling for confounders. However, stronger associations were found among obese, diabetics, hypertensive and smokers. For every 10μg/m(3) increase in PM2.5, there was an increase of (a) 36.9% (95% CI: 0.1%, 87.2%) in CRP at annual average PM2.5 (adjusting for short term exposure) among diabetics (b) 2.6% (95% CI: 0.1%, 5.1%) in homocysteine at lag 0 among smokers. CONCLUSIONS In a nationally representative sample of individuals we noted no overall association between PM2.5 and biomarkers of cardiovascular risk. However, sensitive subgroups manifested increases in these markers to PM2.5 exposure. Further studies should concentrate on the impact of PM2.5 on these biomarkers in those with multiple cardiovascular risk factors.
Collapse
Affiliation(s)
- Arvind Dabass
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Evelyn O Talbott
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Arvind Venkat
- Department of Emergency Medicine, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Judith Rager
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary M Marsh
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ravi K Sharma
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fernando Holguin
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Li H, Hedmer M, Wojdacz T, Hossain MB, Lindh CH, Tinnerberg H, Albin M, Broberg K. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:684-93. [PMID: 26013103 PMCID: PMC4755249 DOI: 10.1002/em.21958] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/01/2015] [Indexed: 05/27/2023]
Abstract
Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3); range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P < 0.001). Welders and controls did not differ in 8-oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles.
Collapse
Affiliation(s)
- Huiqi Li
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Maria Hedmer
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Tomasz Wojdacz
- Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Mohammad Bakhtiar Hossain
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Christian H. Lindh
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Håkan Tinnerberg
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Maria Albin
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Karin Broberg
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
- Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| |
Collapse
|
28
|
Fazeli B, Rezaee SA. A review on thromboangiitis obliterans pathophysiology: thrombosis and angiitis, which is to blame? Vascular 2015; 19:141-53. [PMID: 21652666 DOI: 10.1258/vasc.2010.ra0045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A century has passed since thromboangiitis obliterans (TAO), or Buerger's disease, was first described, but the etiology remains unclear. It is still uncertain as to whether thrombosis or vascular inflammation is the first event. TAO is an episodic inflammatory and thrombotic-occlusive vascular disease of unknown origin. The involvement of the distal vessels and nerves within the neuro-vascular bundles occurs almost always in legs and occasionally in arms. The cumulative data demonstrate that at the cellular and molecular levels, at least four main components of inflammatory reactions, including endothelial cells, platelets, leukocytes and sensory neurons, might be involved in TAO pathogenesis. The interactions among these cells in an altered microenvironment of small- and medium-sized vessels may also orchestrate the onset of TAO events. In this review, the factors that may promote thrombosis and angiitis are reconsidered at three levels: (1) host characteristics such as male gender and genetic background; (2) probable triggers including cigarette smoking and infectious agents; and (3) environmental factors such as chronic anxiety and mental stress as a consequence of low socioeconomic status. At each level, the interactions among vascular endothelium, platelets, leukocytes and sensory neurons are discussed.
Collapse
Affiliation(s)
- Bahare Fazeli
- Immunology Department, Avicenna (Bu-Ali) Research Institute, Bu-Ali Sq., Ferdosi Sq., Mashhad, Khorasan Razavi, PC 91967-73117
| | | |
Collapse
|
29
|
Li H, Hedmer M, Kåredal M, Björk J, Stockfelt L, Tinnerberg H, Albin M, Broberg K. A Cross-Sectional Study of the Cardiovascular Effects of Welding Fumes. PLoS One 2015; 10:e0131648. [PMID: 26147298 PMCID: PMC4492943 DOI: 10.1371/journal.pone.0131648] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022] Open
Abstract
Objectives Occupational exposure to particulate air pollution has been associated with an increased risk of cardiovascular disease. However, the risk to welders working today remains unclear. We aimed to elucidate the cardiovascular effects of exposure to welding fumes. Methods In a cross-sectional study, structured interviews and biological sampling were conducted for 101 welders and 127 controls (all non-smoking males) from southern Sweden. Personal breathing zone sampling of respirable dust was performed. Blood pressure (BP) and endothelial function (using peripheral arterial tonometry) were measured. Plasma and serum samples were collected from peripheral blood for measurement of C-reactive protein, low-density lipoprotein, homocysteine, serum amyloid A, and cytokines. Results Welders were exposed to 10-fold higher levels of particles than controls. Welders had significantly higher BP compared to controls, an average of 5 mm Hg higher systolic and diastolic BP (P≤0.001). IL-8 was 3.4 ng/L higher in welders (P=0.010). Years working as a welder were significantly associated with increased BP (β=0.35, 95%CI 0.13 – 0.58, P=0.0024 for systolic BP; β=0.32, 95%CI 0.16 – 0.48, P<0.001 for diastolic BP, adjusted for BMI) but exposure to respirable dust was not associated with BP. No clear associations occurred between welding and endothelial function, or other effect markers. Conclusions A modest increase in BP was found among welders compared to controls suggesting that low-to-moderate exposure to welding fumes remains a risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Huiqi Li
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Hedmer
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Lund, Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Lund, Sweden
| | - Jonas Björk
- Competence Centre for Clinical Research, Lund University, Lund, Sweden
| | - Leo Stockfelt
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Tinnerberg
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Lund, Sweden
- Unit of Metals & Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
30
|
Miousse IR, Chalbot MCG, Lumen A, Ferguson A, Kavouras IG, Koturbash I. Response of transposable elements to environmental stressors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 765:19-39. [PMID: 26281766 PMCID: PMC4544780 DOI: 10.1016/j.mrrev.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
31
|
Gorr MW, Youtz DJ, Eichenseer CM, Smith KE, Nelin TD, Cormet-Boyaka E, Wold LE. In vitro particulate matter exposure causes direct and lung-mediated indirect effects on cardiomyocyte function. Am J Physiol Heart Circ Physiol 2015; 309:H53-62. [PMID: 25957217 DOI: 10.1152/ajpheart.00162.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/04/2015] [Indexed: 01/16/2023]
Abstract
Particulate matter (PM) exposure induces a pathological response from both the lungs and the cardiovascular system. PM is capable of both manifestation into the lung epithelium and entrance into the bloodstream. Therefore, PM has the capacity for both direct and lung-mediated indirect effects on the heart. In the present studies, we exposed isolated rat cardiomyocytes to ultrafine particulate matter (diesel exhaust particles, DEP) and examined their contractile function and calcium handling ability. In another set of experiments, lung epithelial cells (16HBE14o- or Calu-3) were cultured on permeable supports that allowed access to both the basal (serosal) and apical (mucosal) media; the basal media was used to culture cardiomyocytes to model the indirect, lung-mediated effects of PM on the heart. Both the direct and indirect treatments caused a reduction in contractility as evidenced by reduced percent sarcomere shortening and reduced calcium handling ability measured in field-stimulated cardiomyocytes. Treatment of cardiomyocytes with various anti-oxidants before culture with DEP was able to partially prevent the contractile dysfunction. The basal media from lung epithelial cells treated with PM contained several inflammatory cytokines, and we found that monocyte chemotactic protein-1 was a key trigger for cardiomyocyte dysfunction. These results indicate the presence of both direct and indirect effects of PM on cardiomyocyte function in vitro. Future work will focus on elucidating the mechanisms involved in these separate pathways using in vivo models of air pollution exposure.
Collapse
Affiliation(s)
- Matthew W Gorr
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dane J Youtz
- College of Nursing, The Ohio State University, Columbus, Ohio; and
| | | | - Korbin E Smith
- College of Nursing, The Ohio State University, Columbus, Ohio; and
| | - Timothy D Nelin
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio; College of Nursing, The Ohio State University, Columbus, Ohio; and
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio; College of Nursing, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
32
|
Abstract
Supplemental Digital Content is available in the text. Background: Few epidemiologic studies have investigated associations of air pollution with cognition in older adults, and none has specifically compared associations across particle sources. We investigated whether exposure to particulate air pollution, characterized by size and source, was associated with cognitive function and decline in cognitive function. Methods: We included participants of the Whitehall II cohort who were residents of greater London and who attended the medical examination in study wave 2007–2009 (n = 2867). Annual average concentrations of particulate matter (PM) (PM10 and PM2.5 from all sources and from traffic exhaust) were modeled at resolution of 20 × 20 m for 2003–2009. We investigated the relationship between exposure to particles and a cognitive battery composed of tests of reasoning, memory, and phonemic and semantic fluency. We also investigated exposure in relation to decline in these tests over 5 years. Results: Mean age of participants was 66 (standard deviation = 6) years. All particle metrics were associated with lower scores in reasoning and memory measured in the 2007–2009 wave but not with lower verbal fluency. Higher PM2.5 of 1.1 μg/m3 (lag 4) was associated with a 0.03 (95% confidence interval = −0.06 to 0.002) 5-year decline in standardized memory score and a 0.04 (−0.07 to −0.01) decline when restricted to participants remaining in London between study waves. Conclusions: This study provides support for an association between particulate air pollution and some measures of cognitive function, as well as decline over time in cognition; however, it does not support the hypothesis that traffic-related particles are more strongly associated with cognitive function than particles from all sources.
Collapse
|
33
|
Louwies T, Nawrot T, Cox B, Dons E, Penders J, Provost E, Panis LI, De Boever P. Blood pressure changes in association with black carbon exposure in a panel of healthy adults are independent of retinal microcirculation. ENVIRONMENT INTERNATIONAL 2015; 75:81-6. [PMID: 25461416 DOI: 10.1016/j.envint.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 05/09/2023]
Abstract
Exposure to ambient particulate matter and elevated blood pressure are risk factors for cardiovascular morbidity and mortality. Microvascular changes might be an important pathway in explaining the association between air pollution and blood pressure. The objective of the study was to evaluate the role of the retinal microcirculation in the association between black carbon (BC) exposure and blood pressure. We estimated subchronic BC exposure based on 1-week personal measurements (μ-Aethalometer, AethLabs) in 55 healthy nurses. Blood pressure and retinal microvasculature were measured on four different days (range: 2-4) during this week. Subchronic BC exposure averaged (± SD) 1334±631ng/m(3) and ranged from 338ng/m(3) to 3889ng/m(3). An increased exposure of 631ng/m(3) BC was associated with a 2.77mmHg (95% CI: 0.39 to 5.15, p=0.027) increase in systolic blood pressure, a 2.35mmHg (95% CI: 0.52 to 4.19, p=0.016) increase in diastolic blood pressure and with 5.65μm (95% CI: 1.33 to 9.96, p=0.014) increase in central retinal venular equivalent. Mediation analysis failed to reveal an effect of retinal microvasculature in the association between blood pressure and subchronic BC exposure. In conclusion, we found a positive association between blood pressure and subchronic black carbon exposure in healthy adults. This finding adds evidence to the association between black carbon exposure and cardiovascular health effects, with elevated blood pressure as a plausible intermediate effector. Our results suggest that the changes in a person's blood pressure as a result of subchronic black carbon exposure operate independently of the retinal microcirculation.
Collapse
Affiliation(s)
- Tijs Louwies
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health, Leuven University, Leuven, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Evi Dons
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Eline Provost
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Luc Int Panis
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Transportation Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Patrick De Boever
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
34
|
Kumar J, Monica Lind P, Salihovic S, van Bavel B, Lind L, Ingelsson E. Influence of persistent organic pollutants on oxidative stress in population-based samples. CHEMOSPHERE 2014; 114:303-9. [PMID: 25113216 DOI: 10.1016/j.chemosphere.2014.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 05/20/2023]
Abstract
Persistent organic pollutants (POPs) are a large group of chemicals widely used and produced in various industrial applications. Many cell culture/animal studies have shown that POPs can induce oxidative stress. Since such data is lacking in humans, we conducted a large population-based study to analyze associations between POPs and oxidative stress markers. We measured following POPs; 16 polychlorinated biphenyls (PCBs), 5 organochlorine (OC) pesticides, octachlorinated dibenzo-p-dioxin, and polybrominated diphenyl ether 47, and oxidative stress markers; homocysteine, reduced [GSH] and oxidized glutathione [GSSG], glutathione ratio [GSSG/GSH], total glutathione, oxidized low-density lipoprotein [ox-LDL], ox-LDL antibodies, conjugated dienes, baseline conjugated dienes of LDL, and total anti-oxidative capacity in plasma samples collected from 992 70-year old individuals (50% women) from the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort. Linear regression analyses were performed to study the associations between oxidative stress markers and summary measures of POPs including the total toxic equivalence (TEQ), sums of PCBs and OC pesticides (main exposures) while adjusting for potential confounders. In multivariable-adjusted analyses, sum of PCBs showed strong associations with ox-LDL (β=0.94; P=2.9*10(-6)). Further, sum of PCBs showed association with glutathione-related markers (GSSG: β=-0.01; P=6.0*10(-7); GSSG/GSH: β=-0.002; P=9.7*10(-10)), although in reverse direction. Other summary measures did not show any significant association with these markers. In our study of elderly individuals from the general population, we show that plasma levels of POPs are associated with markers of increased oxidative stress thereby suggesting that even low dose background exposure to POPs may be involved in oxidative stress.
Collapse
Affiliation(s)
- Jitender Kumar
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Samira Salihovic
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Bert van Bavel
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Environmental risk score as a new tool to examine multi-pollutants in epidemiologic research: an example from the NHANES study using serum lipid levels. PLoS One 2014; 9:e98632. [PMID: 24901996 PMCID: PMC4047033 DOI: 10.1371/journal.pone.0098632] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/05/2014] [Indexed: 11/28/2022] Open
Abstract
Objective A growing body of evidence suggests that environmental pollutants, such as heavy metals, persistent organic pollutants and plasticizers play an important role in the development of chronic diseases. Most epidemiologic studies have examined environmental pollutants individually, but in real life, we are exposed to multi-pollutants and pollution mixtures, not single pollutants. Although multi-pollutant approaches have been recognized recently, challenges exist such as how to estimate the risk of adverse health responses from multi-pollutants. We propose an “Environmental Risk Score (ERS)” as a new simple tool to examine the risk of exposure to multi-pollutants in epidemiologic research. Methods and Results We examined 134 environmental pollutants in relation to serum lipids (total cholesterol, high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides) using data from the National Health and Nutrition Examination Survey between 1999 and 2006. Using a two-stage approach, stage-1 for discovery (n = 10818) and stage-2 for validation (n = 4615), we identified 13 associated pollutants for total cholesterol, 9 for HDL, 5 for LDL and 27 for triglycerides with adjustment for sociodemographic factors, body mass index and serum nutrient levels. Using the regression coefficients (weights) from joint analyses of the combined data and exposure concentrations, ERS were computed as a weighted sum of the pollutant levels. We computed ERS for multiple lipid outcomes examined individually (single-phenotype approach) or together (multi-phenotype approach). Although the contributions of ERS to overall risk predictions for lipid outcomes were modest, we found relatively stronger associations between ERS and lipid outcomes than with individual pollutants. The magnitudes of the observed associations for ERS were comparable to or stronger than those for socio-demographic factors or BMI. Conclusions This study suggests ERS is a promising tool for characterizing disease risk from multi-pollutant exposures. This new approach supports the need for moving from a single-pollutant to a multi-pollutant framework.
Collapse
|
36
|
Brucker N, Charão MF, Moro AM, Ferrari P, Bubols G, Sauer E, Fracasso R, Durgante J, Thiesen FV, Duarte MM, Gioda A, Castro I, Saldiva PH, Garcia SC. Atherosclerotic process in taxi drivers occupationally exposed to air pollution and co-morbidities. ENVIRONMENTAL RESEARCH 2014; 131:31-8. [PMID: 24637182 DOI: 10.1016/j.envres.2014.02.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 05/21/2023]
Abstract
Consistent evidence has indicated that the exposure to environmental air pollution increases the risk of cardiovascular disease. This study aimed to evaluate the possible effects of occupational exposure to air pollution, especially to polycyclic aromatic hydrocarbons (PAHs), and the influence of co-morbidities on the atherosclerotic process and inflammation. For that, biomarkers of exposure such as 1-hydroxypyrene urinary, oxidative damage and markers of cardiovascular risk were determined in plasma, serum and blood. In addition, inflammation models such as carotid intima-media thickness and serum inflammatory cytokines were analyzed in 58 taxi drivers with and without co-morbidity. The results demonstrated that considering only taxi drivers without co-morbidities, 15% presented carotid intima-media thickness above reference values. For the first time it has been demonstrated that urinary 1-hydroxypyrene levels were associated with carotid intima-media thickness and with serum homocysteine levels. The multiple linear regression analysis showed that several factors may contribute to the increased carotid intima-media thickness, among which age, interleukin-6, fibrinogen and exposure to PAHs stand out. In summary, our results suggest that chronic occupational exposure to atmospheric pollution could be an additional contributor to the atherogenesis process, leading to impaired vascular health. Moreover, carotid intima-media thickness, serum homocysteine levels, fibrinogen and the total cholesterol/HDL-c ratio could be suggested as preventive measures to monitor drivers' health.
Collapse
Affiliation(s)
- Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariele F Charão
- Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ferrari
- Toxicology Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Bubols
- Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation, Porto Alegre, RS, Brazil
| | - Rafael Fracasso
- Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliano Durgante
- Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation, Porto Alegre, RS, Brazil
| | - Flávia V Thiesen
- Toxicology Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marta M Duarte
- Department of Health Sciences, Lutheran University of Brazil, Santa Maria, RS, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Iran Castro
- Institute of Cardiology, University Cardiology Foundation, Porto Alegre, RS, Brazil
| | - Paulo H Saldiva
- Department of Pathology, College of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Solange C Garcia
- Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation, Porto Alegre, RS, Brazil.
| |
Collapse
|
37
|
Elvidge T, Matthews IP, Gregory C, Hoogendoorn B. Feasibility of using biomarkers in blood serum as markers of effect following exposure of the lungs to particulate matter air pollution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:1-44. [PMID: 23534393 DOI: 10.1080/10590501.2013.763575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Particulate matter (PM) air pollution has significant cardiopulmonary health effects. Serum biomarkers may elucidate the disease mechanisms involved and provide a means for biomonitoring exposed populations, thereby enabling accurate policy decisions on air quality standards to be made. For this review, research investigating association of blood serum biomarkers and exposure to PM was identified, finding 26 different biomarkers that were significantly associated with exposure. Recent evidence links different effects to different components of PM. Future research on biomarkers of effect will need to address exposure by all PM size fractions.
Collapse
Affiliation(s)
- Timothy Elvidge
- Cochrane Institute of Primary Care and Public Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
38
|
Wu S, Deng F, Wei H, Huang J, Wang H, Shima M, Wang X, Qin Y, Zheng C, Hao Y, Guo X. Chemical constituents of ambient particulate air pollution and biomarkers of inflammation, coagulation and homocysteine in healthy adults: a prospective panel study. Part Fibre Toxicol 2012; 9:49. [PMID: 23231781 PMCID: PMC3585865 DOI: 10.1186/1743-8977-9-49] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 12/09/2012] [Indexed: 11/16/2022] Open
Abstract
Background Ambient air pollution has been associated with activation of systemic inflammation and hypercoagulability and increased plasma homocysteine, but the chemical constituents behind the association are not well understood. We examined the relations of various chemical constituents of fine particles (PM2.5) and biomarkers of inflammation, coagulation and homocysteine in the context of traffic-related air pollution. Methods A panel of 40 healthy college students underwent biweekly blood collection for 12 times before and after their relocation from a suburban campus to an urban campus with changing air pollution contents in Beijing. Blood samples were measured for circulatory biomarkers of high-sensitivity C reactive protein (hs-CRP), tumor necrosis factor alpha (TNF-α), fibrinogen, plasminogen activator inhibitor type 1 (PAI-1), tissue-type plasminogen activator (t-PA), von Willebrand factor (vWF), soluble platelet selectin (sP-selectin), and total homocysteine (tHcy). Various air pollutants were measured in a central air-monitoring station in each campus and 32 PM2.5 chemical constituents were determined in the laboratory. We used three different mixed-effects models (single-constituent model, constituent-PM2.5 joint model and constituent residual model) controlling for potential confounders to estimate the effects of PM2.5 chemical constituents on circulatory biomarkers. Results We found consistent positive associations between the following biomarkers and PM2.5 chemical constituents across different models: TNF-α with secondary organic carbon, chloride, zinc, molybdenum and stannum; fibrinogen with magnesium, iron, titanium, cobalt and cadmium; PAI-1 with titanium, cobalt and manganese; t-PA with cadmium and selenium; vWF with aluminum. We also found consistent inverse associations of vWF with nitrate, chloride and sodium, and sP-selectin with manganese. Two positive associations of zinc with TNF-α and of cobalt with fibrinogen, and two inverse associations of nitrate with vWF, and of manganese with sP-selectin, were independent of the other constituents in two-constituent models using constituent residual data. We only found weak air pollution effects on hs-CRP and tHcy. Conclusions Our results provide clues for the potential roles that PM2.5 chemical constituents may play in the biological mechanisms through which air pollution may influence the cardiovascular system.
Collapse
Affiliation(s)
- Shaowei Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fang SC, Mehta AJ, Alexeeff SE, Gryparis A, Coull B, Vokonas P, Christiani DC, Schwartz J. Residential black carbon exposure and circulating markers of systemic inflammation in elderly males: the normative aging study. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:674-80. [PMID: 22336131 PMCID: PMC3346771 DOI: 10.1289/ehp.1103982] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 02/15/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Traffic-related particles (TRPs) are associated with adverse cardiovascular events. The exact mechanisms are unclear, but systemic inflammatory responses likely play a role. OBJECTIVES We conducted a repeated measures study among male participants of the Normative Aging Study in the greater Boston, Massachusetts, area to determine whether individual-level residential black carbon (BC), a marker of TRPs, is associated with systemic inflammation and whether coronary heart disease (CHD), diabetes, and obesity modify associations. METHODS We quantified markers of inflammation in 1,163 serum samples from 580 men. Exposure to BC up to 4 weeks prior was predicted from a validated spatiotemporal land-use regression model. Linear mixed effects models estimated the effects of BC on each marker while adjusting for potential confounders. RESULTS Associations between BC and blood markers were not observed in main effects models or when stratified by obesity status. However, BC was positively associated with markers of inflammation in men with CHD (particularly vascular endothelial growth factor) and in men with diabetes (particularly interleukin-1β and tumor necrosis factor-α). Significant exposure time windows varied by marker, although in general the strongest associations were observed with moving averages of 2-7 days after a lag of several days. CONCLUSIONS In an elderly male population, estimated BC exposures were positively associated with markers of systemic inflammation but only in men with CHD or diabetes.
Collapse
Affiliation(s)
- Shona C Fang
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schwartz J, Alexeeff SE, Mordukhovich I, Gryparis A, Vokonas P, Suh H, Coull BA. Association between long-term exposure to traffic particles and blood pressure in the Veterans Administration Normative Aging Study. Occup Environ Med 2012; 69:422-7. [PMID: 22383587 DOI: 10.1136/oemed-2011-100268] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Particulate air pollution is associated with cardiovascular events, but the mechanisms are not fully understood. The main objective was to assess the relationship between long-term exposure to traffic-related air pollution and blood pressure (BP). METHODS The authors used longitudinal data from 853 elderly men participating in the Veterans Administration Normative Aging Study, followed during 1996-2008. Long-term average exposures to traffic particles were created from daily predictions of black carbon (BC) exposure at the geocoded address of each subject, using a validated spatiotemporal model based on ambient monitoring at 82 Boston-area locations. The authors examined the association of these exposures with BP using a mixed model. The authors included the following covariates: age, body mass index, smoking, alcohol, fasting glucose, creatinine clearance, use of cardiovascular medication, education, census-level poverty, day of week and season of clinical visit. RESULTS The authors found significant positive associations between 1-year average BC exposure and both systolic and diastolic blood pressure. An IQR increase in 1-year average BC exposure (0.32 μg/m(3)) was associated with a 2.64 mm Hg increase in systolic blood pressure (95% CI 1.47 to 3.80) and a 2.41 mm Hg increase in diastolic blood pressure (95% CI 1.77 to 3.05). CONCLUSIONS Long-term exposure to traffic particles is associated with increased BP, which may explain part of the association with myocardial infarctions and cardiovascular deaths reported in cohort studies.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Abstract
Exposure to air pollution is associated with adverse effects on health. In particular, a strong epidemiologic association is observed between acute and chronic exposures to particulate matter and the occurrence of cardiovascular events, coronary artery disease, cerebrovascular disease and venous thromboembolism, especially among older people and people with diabetes and previous cardiovascular conditions. Multiple mechanisms have been postulated to cause the increase in atherothrombotic and thromboembolic events, including the activation by particulate matter of inflammatory pathways and hemostasis factors, production of reactive oxygen species through the oxidative stress pathway, alterations in vascular tone, and decreased heart rate variability (a marker of cardiac autonomic dysfunction and a predictor of sudden cardiac death and arrhythmias). Current knowledge on the biologic mechanisms and the clinical effect of short- and long-term exposure to particulate air pollutants is discussed, emphasizing that life expectancy improved significantly in sites where air pollutants were controlled.
Collapse
|
43
|
Power MC, Weisskopf MG, Alexeeff SE, Coull BA, Spiro A, Schwartz J. Traffic-related air pollution and cognitive function in a cohort of older men. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:682-7. [PMID: 21172758 PMCID: PMC3094421 DOI: 10.1289/ehp.1002767] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/20/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Traffic-related particles induce oxidative stress and may exert adverse effects on central nervous system function, which could manifest as cognitive impairment. OBJECTIVE We assessed the association between black carbon (BC), a marker of traffic-related air pollution, and cognition in older men. METHODS A total of 680 men (mean ± SD, 71 ± 7 years of age) from the U.S. Department of Veterans Affairs Normative Aging Study completed a battery of seven cognitive tests at least once between 1996 and 2007. We assessed long-term exposure to traffic-related air pollution using a validated spatiotemporal land-use regression model for BC. RESULTS The association between BC and cognition was nonlinear, and we log-transformed BC estimates for all analyses [ln(BC)]. In a multivariable-adjusted model, for each doubling in BC on the natural scale, the odds of having a Mini-Mental State Examination (MMSE) score ≤ 25 was 1.3 times higher [95% confidence interval (CI), 1.1 to 1.6]. In a multivariable-adjusted model for global cognitive function, which combined scores from the remaining six tests, a doubling of BC was associated with a 0.054 SD lower test score (95% CI, -0.103 to -0.006), an effect size similar to that observed with a difference in age of 1.9 years in our data. We found no evidence of heterogeneity by cognitive test. In sensitivity analyses adjusting for past lead exposure, the association with MMSE scores was similar (odds ratio = 1.3; 95% CI, 1.1 to 1.7), but the association with global cognition was somewhat attenuated (-0.038 per doubling in BC; 95% CI, -0.089 to 0.012). CONCLUSIONS Ambient traffic-related air pollution was associated with decreased cognitive function in older men.
Collapse
Affiliation(s)
- Melinda C Power
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Gan WQ, Koehoorn M, Davies HW, Demers PA, Tamburic L, Brauer M. Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:501-7. [PMID: 21081301 PMCID: PMC3080932 DOI: 10.1289/ehp.1002511] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/16/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Epidemiologic studies have demonstrated that exposure to road traffic is associated with adverse cardiovascular outcomes. OBJECTIVES We aimed to identify specific traffic-related air pollutants that are associated with the risk of coronary heart disease (CHD) morbidity and mortality to support evidence-based environmental policy making. METHODS This population-based cohort study included a 5-year exposure period and a 4-year follow-up period. All residents 45-85 years of age who resided in Metropolitan Vancouver during the exposure period and without known CHD at baseline were included in this study (n=452,735). Individual exposures to traffic-related air pollutants including black carbon, fine particles [aerodynamic diameter ≤ 2.5 µm (PM(2.5))], nitrogen dioxide (NO(2)), and nitric oxide were estimated at residences of the subjects using land-use regression models and integrating changes in residences during the exposure period. CHD hospitalizations and deaths during the follow-up period were identified from provincial hospitalization and death registration records. RESULTS An interquartile range elevation in the average concentration of black carbon (0.94 × 10(-5)/m filter absorbance, equivalent to approximately 0.8 µg/m(3) elemental carbon) was associated with a 3% increase in CHD hospitalization (95% confidence interval, 1-5%) and a 6% increase in CHD mortality (3-9%) after adjusting for age, sex, preexisting comorbidity, neighborhood socioeconomic status, and copollutants (PM(2.5) and NO(2)). There were clear linear exposure-response relationships between black carbon and coronary events. CONCLUSIONS Long-term exposure to traffic-related fine particulate air pollution, indicated by black carbon, may partly explain the observed associations between exposure to road traffic and adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Wen Qi Gan
- School of Environmental Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | |
Collapse
|
45
|
Alexeeff SE, Coull BA, Gryparis A, Suh H, Sparrow D, Vokonas PS, Schwartz J. Medium-term exposure to traffic-related air pollution and markers of inflammation and endothelial function. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:481-6. [PMID: 21349799 PMCID: PMC3080929 DOI: 10.1289/ehp.1002560] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 02/24/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Exposure to traffic-related air pollution (TRAP) contributes to increased cardiovascular risk. Land-use regression models can improve exposure assessment for TRAP. OBJECTIVES We examined the association between medium-term concentrations of black carbon (BC) estimated by land-use regression and levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1), both markers of inflammatory and endothelial response. METHODS We studied 642 elderly men participating in the Veterans Administration (VA) Normative Aging Study with repeated measurements of sICAM-1 and sVCAM-1 during 1999-2008. Daily estimates of BC exposure at each geocoded participant address were derived using a validated spatiotemporal model and averaged to form 4-, 8-, and 12-week exposures. We used linear mixed models to estimate associations, controlling for confounders. We examined effect modification by statin use, obesity, and diabetes. RESULTS We found statistically significant positive associations between BC and sICAM-1 for averages of 4, 8, and 12 weeks. An interquartile-range increase in 8-week BC exposure (0.30 μg/m3) was associated with a 1.58% increase in sICAM-1 (95% confidence interval, 0.18-3.00%). Overall associations between sVCAM-1 and BC exposures were suggestive but not statistically significant. We found a significant interaction with diabetes-where diabetics were more susceptible to the effect of BC-for both sICAM-1 and sVCAM-1. We also observed an interaction with statin use, which was statistically significant for sVCAM-1 and suggestive for sICAM-1. We found no evidence of an interaction with obesity. CONCLUSION Our results suggest that medium-term exposure to TRAP may induce an increased inflammatory/endothelial response, especially among diabetics and those not using statins.
Collapse
Affiliation(s)
- Stacey E Alexeeff
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Delfino RJ, Staimer N, Vaziri ND. Air pollution and circulating biomarkers of oxidative stress. AIR QUALITY, ATMOSPHERE, & HEALTH 2011; 4:37-52. [PMID: 23626660 PMCID: PMC3634798 DOI: 10.1007/s11869-010-0095-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations.
Collapse
Affiliation(s)
- Ralph J. Delfino
- Department of Epidemiology, School of Medicine, University of California, Irvine, 100 Theory, Suite 100, Irvine, CA 92617-7555, USA
| | - Norbert Staimer
- Department of Epidemiology, School of Medicine, University of California, Irvine, 100 Theory, Suite 100, Irvine, CA 92617-7555, USA
| | - Nosratola D. Vaziri
- Nephrology and Hypertension Division, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
47
|
Abstract
Accumulating epidemiological, clinical, and experimental evidence supports the conclusion of a critical role of epigenetic factors in immune programming. This understanding provides the basis for elucidating how the intricate interactions of the genome, epigenome, and transcriptome shape immune responses and maintain immune tolerance to self-antigens. Deciphering the precise contribution of epigenetic factors to autoimmunity, and in particular to lupus, has become an active research area. On one hand, it is well established that environmental factors have an impact on the epigenome and, therefore, on the transcriptional and translational machinery of specific cell types; on the other, the environment also plays an important role in the severity of lupus and other autoimmunity diseases. Determining how epigenetics "connects" the environment to cell biology and to autoreactivity will be key for advancing our understanding in this field and, possibly, for developing novel preventive strategies.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm UMR-S 606, University Diderot-Paris 7, Paris, France.
| |
Collapse
|
48
|
Ren C, Vokonas PS, Suh H, Fang S, Christiani DC, Schwartz J. Effect modification of air pollution on Urinary 8-Hydroxy-2'-Deoxyguanosine by genotypes: an application of the multiple testing procedure to identify significant SNP interactions. Environ Health 2010; 9:78. [PMID: 21138591 PMCID: PMC3016327 DOI: 10.1186/1476-069x-9-78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 12/07/2010] [Indexed: 05/12/2023]
Abstract
BACKGROUND Air pollution is associated with adverse human health, but mechanisms through which pollution exerts effects remain to be clarified. One suggested pathway is that pollution causes oxidative stress. If so, oxidative stress-related genotypes may modify the oxidative response defenses to pollution exposure. METHODS We explored the potential pathway by examining whether an array of oxidative stress-related genes (twenty single nucleotide polymorphisms, SNPs in nine genes) modified associations of pollutants (organic carbon (OC), ozone and sulfate) with urinary 8-hydroxy-2-deoxygunosine (8-OHdG), a biomarker of oxidative stress among the 320 aging men. We used a Multiple Testing Procedure in R modified by our team to identify the significance of the candidate genes adjusting for a priori covariates. RESULTS We found that glutathione S-tranferase P1 (GSTP1, rs1799811), M1 and catalase (rs2284367) and group-specific component (GC, rs2282679, rs1155563) significantly or marginally significantly modified effects of OC and/or sulfate with larger effects among those carrying the wild type of GSTP1, catalase, non-wild type of GC and the non-null of GSTM1. CONCLUSIONS Polymorphisms of oxidative stress-related genes modified effects of OC and/or sulfate on 8-OHdG, suggesting that effects of OC or sulfate on 8-OHdG and other endpoints may be through the oxidative stress pathway.
Collapse
Affiliation(s)
- Cizao Ren
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health. Boston, MA. USA
| | - Pantel S Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Helen Suh
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health. Boston, MA. USA
| | - Shona Fang
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - David C Christiani
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health. Boston, MA. USA
| |
Collapse
|
49
|
Khelil M, Zenati A, Makrelouf M, Otmane A, Tayebi B. Polymorphisms in NAT2 gene and atherosclerosis in an Algerian population. Arch Med Res 2010; 41:215-20. [PMID: 20682180 DOI: 10.1016/j.arcmed.2010.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 03/19/2010] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS The etiology of atherosclerosis is multifactorial. Genetic and environmental factors are involved in the development of atherosclerosis. Human arylamine N-acetyltransferase 2 (NAT2) is an important metabolizing enzyme that exhibits genetic polymorphisms and modifies individual response and/or toxicity to many xenobiotics. We undertook this study to investigate the NAT2 polymorphisms in patients with atherosclerosis. METHODS Genotyping for NAT2 alleles was performed using polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) in 285 Algerian patients with atherosclerosis and 286 controls. RESULTS There was no association between NAT2 polymorphisms and atherosclerosis risk. However, the haplotype NAT2(*)5F decreased susceptibility to the disease (p = 0.005, OR = 0.55, 95% CI = 0.37-0.84). The frequency of the slow acetylator phenotype was approximately 50% in both cases and controls. CONCLUSIONS These results suggest that NAT2 polymorphisms may not be involved in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Malika Khelil
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari, Boumediène, Alger, Algérie.
| | | | | | | | | |
Collapse
|
50
|
Araujo JA. Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. AIR QUALITY, ATMOSPHERE, & HEALTH 2010; 4:79-93. [PMID: 21461032 PMCID: PMC3040314 DOI: 10.1007/s11869-010-0101-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 10/06/2010] [Indexed: 05/18/2023]
Abstract
Air pollution has been associated with significant adverse health effects leading to increased overall morbidity and mortality of worldwide significance. Epidemiological studies have shown that the largest portion of air pollution-related mortality is due to cardiovascular diseases, predominantly those of ischemic nature. Human studies suggest an association with atherosclerosis and increasing experimental animal data support that this association is likely to be causal. While both gasses and particles have been linked to detrimental health effects, more evidence implicates the particulate matter (PM) components as major responsible for a large portion of the proatherogenic effects. Multiple experimental approaches have revealed the ability of PM components to trigger and/or enhance free radical reactions in cells and tissues, both ex vivo as well as in vivo. It appears that exposure to PM leads to the development of systemic prooxidant and proinflammatory effects that may be of great importance in the development of atherosclerotic lesions. This article reviews the epidemiological studies, experimental animal, and cellular data that support the association of air pollutants, especially the particulate components, with systemic oxidative stress, inflammation, and atherosclerosis. It also reviews the use of transcriptomic studies to elucidate molecular pathways of importance in those systemic effects.
Collapse
Affiliation(s)
- Jesus A. Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- UCLA Division of Cardiology, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 USA
| |
Collapse
|