1
|
Wu JQ, Wang YX, Su D, Shao TH, Ding XX, Sun T, Cui N, Yu ZB. EFFECTS OF LEVOSIMENDAN ON DIAPHRAGMATIC DYSFUNCTION IN PATIENTS WITH SEPSIS. Shock 2024; 62:63-68. [PMID: 38661179 DOI: 10.1097/shk.0000000000002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT Objective: In this study, our aim was to examine the effects of levosimendan on diaphragmatic dysfunction in patients with sepsis, as well as assess its impact on respiratory muscle contractility and the outcome of weaning. Methods: This was a single-blind, randomized, controlled trial. Patients with diaphragmatic dysfunction and failure of spontaneous breathing trials (SBTs) were randomly and equally assigned to the experimental and control groups. The experimental group received levosimendan at a loading dose of 6 μg/kg for 10 min, followed by a continuous infusion at 0.2 μg/kg/min. The control group received an equivalent dose of a placebo. The preadministration and postadministration respiratory mechanics parameters of the patients were recorded. Evaluation of the effect of levosimendan on patients with sepsis-induced diaphragm dysfunction comprised arterial blood gas analysis as well as ultrasound measurements of diaphragm excursion (DE), diaphragm thickness (DT), diaphragm thickening fraction (TFdi), and diaphragm-rapid shallow breathing index (D-RSBI). Results: Forty-four patients were enrolled in the study. We found that postadministration of levosimendan, the patients' tidal volume (GCSMV) increased, whereas the D-RSBI decreased, and the partial pressure of carbon dioxide (PACO 2 ) decreased when compared to the preadministration levels. Additionally, following levosimendan administration, patients showed increased DE and pressure support (PS) when compared to before administration (1.14 ± 0.177 vs. 1.22 ± 0.170 cm and 0.248 ± 0.03 vs. 0.284 ± 0.06, respectively) and decreased D-RSBI (22.76 ± 6.14 vs. 20.06 ± 6.04, respectively), all of which were statistically significant ( P < 0.05). In contrast, in the control group of patients, there were no statistically significant differences in the postadministration levels of DE, TFdi, and D-RSBI as compared to the preadministration period ( P > 0.05). Furthermore, in terms of weaning outcomes, we did not find any statistically significant difference in the number of patients in the two groups who eventually underwent weaning ( P = 0.545). Conclusion: In this study, we found that levosimendan enhanced diaphragm contractile function. However, further investigations are required to explore its effect on weaning outcomes in patients undergoing mechanical ventilation.
Collapse
Affiliation(s)
- Jia-Qian Wu
- Department of Intensive Care Unit, Affiliated Hospital of Hebei University, Baoding City, China
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Coiffard B, Dianti J, Telias I, Brochard LJ, Slutsky AS, Beck J, Sinderby C, Ferguson ND, Goligher EC. Dyssynchronous diaphragm contractions impair diaphragm function in mechanically ventilated patients. Crit Care 2024; 28:107. [PMID: 38566126 PMCID: PMC10988824 DOI: 10.1186/s13054-024-04894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Pre-clinical studies suggest that dyssynchronous diaphragm contractions during mechanical ventilation may cause acute diaphragm dysfunction. We aimed to describe the variability in diaphragm contractile loading conditions during mechanical ventilation and to establish whether dyssynchronous diaphragm contractions are associated with the development of impaired diaphragm dysfunction. METHODS In patients receiving invasive mechanical ventilation for pneumonia, septic shock, acute respiratory distress syndrome, or acute brain injury, airway flow and pressure and diaphragm electrical activity (Edi) were recorded hourly around the clock for up to 7 days. Dyssynchronous post-inspiratory diaphragm loading was defined based on the duration of neural inspiration after expiratory cycling of the ventilator. Diaphragm function was assessed on a daily basis by neuromuscular coupling (NMC, the ratio of transdiaphragmatic pressure to diaphragm electrical activity). RESULTS A total of 4508 hourly recordings were collected in 45 patients. Edi was low or absent (≤ 5 µV) in 51% of study hours (median 71 h per patient, interquartile range 39-101 h). Dyssynchronous post-inspiratory loading was present in 13% of study hours (median 7 h per patient, interquartile range 2-22 h). The probability of dyssynchronous post-inspiratory loading was increased with reverse triggering (odds ratio 15, 95% CI 8-35) and premature cycling (odds ratio 8, 95% CI 6-10). The duration and magnitude of dyssynchronous post-inspiratory loading were associated with a progressive decline in diaphragm NMC (p < 0.01 for interaction with time). CONCLUSIONS Dyssynchronous diaphragm contractions may impair diaphragm function during mechanical ventilation. TRIAL REGISTRATION MYOTRAUMA, ClinicalTrials.gov NCT03108118. Registered 04 April 2017 (retrospectively registered).
Collapse
Affiliation(s)
- Benjamin Coiffard
- Department of Respiratory Medicine, Aix-Marseille University, APHM, Hôpital Nord, Marseille, France
| | - Jose Dianti
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Irene Telias
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Laurent J Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Jennifer Beck
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Christer Sinderby
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Niall D Ferguson
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, 585 University Ave., 9-MaRS-9024, Toronto, ON, M5G 2N2, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, Canada
| | - Ewan C Goligher
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Toronto General Hospital Research Institute, 585 University Ave., 9-MaRS-9024, Toronto, ON, M5G 2N2, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Tan R, Guo H, Yang Z, Yang H, Li Q, Zhu Q, Du Q. Efficacy and safety of levosimendan in patients with sepsis: a systematic review and network meta-analysis. Front Pharmacol 2024; 15:1358735. [PMID: 38523635 PMCID: PMC10957638 DOI: 10.3389/fphar.2024.1358735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Objective: We conducted a systematic review to assess the advantages and disadvantages of levosimendan in patients with sepsis compared with placebo, milrinone, and dobutamine and to explore the clinical efficacy of different concentrations of levosimendan. Methods: PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wanfang data, VIP, and CBM databases were searched using such keywords as simendan, levosimendan, and sepsis. The search time was from the establishment of the database to July 2023. Two researchers were responsible for literature screening and data collection respectively. After the risk of bias in the included studies was evaluated, network meta-analysis was performed using R software gemtc and rjags package. Results: Thirty-two randomized controlled trials (RCTs) were included in the network meta-analysis. Meta-analysis results showed that while levosimendan significantly improved CI levels at either 0.1 µg/kg/min (mean difference [MD] [95%CrI] = 0.41 [-0.43, 1.4]) or 0.2 µg/kg/min (MD [95%CrI] =0.54 [0.12, 0.99]). Levosimendan, at either 0.075 µg/kg/min (MD [95% CrI] =0.033 [-0.75, 0.82]) or 0.2 µg/kg/min (MD [95% CrI] = -0.014 [-0.26, 0.23]), had no significant advantage in improving Lac levels. Levosimendan, at either 0.1 µg/kg/min (RR [95% CrI] = 0.99 [0.73, 1.3]) or 0.2 µg/kg/min (RR [95% CrI] = 1.0 [0.88, 1.2]), did not have a significant advantage in reducing mortality. Conclusion: The existing evidence suggests that levosimendan can significantly improve CI and lactate levels in patients with sepsis, and levosimendan at 0.1 µg/kg/min might be the optimal dose. Unfortunately, all interventions in this study failed to reduce the 28-day mortality. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023441220.
Collapse
Affiliation(s)
- Ruimin Tan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Guo
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zinan Yang
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huihui Yang
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qinghao Li
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong Zhu
- Department of Orthopaedics, The People’s Hospital of Shizhu, Chongqing, China
| | - Quansheng Du
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Saini A, Chawla PA. Breaking barriers with tofersen: Enhancing therapeutic opportunities in amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16140. [PMID: 37975798 PMCID: PMC11235929 DOI: 10.1111/ene.16140] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects adults, characterized by muscle weakness resulting from the specific death of motor neurons in the spinal cord and brain. The pathogenesis of ALS is associated with the accumulation of mutant superoxide dismutase 1 (SOD1) proteins and neurofilaments in motor neurons, highlighting the critical need for disease-modifying treatments. Current therapies, such as riluzole and edaravone, provide only symptomatic relief. Recently, tofersen gained approval from the US FDA under the brand name Qalsody as the first and only gene therapy for ALS, addressing a significant pathological aspect of the disease. METHODS We carried out a literature survey using PubMed, Scopus, National Institutes of Health, and Biogen for articles published in the English language concerned with "amyotrophic lateral sclerosis", pathophysiology, current treatment, treatment under clinical trial, and the newly approved drug "tofersen" and its detailed summary. RESULTS A comprehensive review of the literature on the pathophysiology, available treatment, and newly approved drug for this condition revealed convincing evidence that we are now able to better monitor and treat ALS. CONCLUSIONS Although treatment of ALS is difficult, the newly approved drug tofersen has emerged as a potential therapy to slow down the progression of ALS by targeting SOD1 mRNA, representing a significant advancement in the treatment of ALS.
Collapse
Affiliation(s)
- Aniket Saini
- Department of Pharmaceutical AnalysisISF College of PharmacyMogaPunjabIndia
| | - Pooja A. Chawla
- Department of Pharmaceutical AnalysisISF College of PharmacyMogaPunjabIndia
| |
Collapse
|
5
|
Jonkman AH, Warnaar RSP, Baccinelli W, Carbon NM, D'Cruz RF, Doorduin J, van Doorn JLM, Elshof J, Estrada-Petrocelli L, Graßhoff J, Heunks LMA, Koopman AA, Langer D, Moore CM, Nunez Silveira JM, Petersen E, Poddighe D, Ramsay M, Rodrigues A, Roesthuis LH, Rossel A, Torres A, Duiverman ML, Oppersma E. Analysis and applications of respiratory surface EMG: report of a round table meeting. Crit Care 2024; 28:2. [PMID: 38166968 PMCID: PMC10759550 DOI: 10.1186/s13054-023-04779-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.
Collapse
Affiliation(s)
- A H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R S P Warnaar
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - W Baccinelli
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - N M Carbon
- Department of Anesthesiology, Friedrich Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Erlangen, Germany
| | - R F D'Cruz
- Lane Fox Clinical Respiratory Physiology Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J L M van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Elshof
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - L Estrada-Petrocelli
- Facultad de Ingeniería and Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) - Sistema Nacional de Investigación (SNI), Universidad Latina de Panamá (ULATINA), Panama, Panama
| | - J Graßhoff
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - L M A Heunks
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A A Koopman
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - D Langer
- Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium
| | - C M Moore
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - J M Nunez Silveira
- Hospital Italiano de Buenos Aires, Unidad de Terapia Intensiva, Ciudad de Buenos Aires, Argentina
| | - E Petersen
- Technical University of Denmark (DTU), DTU Compute, 2800, Kgs. Lyngby, Denmark
| | - D Poddighe
- Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium
| | - M Ramsay
- Lane Fox Clinical Respiratory Physiology Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
| | - L H Roesthuis
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Rossel
- Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - A Torres
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST) and Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain
| | - M L Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E Oppersma
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
6
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
7
|
Nan Y, Zhou Y, Dai Z, Yan T, Zhong P, Zhang F, Chen Q, Peng L. Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front Nutr 2023; 10:1214684. [PMID: 37614743 PMCID: PMC10442553 DOI: 10.3389/fnut.2023.1214684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases in the elderly population and is characterized by persistent respiratory symptoms and airflow obstruction. During COPD progression, a variety of pulmonary and extrapulmonary complications develop, with sarcopenia being one of the most common extrapulmonary complications. Factors that contribute to the pathogenesis of coexisting COPD and sarcopenia include systemic inflammation, hypoxia, hypercapnia, oxidative stress, protein metabolic imbalance, and myocyte mitochondrial dysfunction. These factors, individually or in concert, affect muscle function, resulting in decreased muscle mass and strength. The occurrence of sarcopenia severely affects the quality of life of patients with COPD, resulting in increased readmission rates, longer hospital admission, and higher mortality. In recent years, studies have found that oral supplementation with protein, micronutrients, fat, or a combination of nutritional supplements can improve the muscle strength and physical performance of these patients; some studies have also elucidated the possible underlying mechanisms. This review aimed to elucidate the role of nutrition among patients with coexisting COPD and sarcopenia.
Collapse
Affiliation(s)
- Yayun Nan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Yuting Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Yan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Pingping Zhong
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fufeng Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Claassen WJ, Baelde RJ, Galli RA, de Winter JM, Ottenheijm CAC. Small molecule drugs to improve sarcomere function in those with acquired and inherited myopathies. Am J Physiol Cell Physiol 2023; 325:C60-C68. [PMID: 37212548 PMCID: PMC10281779 DOI: 10.1152/ajpcell.00047.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Muscle weakness is a hallmark of inherited or acquired myopathies. It is a major cause of functional impairment and can advance to life-threatening respiratory insufficiency. During the past decade, several small-molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small-molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin. We also discuss their use in the treatment of skeletal myopathies. The first of three classes of drugs discussed here increase contractility by decreasing the dissociation rate of calcium from troponin and thereby sensitizing the muscle to calcium. The second two classes of drugs directly act on myosin and stimulate or inhibit the kinetics of myosin-actin interactions, which may be useful in patients with muscle weakness or stiffness.NEW & NOTEWORTHY During the past decade, several small molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin.
Collapse
Affiliation(s)
- Wout J Claassen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Rianne J Baelde
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Ricardo A Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Josine M de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Coen A C Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| |
Collapse
|
9
|
Bureau C, Van Hollebeke M, Dres M. Managing respiratory muscle weakness during weaning from invasive ventilation. Eur Respir Rev 2023; 32:220205. [PMID: 37019456 PMCID: PMC10074167 DOI: 10.1183/16000617.0205-2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 04/07/2023] Open
Abstract
Weaning is a critical stage of an intensive care unit (ICU) stay, in which the respiratory muscles play a major role. Weakness of the respiratory muscles, which is associated with significant morbidity in the ICU, is not limited to atrophy and subsequent dysfunction of the diaphragm; the extradiaphragmatic inspiratory and expiratory muscles also play important parts. In addition to the well-established deleterious effect of mechanical ventilation on the respiratory muscles, other risk factors such as sepsis may be involved. Weakness of the respiratory muscles can be suspected visually in a patient with paradoxical movement of the abdominal compartment. Measurement of maximal inspiratory pressure is the simplest way to assess respiratory muscle function, but it does not specifically take the diaphragm into account. A cut-off value of -30 cmH2O could identify patients at risk for prolonged ventilatory weaning; however, ultrasound may be better for assessing respiratory muscle function in the ICU. Although diaphragm dysfunction has been associated with weaning failure, this diagnosis should not discourage clinicians from performing spontaneous breathing trials and considering extubation. Recent therapeutic developments aimed at preserving or restoring respiratory muscle function are promising.
Collapse
Affiliation(s)
- Côme Bureau
- Sorbonne Université, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation, Département R3S, Paris, France
| | - Marine Van Hollebeke
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Martin Dres
- Sorbonne Université, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation, Département R3S, Paris, France
| |
Collapse
|
10
|
Lin L, Wang P, Zheng H, Zhong Z, Zhuansun Y, Yang Z, Chen R. RESPIRATORY MECHANICS AND NEURAL RESPIRATORY DRIVE OF UNTREATED GASPING DURING CARDIAC ARREST IN A PORCINE MODEL. Shock 2023; 59:948-954. [PMID: 37018832 DOI: 10.1097/shk.0000000000002127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
ABSTRACT Introduction: Although the effects on hemodynamics of gasping during cardiac arrest (CA) have received a lot of attention, less is known about the respiratory mechanics and physiology of respiration in gasping. This study aimed to investigate the respiratory mechanics and neural respiratory drive of gasping during CA in a porcine model. Method: Pigs weighing 34.9 ± 5.7 kg were anesthetized intravenously. Ventricular fibrillation (VF) was electrically induced and untreated for 10 min. Mechanical ventilation (MV) was ceased immediately after the onset of VF. Hemodynamic and respiratory parameters, pressure signals, diaphragmatic electromyogram data, and blood gas analysis data were recorded. Results: Gasping was observed in all the animals at a significantly lower rate (2-5 gaps/min), with higher tidal volume ( VT ; 0.62 ± 0.19 L, P < 0.01), and with lower expired minute volume (2.51 ± 1.49 L/min, P < 0.001) in comparison with the baseline. The total respiratory cycle time and the expiratory time tended to be lengthened. Statistically significant elevations in transdiaphragmatic pressure, the pressure-time product of diaphragmatic pressure, and the mean of root mean square diaphragmatic electromyogram values (RMSmean) were observed ( P < 0.05, P < 0.05, and P < 0.001, respectively); however, VT /RMSmean and transdiaphragmatic pressure/RMSmean were reduced at all time points. The partial pressure of oxygen showed a continuous decline after VF to reach statistical significance in the 10th minute (9.46 ± 0.96 kPa, P < 0.001), whereas the partial pressure of carbon dioxide tended to first rise and then fall. Conclusions: Gasping during CA was characterized by high VT , extremely low frequency, and prolonged expiratory time, which may improve hypercapnia. During gasping, increased work of breathing and insufficient neuromechanical efficacy of neural respiratory drive suggested the necessity of MV and appropriate management strategies for MV during resuscitation after CA.
Collapse
Affiliation(s)
- Lin Lin
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou
| | - Pengfei Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou
| | | | - Zheye Zhong
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou
| | - Yongxun Zhuansun
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou
| | - Rui Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou
| |
Collapse
|
11
|
De Rosa CA, Cristiano G, Guarino M. Ultrasound assessment of diaphragmatic dysfunction and its improvement with levosimendan in patients with chronic obstructive pulmonary disease. EMERGENCY CARE JOURNAL 2023. [DOI: 10.4081/ecj.2023.11248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Diaphragmatic Dysfunction (DD) is a clinical condition in which the diaphragm becomes weak or paralyzed, because of muscle strength reduction. It can be due to muscular issues or loss of proper innervation, but, also, to pulmonary hyperinflation or air trapping, such as in Chronic Obstructive Pulmonary Disease (COPD). DD impacts on COPD induced dyspnea, determining its progressive worsening, but levosimendan, an inodilator better known as Ca2+ sensitizer, may limit this phenomenon and diaphragmatic ultrasound assessment can be useful in monitoring its effect. Here, we show the case of a 77-year-old woman admitted to the Emergency department for acute exacerbation of chronic dyspnea in COPD, related to right ventricular failure and DD, which did not respond to medical therapy and non-invasive mechanical ventilation but did experience a favorable outcome after intravenous administration of levosimendan.
Collapse
|
12
|
Zambelli V, Murphy EJ, Delvecchio P, Rizzi L, Fumagalli R, Rezoagli E, Bellani G. Treatment with levosimendan in an experimental model of early ventilator-induced diaphragmatic dysfunction. Drug Target Insights 2023; 17:39-44. [PMID: 37070031 PMCID: PMC10105369 DOI: 10.33393/dti.2023.2574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
Introduction Mechanical ventilation (MV) is a life-saving approach in critically ill patients. However, it may affect the diaphragmatic structure and function, beyond the lungs. Levosimendan is a calcium sensitizer widely used in clinics to improve cardiac contractility in acute heart failure patients. In vitro studies have demonstrated that levosimendan increased force-generating capacity of the diaphragm in chronic obstructive pulmonary disease patients. Thus the aim of this study was to evaluate the effects of levosimendan administration in an animal model of ventilator-induced diaphragmatic dysfunction (VIDD) on muscle contraction and diaphragm muscle cell viability. Methods Sprague-Dawley rats underwent prolonged MV (5 hours). VIDD+Levo group received a starting bolus of levosimendan immediately after intratracheal intubation and then an intravenous infusion of levosimendan throughout the study. Diaphragms were collected for ex vivo contractility measurement (with electric stimulation), histological analysis and Western blot analysis. Healthy rats were used as the control. Results Levosimendan treatment maintained an adequate mean arterial pressure during the entire experimental protocol, preserved levels of autophagy-related proteins (LC3BI and LC3BII) and the muscular cell diameter demonstrated by histological analysis. Levosimendan did not affect the diaphragmatic contraction or the levels of proteins involved in the protein degradation (atrogin). Conclusions Our data suggest that levosimendan preserves muscular cell structure (cross-sectional area) and muscle autophagy after 5 hours of MV in a rat model of VIDD. However, levosimendan did not improve diaphragm contractile efficiency.
Collapse
Affiliation(s)
- Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
| | - Emma J Murphy
- LIFE - Health and Bioscience Research Institute, Midwest Campus, Technological University of the Shannon, Limerick - Ireland
| | - Paolo Delvecchio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
| | - Roberto Fumagalli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
- Department of Emergency Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan - Italy
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza - Italy
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza - Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza - Italy
| |
Collapse
|
13
|
Girardis M, Bettex D, Bojan M, Demponeras C, Fruhwald S, Gál J, Groesdonk HV, Guarracino F, Guerrero-Orriach JL, Heringlake M, Herpain A, Heunks L, Jin J, Kindgen-Milles D, Mauriat P, Michels G, Psallida V, Rich S, Ricksten SE, Rudiger A, Siegemund M, Toller W, Treskatsch S, Župan Ž, Pollesello P. Levosimendan in intensive care and emergency medicine: literature update and expert recommendations for optimal efficacy and safety. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE (ONLINE) 2022; 2:4. [PMID: 37386589 PMCID: PMC8785009 DOI: 10.1186/s44158-021-00030-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
The inodilator levosimendan, in clinical use for over two decades, has been the subject of extensive clinical and experimental evaluation in various clinical settings beyond its principal indication in the management of acutely decompensated chronic heart failure. Critical care and emergency medicine applications for levosimendan have included postoperative settings, septic shock, and cardiogenic shock. As the experience in these areas continues to expand, an international task force of experts from 15 countries (Austria, Belgium, China, Croatia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Spain, Sweden, Switzerland, and the USA) reviewed and appraised the latest additions to the database of levosimendan use in critical care, considering all the clinical studies, meta-analyses, and guidelines published from September 2019 to November 2021. Overall, the authors of this opinion paper give levosimendan a "should be considered" recommendation in critical care and emergency medicine settings, with different levels of evidence in postoperative settings, septic shock, weaning from mechanical ventilation, weaning from veno-arterial extracorporeal membrane oxygenation, cardiogenic shock, and Takotsubo syndrome, in all cases when an inodilator is needed to restore acute severely reduced left or right ventricular ejection fraction and overall haemodynamic balance, and also in the presence of renal dysfunction/failure.
Collapse
Affiliation(s)
- M Girardis
- Anesthesiology Unit, University Hospital of Modena, University of Modena & Reggio Emilia, Modena, Italy
| | - D Bettex
- Cardio-Surgical Intensive Care Unit, Institute of Anesthesiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - M Bojan
- Anesthesiology and Intensive Care, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - C Demponeras
- Intensive Care Unit, Sotiria General Hospital, Athens, Greece
| | - S Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - J Gál
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - H V Groesdonk
- Clinic for Interdisciplinary Intensive Medicine and Intermediate Care, Helios Clinic, Erfurt, Germany
| | - F Guarracino
- Dipartimento di Anestesia e Rianimazione, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - J L Guerrero-Orriach
- Institute of Biomedical Research in Malaga, Department of Anesthesiology, Virgen de la Victoria University Hospital, Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga, Spain
| | - M Heringlake
- Department of Anesthesiology and Intensive Care Medicine, Heart and Diabetes Center, Mecklenburg-Western Pomerania, Karlsburg Hospital, Karlsburg, Germany
| | - A Herpain
- Department of Intensive Care, Erasme University Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - L Heunks
- Department of Intensive Care, University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J Jin
- The Fourth Hospital of Changsha, Changsha City, Hunan Province, People's Republic of China
| | - D Kindgen-Milles
- Interdisciplinary Surgical Intensive Care Unit, Department of Anesthesiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany
| | - P Mauriat
- Department of Anaesthesia and Critical Care, University of Bordeaux, Haut-Levêque Hospital, Pessac, France
| | - G Michels
- Clinic for Acute and Emergency Medicine, St. Antonius Hospital, Eschweiler, Germany
| | - V Psallida
- Intensive Care Unit, Agioi Anargyroi Hospital, Athens, Greece
| | - S Rich
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S-E Ricksten
- Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Rudiger
- Department of Medicine, Limmattal Hospital, Limmartal, Switzerland
| | - M Siegemund
- Intensive Care Unit, Department Acute Medicine, University Hospital Basel, Basel, Switzerland
| | - W Toller
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - S Treskatsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Ž Župan
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, KBC Rijeka, Rijeka, Croatia
| | - P Pollesello
- Critical Care, Orion Pharma, P.O. Box 65, FIN-02101, Espoo, Finland.
| |
Collapse
|
14
|
Wang D, Song M, Shen LF, Han L, Zhu P, Jia X, Shang GK, Cao Y, Zhang W, Zhong M, Wang ZH. Exercise Capacity Is Improved by Levosimendan in Heart Failure and Sarcopenia via Alleviation of Apoptosis of Skeletal Muscle. Front Physiol 2022; 12:786895. [PMID: 35126176 PMCID: PMC8811365 DOI: 10.3389/fphys.2021.786895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Patients suffering from chronic heart failure (CHF) show an increased prevalence of sarcopenia. Levosimendan is an effective drug for the treatment of heart failure, but its effect on sarcopenia is still unclear. We aimed to explore whether levosimendan could enhance skeletal muscle contractibility, improve skeletal muscle atrophy, and thus improve exercise tolerance of individuals with heart failure. Methods C57BL6/J mice were used to establish the heart failure with sarcopenia model and injected of levosimendan. Mice were separated into control group, sham operation group, HF group, HF + solvent group, HF + levosimendan group, HF + sarcopenia group, HF + sarcopenia + solvent group, HF + sarcopenia + levosimendan group (n = 5–12). After the treatment, exercise capacity and cardiac function were evaluated. Muscle morphology, inflammation level and apoptosis levels were detected, in which mitochondrial function and oxidative stress level were also assessed. Result Levosimendan could increase forelimb grip strength/body weight, hanging impulse, maximum running distance and time in mice with HF and sarcopenia (P < 0.0001 for all), and these improvements were independent of EF (P = 0.0019 for hanging impulse, P < 0.001 for forelimb grip strength/body weight and maximum running distance). Levosimendan directly increased the CSA of gastrocnemius in mice with HF and sarcopenia (P < 0.0001). After levosimendan injection, the proportion of slow muscle fibers increased (P < 0.0001), but this improvement of muscle fiber typing might be attributed to improved cardiac function (P > 0.05). Levosimendan also maintained mitochondrial membrane potential, decreased cleaved caspase-3 (P = 0.034), cleaved caspase-9 (P < 0.0001), Bax expression (P < 0.0001), and increased Bcl2 expression (P = 0.0036). This effect is independent of improved cardiac function (P = 0.028 for bax, P < 0.001 for cleaved caspase-9 and Bcl2). IL-6, TNF-α expression (P < 0.0001 for both) decreased, and SOD activity (P = 0.0038), GSH/GSSG ratio (P = 0.002) significantly increased in skeletal muscle after injection of levosimendan. The improvement in oxidative stress level was attributed to improved cardiac function (P > 0.05). Conclusion Levosimendan reduce the loss of skeletal muscle mitochondrial membrane potential, decrease the apoptosis, alleviate the inflammation and oxidative stress, and ultimately improve the exercise capacity of mice with heart failure and sarcopenia. Therefore, levosimendan may be a potential drug for the treatment of heart failure with sarcopenia.
Collapse
Affiliation(s)
- Di Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Long-fei Shen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Zhu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xu Jia
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Guo-kai Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Yuan Cao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Zhi-hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Geriatric Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Zhi-hao Wang,
| |
Collapse
|
15
|
Luo JC, Zheng WH, Meng C, Zhou H, Xu Y, Tu GW, Luo Z, Huang HB. Levosimendan to Facilitate Weaning From Cardiorespiratory Support in Critically Ill Patients: A Meta-Analysis. Front Med (Lausanne) 2021; 8:741108. [PMID: 34712681 PMCID: PMC8546177 DOI: 10.3389/fmed.2021.741108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Cardiopulmonary support, as extracorporeal membrane oxygenation (ECMO) or mechanical ventilation (MV), is crucial for ICU patients. However, some of these patients are difficult to wean. Therefore, we aimed to assess the efficacy and safety of levosimendan in facilitating weaning from cardiorespiratory support in this patient population. Methods: We searched for potentially relevant articles in PubMed, Embase, China National Knowledge Infrastructure, Wanfang, and the Cochrane database from inception up to Feb 30, 2021. Studies focusing on weaning data in MV/ECMO adult patients who received levosimendan compared to controls were included. We used the Cochrane risk of bias tool or the Newcastle-Ottawa Quality Assessment Scale to evaluate the study quality. The primary outcome was the weaning rate from MV/ECMO. Secondary outcomes were mortality, duration of MV, and ICU stay. Subgroup analysis, sensitivity analysis, and publication bias were also conducted. Results: Eighteen studies with 2,274 patients were included. The quality of the included studies was low to moderate. Overall, levosimendan effectively improved weaning rates from MV/ECMO [odds ratio (OR) = 2.32; 95%CI, 1.60-3.36; P < 0.00001, I 2 = 68%]. Subgroup analyses confirmed the higher successful weaning rates in ventilated patients with low left ventricular ejection fractions (OR = 4.06; 95%CI, 2.16-7.62), patients with ECMO after cardiac surgery (OR = 2.04; 95%CI, 1.25-3.34), and patients with ECMO and cardiogenic shock (OR = 1.98; 95%CI, 1.34-2.91). However, levosimendan showed no beneficial effect on patients with MV weaning difficulty (OR = 2.28; 95%CI, 0.72-7.25). Additionally, no differences were found concerning the secondary outcomes between the groups. Conclusions: Levosimendan therapy significantly increased successful weaning rates in patients with cardiopulmonary support, especially patients with combined cardiac insufficiency. Large-scale, well-designed RCTs will be needed to define the subgroup of patients most likely to benefit from this strategy.
Collapse
Affiliation(s)
- Jing-Chao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-He Zheng
- Department of Critical Care Medicine, The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chang Meng
- Department of Critical Care Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Hua Zhou
- Department of Critical Care Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yuan Xu
- Department of Critical Care Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Hui-Bin Huang
- Department of Critical Care Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Jansen D, Jonkman AH, Vries HJD, Wennen M, Elshof J, Hoofs MA, van den Berg M, Man AMED, Keijzer C, Scheffer GJ, van der Hoeven JG, Girbes A, Tuinman PR, Marcus JT, Ottenheijm CAC, Heunks L. Positive end-expiratory pressure affects geometry and function of the human diaphragm. J Appl Physiol (1985) 2021; 131:1328-1339. [PMID: 34473571 DOI: 10.1152/japplphysiol.00184.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Positive end-expiratory pressure (PEEP) is routinely applied in mechanically ventilated patients to improve gas exchange and respiratory mechanics by increasing end-expiratory lung volume (EELV). In a recent experimental study in rats, we demonstrated that prolonged application of PEEP causes diaphragm remodeling, especially longitudinal muscle fiber atrophy. This is of potential clinical importance, as the acute withdrawal of PEEP during ventilator weaning decreases EELV and thereby stretches the adapted, longitudinally atrophied diaphragm fibers to excessive sarcomere lengths, having a detrimental effect on force generation. Whether this series of events occurs in the human diaphragm is unknown. In the current study, we investigated if short-term application of PEEP affects diaphragm geometry and function, which are prerequisites for the development of longitudinal atrophy with prolonged PEEP application. Nineteen healthy volunteers were noninvasively ventilated with PEEP levels of 2, 5, 10, and 15 cmH2O. Magnetic resonance imaging was performed to investigate PEEP-induced changes in diaphragm geometry. Subjects were instrumented with nasogastric catheters to measure diaphragm neuromechanical efficiency (i.e., diaphragm pressure normalized to its electrical activity) during tidal breathing with different PEEP levels. We found that increasing PEEP from 2 to 15 cmH2O resulted in a caudal diaphragm displacement (19 [14-26] mm, P < 0.001), muscle shortening in the zones of apposition (20.6% anterior and 32.7% posterior, P < 0.001), increase in diaphragm thickness (36.4% [0.9%-44.1%], P < 0.001) and reduction in neuromechanical efficiency (48% [37.6%-56.6%], P < 0.001). These findings demonstrate that conditions required to develop longitudinal atrophy in the human diaphragm are present with the application of PEEP.NEW & NOTEWORTHY We demonstrate that PEEP causes changes in diaphragm geometry, especially muscle shortening, and decreases in vivo diaphragm contractile function. Thus, prerequisites for the development of diaphragm longitudinal muscle atrophy are present with the acute application of PEEP. Once confirmed in ventilated critically ill patients, this could provide a new mechanism for ventilator-induced diaphragm dysfunction and ventilator weaning failure in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Diana Jansen
- Department of Anesthesiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemijn H Jonkman
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Heder J de Vries
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Myrte Wennen
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Judith Elshof
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Maud A Hoofs
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marloes van den Berg
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Angélique M E de Man
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christiaan Keijzer
- Department of Anesthesiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Armand Girbes
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pieter Roel Tuinman
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - J Tim Marcus
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Coen A C Ottenheijm
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Leo Heunks
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Carvalho MD, Swash M. Levosimendan for amyotrophic lateral sclerosis. Lancet Neurol 2021; 20:775-777. [PMID: 34536395 DOI: 10.1016/s1474-4422(21)00255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, Lisbon 1648-028, Portugal; Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal.
| | - Michael Swash
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, Lisbon 1648-028, Portugal; Departments of Neurology and Neuroscience, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Cudkowicz M, Genge A, Maragakis N, Petri S, van den Berg L, Aho VV, Sarapohja T, Kuoppamäki M, Garratt C, Al-Chalabi A. Safety and efficacy of oral levosimendan in people with amyotrophic lateral sclerosis (the REFALS study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Neurol 2021; 20:821-831. [PMID: 34536404 DOI: 10.1016/s1474-4422(21)00242-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND There is an urgent unmet need for new therapies in amyotrophic lateral sclerosis. In a clinical study with healthy volunteers, levosimendan, a calcium sensitiser, was shown to improve neuromechanical efficiency and contractile function of the human diaphragm. We aimed to evaluate the safety and efficacy of oral levosimendan in people with amyotrophic lateral sclerosis, with a focus on respiratory function. METHODS The REFALS study is a randomised, double-blind, placebo-controlled phase 3 trial at 99 amyotrophic lateral sclerosis specialist centres in 14 countries worldwide. People with amyotrophic lateral sclerosis were eligible for participation if they were at least 18 years of age and had a sitting slow vital capacity (SVC) of 60-90% predicted. Participants were randomly assigned (2:1) by interactive web-response system to receive either levosimendan or placebo. The capsules for oral administration were identical in appearance to maintain blinding of participants and investigators. The primary endpoint was the change from baseline in supine SVC at 12 weeks, assessed as the percentage of predicted normal sitting SVC. The key secondary endpoint was the combined assessment of function and survival (CAFS) up to 48 weeks. Analyses were done in the intention-to-treat population, comprising all participants who were randomly assigned. This trial is registered at ClinicalTrials.gov (NCT03505021) and has been completed. An extension study (REFALS-ES; NCT03948178) has also been completed, but will be reported separately. FINDINGS Between June 21, 2018, and June 28, 2019, 871 people were screened for the study, of whom 496 were randomly assigned either levosimendan (n=329) or placebo (n=167). Participants were followed up between June 27, 2018 and June 26, 2020, for a median duration of 50·1 (IQR 37·5-51·1) weeks. The median duration of treatment was 47·9 (IQR 26·4-48·1) weeks. Change from baseline in supine SVC at 12 weeks was -6·73% with levosimendan and -6·99% with placebo, with no significant difference between the treatments (estimated treatment difference 0·26%, 95% CI -2·03 to 2·55, p=0·83). Similarly, at week 48, CAFS did not differ between treatment groups (least squares mean change from baseline 10·69, 95% CI -15·74 to 37·12; nominal p value=0·43). The most frequent adverse events were increased heart rate (106 [33%] of 326 receiving levosimendan vs 12 [7%] of 166 receiving placebo), fall (85 [26%] vs 48 [29%]), headache (93 [29%] vs 36 [22%]), and dyspnoea (59 [18%] vs 32 [19%]). 33 (10%) participants allocated levosimendan and 20 (12%) assigned placebo died during the trial, mainly due to respiratory failure or progression of amyotrophic lateral sclerosis. INTERPRETATION Levosimendan was not superior to placebo in maintaining respiratory function in a broad population with amyotrophic lateral sclerosis. Although levosimendan was generally well tolerated, increased heart rate and headache occurred more frequently with levosimendan than with placebo. The possibility of a clinically relevant subgroup of responsive individuals requires further evaluation. FUNDING Orion Corporation.
Collapse
Affiliation(s)
- Merit Cudkowicz
- Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA.
| | - Angela Genge
- Clinical Research Unit and ALS clinic, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | | | - Leonard van den Berg
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Department of Neurology, King's College Hospital, King's College London, London, UK
| |
Collapse
|
19
|
van de Locht M, Borsboom TC, Winter JM, Ottenheijm CAC. Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics. Int J Mol Sci 2021; 22:ijms22179187. [PMID: 34502093 PMCID: PMC8430961 DOI: 10.3390/ijms22179187] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of treatment strategies.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Ventilator weaning forms an integral part in critical care medicine and strategies to shorten duration are rapidly evolving alongside our knowledge of the relevant physiological processes. The purpose of the current review is to discuss new physiological and clinical insights in ventilator weaning that help us to fasten liberation from mechanical ventilation. RECENT FINDINGS Several new concepts have been introduced in the field of ventilator weaning in the past 2 years. Approaches to shorten the time until ventilator liberation include frequent spontaneous breathing trials, early noninvasive mechanical ventilation to shorten invasive ventilation time, novel ventilatory modes, such as neurally adjusted ventilatory assist and drugs to enhance the contractile efficiency of respiratory muscles. Equally important, ultrasound has been shown to be a versatile tool to monitor physiological changes of the cardiorespiratory system during weaning and steer targeted interventions to improve extubation outcome. SUMMARY A thorough understanding of the physiological adaptations during withdrawal of positive pressure ventilation is extremely important for clinicians in the ICU. We summarize and discuss novel insights in this field.
Collapse
|
21
|
Shi ZH, Jonkman AH, Tuinman PR, Chen GQ, Xu M, Yang YL, Heunks LMA, Zhou JX. Role of a successful spontaneous breathing trial in ventilator liberation in brain-injured patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:548. [PMID: 33987246 PMCID: PMC8105847 DOI: 10.21037/atm-20-6407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/18/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Spontaneous breathing trials (SBTs) have been shown to improve outcomes in critically ill patients. However, in patients with brain injury, indications for intubation and mechanical ventilation are different from those of non-neurological patients, and the role of an SBT in patients with brain injury is less established. The aim of the present study was to compare key respiratory variables acquired during a successful SBT between patients with successful ventilator liberation versus failed ventilator liberation. METHODS In this prospective study, patients with brain injury (≥18 years of age), who completed a 30-min SBT, were enrolled. Airway pressure, flow, esophageal pressure, and diaphragm electrical activity (ΔEAdi) were recorded before (baseline) and during the SBT. Respiratory rate (RR), tidal volume, inspiratory muscle pressure (ΔPmus), ΔEAdi, and neuromechanical efficiency (ΔPmus/ΔEAdi) of the diaphragm were calculated breath by breath and compared between the liberation success and failure groups. Failed liberation was defined as the need for invasive ventilator assistance within 48 h after the SBT. RESULTS In total, 46 patients (51.9±13.2 years, 67.4% male) completed the SBT. Seventeen (37%) patients failed ventilator liberation within 48 h. Another 11 patients required invasive ventilation within 7 days after completing the SBT. There were no differences in baseline characteristics between the success and failed groups. In-depth analysis showed similar changes in patterns and values of respiratory physiological parameters between the groups. CONCLUSIONS In patients with brain injury, ventilator liberation failure was common after successful SBT. In-depth physiological analysis during the SBT did not provide data to predict successful liberation in these patients. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov (No. NCT02863237).
Collapse
Affiliation(s)
- Zhong-Hua Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Intensive Care, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
- Research VUmc Intensive Care (REVIVE), Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Annemijn H. Jonkman
- Department of Intensive Care, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
- Research VUmc Intensive Care (REVIVE), Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Pieter Roel Tuinman
- Department of Intensive Care, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
- Research VUmc Intensive Care (REVIVE), Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Guang-Qiang Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Xu
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Leo M. A. Heunks
- Department of Intensive Care, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
- Research VUmc Intensive Care (REVIVE), Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Therapeutic news in ALS. Rev Neurol (Paris) 2021; 177:544-549. [PMID: 33781562 DOI: 10.1016/j.neurol.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by death of motor neurons in the cortex and the spinal cord. This loss of motor neurons causes progressive weakness and amyotrophy. To date, the median duration of survival in patients with ALS, from first symptoms to death, is estimated to be 36 months. Currently the treatment is limited to two options: riluzole which prolongs survival for a few months and edaravone which is available in only a few countries and also has a small impact on disease progression. There is an urgent need for more effective drugs in this disease to significantly improve progression. Over the last 30 years, all trials have failed to find a curative drug for ALS. This is due, partially, to the heterogeneity of the clinical features and the pathophysiology of motor neuron death. We present in this review the various treatment options currently being developed for ALS, with an emphasis on the range of therapeutic approaches being explored, from old drugs tested in a new indication to innovative drugs obtained via biotechnology or gene therapy.
Collapse
|
23
|
Laghi F, Shaikh H, Littleton SW, Morales D, Jubran A, Tobin MJ. Inhibition of central activation of the diaphragm: a mechanism of weaning failure. J Appl Physiol (1985) 2020; 129:366-376. [PMID: 32673161 PMCID: PMC7473953 DOI: 10.1152/japplphysiol.00856.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
During a T-tube trial following disconnection of mechanical ventilation, patients failing the trial do not develop contractile diaphragmatic fatigue despite increases in inspiratory pressure output. Studies in volunteers, patients, and animals raise the possibility of spinal and supraspinal reflex mechanisms that inhibit central-neural output under loaded conditions. We hypothesized that diaphragmatic recruitment is submaximal at the end of a failed weaning trial despite concurrent respiratory distress. Tidal transdiaphragmatic pressure (ΔPdi) and electrical activity (ΔEAdi) were recorded with esophago-gastric catheters during a T-tube trial in 20 critically ill patients. During the T-tube trial, ∆EAdi was greater in weaning failure patients than in weaning success patients (P = 0.049). Despite increases in ΔPdi, from 18.1 ± 2.5 to 25.9 ± 3.7 cm H2O (P < 0.001), rate of transdiaphragmatic pressure development (from 22.6 ± 3.1 to 37.8 ± 6.7 cm H2O/s; P < 0.0004), and concurrent respiratory distress, ∆EAdi at the end of a failed T-tube trial was half of maximum, signifying inhibition of central neural output to the diaphragm. The increase in ΔPdi in the weaning failure group, while ∆EAdi remained constant, indicates unexpected improvement in diaphragmatic neuromuscular coupling (from 46.7 ± 6.5 to 57.8 ± 8.4 cm H2O/%; P = 0.006). Redistribution of neural output to the respiratory muscles characterized by a progressive increase in rib cage and accessory muscle contribution to tidal breathing and expiratory muscle recruitment contributed to enhanced coupling. In conclusion, diaphragmatic recruitment is submaximal at the end of a failed weaning trial despite concurrent respiratory distress. This finding signifies that reflex inhibition of central neural output to the diaphragm contributes to weaning failure.NEW & NOTEWORTHY Research into pathophysiology of failure to wean from mechanical ventilation has excluded several factors, including contractile fatigue, but the precise mechanism remains unknown. We recorded transdiaphragmatic pressure and diaphragmatic electrical activity in patients undergoing a T-tube trial. Diaphragmatic recruitment was submaximal at the end of a failed trial despite concurrent respiratory distress, signifying that inhibition of central neural output to the diaphragm is an important mechanism of weaning failure.
Collapse
Affiliation(s)
- Franco Laghi
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital, Hines, Illinois
- Division of Pulmonary and Critical Care Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Hameeda Shaikh
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital, Hines, Illinois
- Division of Pulmonary and Critical Care Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Stephen W Littleton
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital, Hines, Illinois
- Division of Pulmonary and Critical Care Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Daniel Morales
- Division of Pulmonary and Critical Care Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital, Hines, Illinois
- Division of Pulmonary and Critical Care Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital, Hines, Illinois
- Division of Pulmonary and Critical Care Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| |
Collapse
|
24
|
Potential of the Cardiovascular Drug Levosimendan in the Management of Amyotrophic Lateral Sclerosis: An Overview of a Working Hypothesis. J Cardiovasc Pharmacol 2020; 74:389-399. [PMID: 31730560 DOI: 10.1097/fjc.0000000000000728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Levosimendan is a calcium sensitizer that promotes myocyte contractility through its calcium-dependent interaction with cardiac troponin C. Administered intravenously, it has been used for nearly 2 decades to treat acute and advanced heart failure and to support the heart function in various therapy settings characterized by low cardiac output. Effects of levosimendan on noncardiac muscle suggest a possible new application in the treatment of people with amyotrophic lateral sclerosis (ALS), a neuromuscular disorder characterized by progressive weakness, and eventual paralysis. Previous attempts to improve the muscle response in ALS patients and thereby maintain respiratory function and delay progression of disability have produced some mixed results. Continuing this line of investigation, levosimendan has been shown to enhance in vitro the contractility of the diaphragm muscle fibers of non-ALS patients and to improve in vivo diaphragm neuromuscular efficiency in healthy subjects. Possible positive effects on respiratory function in people with ALS were seen in an exploratory phase 2 study, and a phase 3 clinical trial is now underway to evaluate the potential benefit of an oral form of levosimendan on both respiratory and overall functions in patients with ALS. Here, we will review the various known pharmacologic effects of levosimendan, considering their relevance to people living with ALS.
Collapse
|
25
|
Mauriat P, Bojan M, Soulie S, Foulgoc H, Tafer N, Ouattara A. Impact of the perioperative inotropic support in grown-up congenital heart patients undergoing cardiac surgery: a propensity score adjusted analysis. Ann Intensive Care 2020; 10:91. [PMID: 32648069 PMCID: PMC7344035 DOI: 10.1186/s13613-020-00709-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Grown-up congenital heart (GUCH) patients represent a growing population with a high morbidity risk when undergoing reparative surgery. A main preoperative feature is right ventricular failure, which represents a risk factor for postoperative low cardiac output syndrome. Levosimendan has a potentially beneficial effect. This retrospective study included consecutive GUCH patients with surgeries in a tertiary cardiothoracic centre between 01-01-2013 and 01-10-2017, to test the hypothesis that the postoperative use of levosimendan might be associated with shorter time of mechanical ventilation, when compared with the use of milrinone. To adjust for bias related to the probability of treatment assignment, it uses the inverse propensity score weighting methodology. Results Overall 363 patients had GUCH surgeries during the study period, their mean age was 31.39 ± 15.31 years, 87 patients were eligible for analysis in the Levosimendan group and 117 in the Milrinone group. The propensity score used pre- and intraoperative variables and resulted in a good balance between covariates. The Levosimendan group included patients with higher preoperative risk scores, a higher prevalence of left and right ventricular failure, who required more often the addition of epinephrine, renal replacement therapy, prolonged mechanical ventilation and intensive care stay. However, after propensity score weighting, patients in the Levosimendan group had shorter durations of mechanical ventilation (average treatment effect − 37.59 h IQR [− 138.85 to − 19.13], p = 0.01) and intensive care stay (average treatment effect − 3.11 days IQR [− 10.03 to − 1.48], p = 0.009). The number of days of additional epinephrine support was shorter and the vasoactive inotropic scores lower. Conclusion We report a beneficial effect in terms of duration of mechanical ventilation and intensive care stay, and on inotropic requirements of the use of levosimendan following GUCH surgeries. The use of levosimendan in this setting requires validation at a larger scale.
Collapse
Affiliation(s)
- Philippe Mauriat
- Department of Anaesthesia and Critical Care, University of Bordeaux, Haut-Levêque Hospital, Avenue Magellan, 33000, Pessac, France.
| | - Mirela Bojan
- Department of Anaesthesia, Congenital Cardiac Unit, Marie-Lannelongue Hospital, Paris-Sud University, 133 Avenue de la Résistance, 92350, Le Plessis-Robinson, France
| | - Sylvie Soulie
- Department of Anesthesia and Critical Care, Louis Pradel Hospital, University of Lyon, 59 Boulevard Pinel, 69500, Bron, France
| | - Hélène Foulgoc
- Department of Anaesthesia and Critical Care, University of Bordeaux, Haut-Levêque Hospital, Avenue Magellan, 33000, Pessac, France
| | - Nadir Tafer
- Department of Anaesthesia and Critical Care, University of Bordeaux, Haut-Levêque Hospital, Avenue Magellan, 33000, Pessac, France
| | - Alexandre Ouattara
- Department of Anaesthesia and Critical Care, University of Bordeaux, Haut-Levêque Hospital, Avenue Magellan, 33000, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux, INSERM, UMR 1034, 33600, Pessac, France
| |
Collapse
|
26
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LM, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RH, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 years of SIMDAX in Clinical Use. Card Fail Rev 2020; 6:e19. [PMID: 32714567 PMCID: PMC7374352 DOI: 10.15420/cfr.2020.03] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Levosimendan was first approved for clinic use in 2000, when authorisation was granted by Swedish regulatory authorities for the haemodynamic stabilisation of patients with acutely decompensated chronic heart failure. In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitisation and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced heart failure, right ventricular failure and pulmonary hypertension, cardiac surgery, critical care and emergency medicine. Levosimendan is currently in active clinical evaluation in the US. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and non-cardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, UK and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute heart failure arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge Barcelona, Spain
| | - Marisa G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC) La Coruña, Spain
| | - Juan F Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre Madrid, Spain
| | - Istvan Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Alexander A Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme Brussels, Belgium
| | - Leo Ma Heunks
- Department of Intensive Care Medicine, Amsterdam UMC Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service Leeds, UK
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital Milan, Italy
| | - Julius-Gyula Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital Gothenburg, Sweden
| | - Hynek Riha
- Cardiothoracic Anaesthesiology and Intensive Care, Department of Anaesthesiology and Intensive Care Medicine, Institute for Clinical and Experimental Medicine Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal Schlieren, Switzerland
| | | | - Robert Hg Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité - University Medicine Berlin Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz Graz, Austria
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Centre, Department of Cardiology, University Clinical Centre Ljubljana, Slovenia
| | | |
Collapse
|
27
|
Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin-Colet J, Crespo-Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LMA, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RHG, Toller W, Tritapepe L, Tschöpe C, Wikström G, von Lewinski D, Vrtovec B, Pollesello P. Levosimendan Efficacy and Safety: 20 Years of SIMDAX in Clinical Use. J Cardiovasc Pharmacol 2020; 76:4-22. [PMID: 32639325 PMCID: PMC7340234 DOI: 10.1097/fjc.0000000000000859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Levosimendan was first approved for clinical use in 2000, when authorization was granted by Swedish regulatory authorities for the hemodynamic stabilization of patients with acutely decompensated chronic heart failure (HF). In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitization and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced HF, right ventricular failure, pulmonary hypertension, cardiac surgery, critical care, and emergency medicine. Levosimendan is currently in active clinical evaluation in the United States. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and noncardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom, and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute HF arena in recent times and charts a possible development trajectory for the next 20 years.
Collapse
Affiliation(s)
- Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Piergiuseppe Agostoni
- Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Julian Alvarez
- Department of Surgery, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Dominique Bettex
- Institute of Anaesthesiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Bouchez
- Department of Anaesthesiology, University Hospital, Ghent, Belgium
| | - Dulce Brito
- Cardiology Department, Centro Hospitalar Universitario Lisboa Norte, CCUI, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vladimir Černý
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, Masaryk Hospital, J.E. Purkinje University, Usti nad Labem, Czech Republic
| | - Josep Comin-Colet
- Heart Diseases Institute, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Marisa G. Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), CIBERCV, Instituto de Investigacion Biomedica A Coruña (INIBIC), Universidad de a Coruña (UDC), La Coruña, Spain
| | - Juan F. Delgado
- Heart Failure and Transplant Program, Cardiology Department, University Hospital 12 Octubre, Madrid, Spain
| | - István Édes
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alexander A. Eremenko
- Department of Cardiac Intensive Care, Petrovskii National Research Centre of Surgery, Sechenov University, Moscow, Russia
| | - Dimitrios Farmakis
- Department of Cardiology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anaesthesiology and Geriatric Sciences, La Sapienza University of Rome, Rome, Italy
| | - Cândida Fonseca
- Heart Failure Clinic, São Francisco Xavier Hospital, CHLO, Lisbon, Portugal
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anaesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Massimo Girardis
- Struttura Complessa di Anestesia 1, Policlinico di Modena, Modena, Italy
| | - Fabio Guarracino
- Dipartimento di Anestesia e Terapie Intensive, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, Meilahti Central University Hospital, University of Helsinki, Helsinki, Finland
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| | - Antoine Herpain
- Department of Intensive Care, Hôpital Erasme, Brussels, Belgium
| | - Leo M. A. Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Tryggve Husebye
- Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Višnja Ivancan
- Department of Anaesthesiology, Reanimatology and Intensive Care, University Hospital Centre, Zagreb, Croatia
| | - Kristjan Karason
- Departments of Cardiology and Transplantation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sundeep Kaul
- Intensive Care Unit, National Health Service, Leeds, United Kingdom
| | - Matti Kivikko
- Global Medical Affairs, R&D, Orion Pharma, Espoo, Finland
| | - Janek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Josep Masip
- Intensive Care Department, Consorci Sanitari Integral, University of Barcelona, Barcelona, Spain
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, AP-HP, Saint Louis and Lariboisière University Hospitals, Paris, France
| | | | - Fabrizio Oliva
- Department of Cardiology, Niguarda Ca'Granda Hospital, Milan, Italy
| | - Julius G. Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - John Parissis
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Parkhomenko
- Emergency Cardiology Department, National Scientific Centre MD Strazhesko Institute of Cardiology, Kiev, Ukraine
| | - Pentti Põder
- Department of Cardiology, North Estonia Medical Centre, Tallinn, Estonia
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Reinecke
- Klinik für Innere Medizin III, Kardiologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hynek Riha
- Department of Anaesthesiology and Intensive Care Medicine, Cardiothoracic Anaesthesiology and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alain Rudiger
- Department of Medicine, Spittal Limmattal, Schlieren, Switzerland
| | | | - Robert H. G. Schwinger
- Medizinische Klinik II, Klinikum Weiden, Teaching Hospital of University of Regensburg, Weiden, Germany
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Luigi Tritapepe
- Anaesthesia and Intensive Care Division, San Camillo-Forlanini Hospital, Rome, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow Klinikum, Charité—University Medicine Berlin, Berlin, Germany
| | - Gerhard Wikström
- Institute of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dirk von Lewinski
- Department of Cardiology, Myokardiale Energetik und Metabolismus Research Unit, Medical University of Graz, Graz, Austria
| | - Bojan Vrtovec
- Department of Cardiology, Advanced Heart Failure and Transplantation Centre, University Clinical Centre, Ljubljana, Slovenia
| | - Piero Pollesello
- Critical Care Proprietary Products, Orion Pharma, Espoo, Finland.
| |
Collapse
|
28
|
Sangalli F, Bellani G, Affronti A, Volpi F, Feri M, Marini M, Quacquarelli A, Vitale D, Guarracino F. Levosimendan to facilitate weaning from cardiorespiratory support in critically ill patients: current evidence and future directions. Minerva Anestesiol 2020; 86:645-651. [DOI: 10.23736/s0375-9393.20.14219-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Barp A, Gerardi F, Lizio A, Sansone VA, Lunetta C. Emerging Drugs for the Treatment of Amyotrophic Lateral Sclerosis: A Focus on Recent Phase 2 Trials. Expert Opin Emerg Drugs 2020; 25:145-164. [PMID: 32456491 DOI: 10.1080/14728214.2020.1769067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease involving both upper and lower motor neurons and resulting in increasing disability and death 3-5 years after onset of symptoms. Over 40 large clinical trials for ALS have been negative, except for Riluzole that offers a modest survival benefit, and Edaravone that modestly reduces disease progression in patients with specific characteristics. Thus, the discovery of efficient disease modifying therapy is an urgent need. AREAS COVERED Although the cause of ALS remains unclear, many studies have demonstrated that neuroinflammation, proteinopathies, glutamate-induced excitotoxicity, microglial activation, oxidative stress, and mitochondrial dysfunction may play a key role in the pathogenesis. This review highlights recent discoveries relating to these diverse mechanisms and their implications for the development of therapy. Ongoing phase 2 clinical trials aimed to interfere with these pathophysiological mechanisms are discussed. EXPERT OPINION This review describes the challenges that the discovery of an efficient drug therapy faces and how these issues may be addressed. With the continuous advances coming from basic research, we provided possible suggestions that may be considered to improve performance of clinical trials and turn ALS research into a 'fertile ground' for drug development for this devastating disease.
Collapse
Affiliation(s)
- Andrea Barp
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | | - Andrea Lizio
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy
| | - Valeria Ada Sansone
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | |
Collapse
|
30
|
Tritapepe L. Does levosimendan improve weaning outcome? It does much more. Minerva Anestesiol 2020; 86:589-591. [PMID: 32154688 DOI: 10.23736/s0375-9393.20.14462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luigi Tritapepe
- Department of Anesthesia and Intensive Care, San Camillo-Forlanini Hospital, Rome, Italy -
| |
Collapse
|
31
|
Abstract
Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin’s role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin’s involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.
Collapse
|
32
|
Abstract
Levosimendan is an inodilator that promotes cardiac contractility primarily through calcium sensitization of cardiac troponin C and vasodilatation via opening of adenosine triphosphate–sensitive potassium (KATP) channels in vascular smooth muscle cells; the drug also exerts organ-protective effects through a similar effect on mitochondrial KATP channels. This pharmacological profile identifies levosimendan as a drug that may have applications in a wide range of critical illness situations encountered in intensive care unit medicine: hemodynamic support in cardiogenic or septic shock; weaning from mechanical ventilation or from extracorporeal membrane oxygenation; and in the context of cardiorenal syndrome. This review, authored by experts from 9 European countries (Austria, Belgium, Czech republic, Finland, France, Germany, Italy, Sweden, and Switzerland), examines the clinical and experimental data for levosimendan in these situations and concludes that, in most instances, the evidence is encouraging, which is not the case with other cardioactive and vasoactive drugs routinely used in the intensive care unit. The size of the available studies is, however, limited and the data are in need of verification in larger controlled trials. Some proposals are offered for the aims and designs of these additional studies.
Collapse
|
33
|
Al-Chalabi A, Shaw P, Leigh PN, van den Berg L, Hardiman O, Ludolph A, Aho VV, Sarapohja T, Kuoppamäki M. Oral levosimendan in amyotrophic lateral sclerosis: a phase II multicentre, randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry 2019; 90:1165-1170. [PMID: 31315908 PMCID: PMC6817985 DOI: 10.1136/jnnp-2018-320288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of oral levosimendan in patients with amyotrophic lateral sclerosis (ALS). This phase II, randomised, double-blind, placebo-controlled, crossover, three-period study with 6 months open-label follow-up enrolled adults with ALS and sitting slow vital capacity (SVC) 60%-90 % of predicted from 11 sites in four countries. METHODS Patients received levosimendan 1 mg daily, 1 mg two times a day or placebo during three 14-day crossover periods and levosimendan 1-2 mg daily during open-label follow-up. Primary endpoint was sitting SVC; secondary endpoints included supine SVC, ALS Functional Rating Scale-Revised (ALSFRS-R), tolerability and safety. RESULTS Of 66 patients randomised, 59 contributed to the double-blind results and 50 entered open-label follow-up. Sitting SVC was not significantly different between the treatments. In post hoc analysis using period-wise baselines, supine SVC favoured levosimendan over placebo, estimated mean differences from baseline being -3.62% on placebo, +0.77% on levosimendan 1 mg daily (p=0.018) and +2.38% on 1 mg two times a day (p=0.001). Headache occurred in 16.7% of patients during levosimendan 1 mg daily (p=0.030), 28.6% during 1 mg two times a day (p=0.002) and 3.3% during placebo. The respective frequencies for increased heart rate were 5.1% (p=0.337), 18.5% (p=0.018) and 1.7%. No significant differences between the treatments were seen for other adverse events. CONCLUSIONS Levosimendan did not achieve the primary endpoint of improving sitting SVC in ALS. Headache and increased heart rate were increased on levosimendan, although it was otherwise well tolerated. A phase III study to evaluate the longer term effects of oral levosimendan in ALS is ongoing.
Collapse
Affiliation(s)
- Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.,Department of Neurology, King's College Hospital, London, UK
| | - Pamela Shaw
- Sheffield Institute for Translational Neuroscience and NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - P Nigel Leigh
- Department of Neuroscience Brighton and Sussex Medical School, Trafford Centre for Biomedical Science, Falmer, Brighton, UK
| | - Leonard van den Berg
- Departmentof Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Mikko Kuoppamäki
- Orion Pharma, Orion Corporation, Turku, Finland.,Lundbeck, Copenhagen, Denmark
| |
Collapse
|
34
|
Roesthuis L, van der Hoeven H, Sinderby C, Frenzel T, Ottenheijm C, Brochard L, Doorduin J, Heunks L. Effects of levosimendan on respiratory muscle function in patients weaning from mechanical ventilation. Intensive Care Med 2019; 45:1372-1381. [PMID: 31576436 PMCID: PMC6773912 DOI: 10.1007/s00134-019-05767-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Respiratory muscle weakness frequently develops in critically ill patients and is associated with adverse outcome, including difficult weaning from mechanical ventilation. Today, no drug is approved to improve respiratory muscle function in these patients. Previously, we have shown that the calcium sensitizer levosimendan improves calcium sensitivity of human diaphragm muscle fibers in vitro and contractile efficiency of the diaphragm in healthy subjects. The main purpose of this study is to investigate the effects of levosimendan on diaphragm contractile efficiency in mechanically ventilated patients. METHODS In a double-blind randomized placebo-controlled trial, mechanically ventilated patients performed two 30-min continuous positive airway pressure (CPAP) trials with 5-h interval. After the first CPAP trial, study medication (levosimendan 0.2 µg/kg/min continuous infusion or placebo) was administered. During the CPAP trials, electrical activity of the diaphragm (EAdi), transdiaphragmatic pressure (Pdi), and flow were measured. Neuromechanical efficiency (primary outcome parameter) was calculated. RESULTS Thirty-nine patients were included in the study. Neuromechanical efficiency was not different during the CPAP trial after levosimendan administration compared to the CPAP trial before study medication. Tidal volume and minute ventilation were higher after levosimendan administration (11 and 21%, respectively), whereas EAdi and Pdi were higher in both groups in the CPAP trial after study medication compared to the CPAP trial before study medication. CONCLUSIONS Levosimendan does not improve diaphragm contractile efficiency.
Collapse
Affiliation(s)
- Lisanne Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christer Sinderby
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tim Frenzel
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, location VUmc, Postbox 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Multiorgan Drug Action of Levosimendan in Critical Illnesses. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9731467. [PMID: 31641670 PMCID: PMC6770297 DOI: 10.1155/2019/9731467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/24/2019] [Indexed: 01/13/2023]
Abstract
Cardiotonic drugs mainly include digitalis, catecholamines, phosphodiesterase inhibitors, and calcium sensitizers, which have been successively discovered and applied in clinical practice. However, there are only a few new drugs available in this field, and the selection is very limited. Digitalis, catecholamines, and phosphodiesterase inhibitors increase myocardial contractility by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP) and Ca2+, and this increase in intracellular calcium ion concentration enhances myocardial oxygen consumption and causes arrhythmia. For these reasons, the research focus on positive inotropic agents has shifted from calcium mobilization to calcium sensitization. Intracellular calcium sensitizers are more effective and safer drugs because they do not increase the intracellular concentration of calcium ions. However, only three calcium sensitizers have been fully developed and used in the past three decades. One of these drugs, levosimendan, has multiple molecular targets and exerts its pharmacological effects by not only increasing myocardial contractility, but also enhancing respiratory muscle function and liver and kidney protection, and it is useful for patients with severe sepsis and septic shock. Recently, more than 60 randomized controlled clinical trials of levosimendan have been reported; however, these clinical trials have occasionally shown different findings. This article reviews the research progress of levosimendan in critical illnesses in recent years.
Collapse
|
36
|
Jaitovich A, Barreiro E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am J Respir Crit Care Med 2019; 198:175-186. [PMID: 29554438 DOI: 10.1164/rccm.201710-2140ci] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle dysfunction occurs in patients with chronic obstructive pulmonary disease (COPD) and affects both ventilatory and nonventilatory muscle groups. It represents a very important comorbidity that is associated with poor quality of life and reduced survival. It results from a complex combination of functional, metabolic, and anatomical alterations leading to suboptimal muscle work. Muscle atrophy, altered fiber type and metabolism, and chest wall remodeling, in the case of the respiratory muscles, are relevant etiological contributors to this process. Muscle dysfunction worsens during COPD exacerbations, rendering patients progressively less able to perform activities of daily living, and it is also associated with poor outcomes. Muscle recovery measures consisting of a combination of pulmonary rehabilitation, optimized nutrition, and other strategies are associated with better prognosis when administered in stable patients as well as after exacerbations. A deeper understanding of this process' pathophysiology and clinical relevance will facilitate the use of measures to alleviate its effects and potentially improve patients' outcomes. In this review, a general overview of skeletal muscle dysfunction in COPD is offered to highlight its relevance and magnitude to expert practitioners and scientists as well as to the average clinician dealing with patients with chronic respiratory diseases.
Collapse
Affiliation(s)
- Ariel Jaitovich
- 1 Division of Pulmonary and Critical Care Medicine and.,2 Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Esther Barreiro
- 3 Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain; and.,4 Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Standardized Unloading of Respiratory Muscles during Neurally Adjusted Ventilatory Assist: A Randomized Crossover Pilot Study. Anesthesiology 2019; 129:769-777. [PMID: 30045094 DOI: 10.1097/aln.0000000000002335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Currently, there is no standardized method to set the support level in neurally adjusted ventilatory assist (NAVA). The primary aim was to explore the feasibility of titrating NAVA to specific diaphragm unloading targets, based on the neuroventilatory efficiency (NVE) index. The secondary outcome was to investigate the effect of reduced diaphragm unloading on distribution of lung ventilation. METHODS This is a randomized crossover study between pressure support and NAVA at different diaphragm unloading at a single neurointensive care unit. Ten adult patients who had started weaning from mechanical ventilation completed the study. Two unloading targets were used: 40 and 60%. The NVE index was used to guide the titration of the assist in NAVA. Electrical impedance tomography data, blood-gas samples, and ventilatory parameters were collected. RESULTS The median unloading was 43% (interquartile range 32, 60) for 40% unloading target and 60% (interquartile range 47, 69) for 60% unloading target. NAVA with 40% unloading led to more dorsal ventilation (center of ventilation at 55% [51, 56]) compared with pressure support (52% [49, 56]; P = 0.019). No differences were found in oxygenation, CO2, and respiratory parameters. The electrical activity of the diaphragm was higher during NAVA with 40% unloading than in pressure support. CONCLUSIONS In this pilot study, NAVA could be titrated to different diaphragm unloading levels based on the NVE index. Less unloading was associated with greater diaphragm activity and improved ventilation of the dependent lung regions.
Collapse
|
38
|
Peñuelas O, Keough E, López-Rodríguez L, Carriedo D, Gonçalves G, Barreiro E, Lorente JÁ. Ventilator-induced diaphragm dysfunction: translational mechanisms lead to therapeutical alternatives in the critically ill. Intensive Care Med Exp 2019; 7:48. [PMID: 31346802 PMCID: PMC6658639 DOI: 10.1186/s40635-019-0259-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Mechanical ventilation [MV] is a life-saving technique delivered to critically ill patients incapable of adequately ventilating and/or oxygenating due to respiratory or other disease processes. This necessarily invasive support however could potentially result in important iatrogenic complications. Even brief periods of MV may result in diaphragm weakness [i.e., ventilator-induced diaphragm dysfunction [VIDD]], which may be associated with difficulty weaning from the ventilator as well as mortality. This suggests that VIDD could potentially have a major impact on clinical practice through worse clinical outcomes and healthcare resource use. Recent translational investigations have identified that VIDD is mainly characterized by alterations resulting in a major decline of diaphragmatic contractile force together with atrophy of diaphragm muscle fibers. However, the signaling mechanisms responsible for VIDD have not been fully established. In this paper, we summarize the current understanding of the pathophysiological pathways underlying VIDD and highlight the diagnostic approach, as well as novel and experimental therapeutic options.
Collapse
Affiliation(s)
- Oscar Peñuelas
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain.
| | - Elena Keough
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Lucía López-Rodríguez
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Demetrio Carriedo
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Gesly Gonçalves
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Esther Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department [CEXS], Barcelona, Spain
- Universitat Pompeu Fabra [UPF], Barcelona Biomedical Research Park [PRBB], Barcelona, Spain
| | - José Ángel Lorente
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain
- Universidad Europea, Madrid, Spain
| |
Collapse
|
39
|
Levosimendan: What Have We Learned So Far? CURRENT ANESTHESIOLOGY REPORTS 2019. [DOI: 10.1007/s40140-019-00346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil 2019; 40:111-126. [PMID: 31228046 PMCID: PMC6726674 DOI: 10.1007/s10974-019-09519-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the commonest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of massively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
Collapse
Affiliation(s)
- Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London, WC1N 1EH, UK. .,Wolfson Centre of Inherited Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Jenni M Laitila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Piva S, Fagoni N, Latronico N. Intensive care unit-acquired weakness: unanswered questions and targets for future research. F1000Res 2019; 8. [PMID: 31069055 PMCID: PMC6480958 DOI: 10.12688/f1000research.17376.1] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/23/2022] Open
Abstract
Intensive care unit-acquired weakness (ICU-AW) is the most common neuromuscular impairment in critically ill patients. We discuss critical aspects of ICU-AW that have not been completely defined or that are still under discussion. Critical illness polyneuropathy, myopathy, and muscle atrophy contribute in various proportions to ICU-AW. Diagnosis of ICU-AW is clinical and is based on Medical Research Council sum score and handgrip dynamometry for limb weakness and recognition of a patient's ventilator dependency or difficult weaning from artificial ventilation for diaphragmatic weakness (DW). ICU-AW can be caused by a critical illness polyneuropathy, a critical illness myopathy, or muscle disuse atrophy, alone or in combination. Its diagnosis requires both clinical assessment of muscle strength and complete electrophysiological evaluation of peripheral nerves and muscles. The peroneal nerve test (PENT) is a quick simplified electrophysiological test with high sensitivity and good specificity that can be used instead of complete electrophysiological evaluation as a screening test in non-cooperative patients. DW, assessed by bilateral phrenic nerve magnetic stimulation or diaphragm ultrasound, can be an isolated event without concurrent limb muscle involvement. Therefore, it remains uncertain whether DW and limb weakness are different manifestations of the same syndrome or are two distinct entities. Delirium is often associated with ICU-AW but a clear correlation between these two entities requires further studies. Artificial nutrition may have an impact on ICU-AW, but no study has assessed the impact of nutrition on ICU-AW as the primary outcome. Early mobilization improves activity limitation at hospital discharge if it is started early in the ICU, but beneficial long-term effects are not established. Determinants of ICU-AW can be many and can interact with each other. Therefore, future studies assessing early mobilization should consider a holistic patient approach with consideration of all components that may lead to muscle weakness.
Collapse
Affiliation(s)
- Simone Piva
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy, 25123, Italy.,Department of Anesthesia, Intensive Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy, 25123, Italy
| | - Nazzareno Fagoni
- Department of Anesthesia, Intensive Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy, 25123, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy, 25123, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy, 25123, Italy.,Department of Anesthesia, Intensive Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy, 25123, Italy
| |
Collapse
|
42
|
Fisser C, Spoletini G, Soe AK, Livesey A, Schreiber A, Swingwood E, Bos LD, Dreher M, Schultz MJ, Heunks L, Scala R. European Respiratory Society International Congress 2018: highlights from Assembly 2 on respiratory intensive care. ERJ Open Res 2019; 5:00198-2018. [PMID: 30847349 PMCID: PMC6397914 DOI: 10.1183/23120541.00198-2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
The respiratory intensive care Assembly of the European Respiratory Society is proud to present a summary of several important sessions held at the International Congress in Paris in 2018. For the highly esteemed reader who may have missed the Congress, a concise review was written on three topics: the state-of-the-art session on respiratory critical care, hot topics in weaning and the best abstracts in noninvasive ventilation. The respiratory intensive care Assembly of the European Respiratory Society is proud to present a summary of several important sessions from the 2018 #ERSCongress in Parishttp://ow.ly/6Du830nFESK
Collapse
Affiliation(s)
- Christoph Fisser
- Dept of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.,Dept of Pneumology, Hospital Donaustauf, Donaustauf, Germany
| | - Giulia Spoletini
- Respiratory Dept, St James's University Hospital, Leeds Teaching Hospital NHS Trust, Leeds, UK.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Aung Kyaw Soe
- Dept of Hospital Therapy, Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Alana Livesey
- Heartlands Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Annia Schreiber
- Dept of Medicine, Division of Respirology, University Health Network, Toronto, ON, Canada
| | - Ema Swingwood
- Physiotherapy Dept - Adult Therapy Services, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Lieuwe D Bos
- Dept of Intensive Care, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Michael Dreher
- Dept of Pneumology and Intensive Care Medicine, University Hospital Aachen, Germany
| | - Marcus J Schultz
- Dept of Intensive Care, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Leo Heunks
- Dept of Intensive Care, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Raffaele Scala
- Pulmonology and Respiratory Intensive Care Unit, S. Donato Hospital, Arezzo, Italy
| |
Collapse
|
43
|
Bachasson D, Dres M, Niérat MC, Gennisson JL, Hogrel JY, Doorduin J, Similowski T. Diaphragm shear modulus reflects transdiaphragmatic pressure during isovolumetric inspiratory efforts and ventilation against inspiratory loading. J Appl Physiol (1985) 2019; 126:699-707. [DOI: 10.1152/japplphysiol.01060.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The reference method for the assessment of diaphragm function relies on the measurement of transdiaphragmatic pressure (Pdi). Local muscle stiffness measured using ultrafast shear wave elastography (SWE) provides reliable estimates of muscle force in locomotor muscles. This study aimed at investigating whether SWE could be used as a surrogate of Pdi to evaluate diaphragm function. Fifteen healthy volunteers underwent a randomized stepwise inspiratory loading protocol of 0–60% of maximal isovolumetric inspiratory pressure during closed-airways maneuvers and 0–50% during ventilation against an external inspiratory threshold load. During all tasks, Pdi was measured and SWE was used to assess shear modulus of the right hemidiaphragm (SMdi) at the zone of apposition. Pearson correlation coefficients ( r) and repeated-measures correlation coefficients ( R) were computed to determine within-individual and overall relationships between Pdi and SMdi, respectively. During closed-airways maneuvers, mean Pdi correlated to mean SMdi in all participants [ r ranged from 0.77 to 0.96, all P < 0.01; R = 0.82, 95% confidence intervals (0.76, 0.86), P < 0.01]. During ventilation against inspiratory threshold loading, Pdi swing correlated to maximal SMdi in all participants [ r ranged from 0.40 to 0.90, all P < 0.01; R = 0.70, 95% confidence intervals (0.66, 0.73), P < 0.001]. Changes in diaphragm stiffness as assessed by SWE reflect changes in transdiaphragmatic pressure. SWE provides a new opportunity for direct and noninvasive assessment of diaphragm function. NEW & NOTEWORTHY Accurate and specific estimation of diaphragm effort is critical for evaluating and monitoring diaphragm dysfunction. The measurement of transdiaphragmatic pressure requires the use of invasive gastric and esophageal probes. In the present work, we demonstrate that changes in diaphragm stiffness assessed with ultrasound shear wave elastography reflect changes in transdiaphragmatic pressure, therefore offering a new noninvasive method for gauging diaphragm effort.
Collapse
Affiliation(s)
- Damien Bachasson
- Neuromuscular Physiology Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Martin Dres
- Service de Pneumologie, Médecine Intensive et Réanimation (Département “R3S”), Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Marie-Cécile Niérat
- UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jean-Luc Gennisson
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités, Centre National de la Recherche Scientifique UMR8081, Université Paris-Saclay, Orsay, France
| | - Jean-Yves Hogrel
- Neuromuscular Physiology Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Similowski
- Service de Pneumologie, Médecine Intensive et Réanimation (Département “R3S”), Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
| |
Collapse
|
44
|
Routsi C, Stanopoulos I, Kokkoris S, Sideris A, Zakynthinos S. Weaning failure of cardiovascular origin: how to suspect, detect and treat-a review of the literature. Ann Intensive Care 2019; 9:6. [PMID: 30627804 PMCID: PMC6326918 DOI: 10.1186/s13613-019-0481-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023] Open
Abstract
Among the multiple causes of weaning failure from mechanical ventilation, cardiovascular dysfunction is increasingly recognized as a quite frequent cause that can be treated successfully. In this review, we summarize the contemporary evidence of the most important clinical and diagnostic aspects of weaning failure of cardiovascular origin with special focus on treatment. Pathophysiological mechanisms are complex and mainly include increase in right and left ventricular preload and afterload and potentially induce myocardial ischemia. Patients at risk include those with preexisting cardiopulmonary disease either known or suspected. Clinically, cardiovascular etiology as a predominant cause or a contributor to weaning failure, though critical for early diagnosis and intervention, may be difficult to be recognized and distinguished from noncardiac causes suggesting the need of high suspicion. A cardiovascular diagnostic workup including bedside echocardiography, lung ultrasound, electrocardiogram and biomarkers of cardiovascular dysfunction or other adjunct techniques and, in selected cases, right heart catheterization and/or coronary angiography, should be obtained to confirm the diagnosis. Official clinical practice guidelines that address treatment of a confirmed weaning-induced cardiovascular dysfunction do not exist. As the etiologies of weaning-induced cardiovascular dysfunction are diverse, principles of management depend on the individual pathophysiological mechanisms, including preload optimization by fluid removal, guided by B-type natriuretic peptide measurement, nitrates administration in excessive afterload and/or myocardial ischemia, contractility improvement in severe systolic dysfunction as well as other rational treatment in specific indications in order to lead to successful weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Christina Routsi
- First Department of Critical Care, Medical School, National and Kapodistrian University of Athens, “Evangelismos” Hospital, Ipsilantou 45-47, 10676 Athens, Greece
| | - Ioannis Stanopoulos
- Respiratory Failure Unit, Medical School, “G. Papanikolaou” Hospital, Aristotle University, Thessaloníki, Greece
| | - Stelios Kokkoris
- First Department of Critical Care, Medical School, National and Kapodistrian University of Athens, “Evangelismos” Hospital, Ipsilantou 45-47, 10676 Athens, Greece
| | - Antonios Sideris
- Department of Cardiology, “Evangelismos” Hospital, Athens, Greece
| | - Spyros Zakynthinos
- First Department of Critical Care, Medical School, National and Kapodistrian University of Athens, “Evangelismos” Hospital, Ipsilantou 45-47, 10676 Athens, Greece
| |
Collapse
|
45
|
Schuster F, Johannsen S, Isbary S, Türkmeneli I, Roewer N. In vitro effects of levosimendan on muscle of malignant hyperthermia susceptible and non-susceptible swine. BMC Anesthesiol 2018; 18:182. [PMID: 30509180 PMCID: PMC6278068 DOI: 10.1186/s12871-018-0644-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The calcium sensitizer levosimendan is increasingly used to improve hemodynamics in patients with acutely decompensated heart failure. By binding to cardiac troponin C the conformation of the calcium-troponin C complex is stabilized, which leads to acceleration of actin-myosin crossbrigde formation and increased force generating capacity of muscle fibers. Besides indications in cardiac failure, beneficial effects of levosimendan in skeletal muscle disorders are currently evaluated. The aim of this study was to investigate differential effects of levosimendan on skeletal muscle of pigs with and without susceptibility to malignant hyperthermia (MH) in order to identify possible risks of this emerging drug for patients with predisposition to MH. METHODS Muscle bundles of 17 pigs (9 MH susceptible (MHS); 8 MH non-susceptible (MHN)) were excised under general anesthesia and examined in the tissue bath with increasing concentrations of levosimendan (0.065; 0.125; 0.5; 1.0; 10 and 50 μg/ml). Baseline tension and twitch force were monitored continuously. Data are presented as median and interquartile range. Statistical evaluation was performed using D'Agostino & Pearson test for normal distribution and student's t test and 2-way ANOVA for differences between the groups. P < 0.05 was considered significant. RESULTS There were no differences between the groups concerning length, weight, initial twitch force and pre-drug resting tension of the investigated muscle strips. After an initial decrease in both groups, twitch amplitude was significantly higher in MHN (- 3.0 [- 5.2-0.2] mN) compared to MHS (- 7.5 [- 10.8- -4.5] mN) (p = 0.0034) muscle at an applied levosimendan concentration of 50 μg/ml. A marked increase in resting tension was detected following levosimendan incubation with 50 μg/ml in MHS muscle bundles (3.3 [0.9-6.1] mN) compared to MHN (- 0.7 [- 1.3-0.0] mN) (p < 0.0001). CONCLUSIONS This in vitro investigation revealed the development of significant contractures in muscle bundles of MHS pigs after incubation with levosimendan. However, the effect appeared only at supra-therapeutic concentrations and further research is needed to determine the impact of levosimendan on MHS individuals in vivo.
Collapse
Affiliation(s)
- Frank Schuster
- Department of Anesthesia and Critical Care, University of Wuerzburg, Oberduerrbacher Str. 6, D-97080, Wuerzburg, Germany.
| | - Stephan Johannsen
- Department of Anesthesia and Critical Care, University of Wuerzburg, Oberduerrbacher Str. 6, D-97080, Wuerzburg, Germany
| | - Susanne Isbary
- Department of Anesthesia and Critical Care, University of Wuerzburg, Oberduerrbacher Str. 6, D-97080, Wuerzburg, Germany
| | - Ismail Türkmeneli
- Department of Anesthesia and Critical Care, University of Wuerzburg, Oberduerrbacher Str. 6, D-97080, Wuerzburg, Germany
| | - Norbert Roewer
- Department of Anesthesia and Critical Care, University of Wuerzburg, Oberduerrbacher Str. 6, D-97080, Wuerzburg, Germany
| |
Collapse
|
46
|
Liu YY, Li LF. Ventilator-induced diaphragm dysfunction in critical illness. Exp Biol Med (Maywood) 2018; 243:1329-1337. [PMID: 30453774 DOI: 10.1177/1535370218811950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IMPACT STATEMENT Mechanical ventilation (MV) is life-saving for patients with acute respiratory failure but also causes difficult liberation of patients from ventilator due to rapid decrease of diaphragm muscle endurance and strength, which is termed ventilator-induced diaphragmatic damage (VIDD). Numerous studies have revealed that VIDD could increase extubation failure, ICU stay, ICU mortality, and healthcare expenditures. However, the mechanisms of VIDD, potentially involving a multistep process including muscle atrophy, oxidative loads, structural damage, and muscle fiber remodeling, are not fully elucidated. Further research is necessary to unravel mechanistic framework for understanding the molecular mechanisms underlying VIDD, especially mitochondrial dysfunction and increased mitochondrial oxidative stress, and develop better MV strategies, rehabilitative programs, and pharmacologic agents to translate this knowledge into clinical benefits.
Collapse
Affiliation(s)
- Yung-Yang Liu
- 1 Chest Department, Taipei Veterans General Hospital, Taipei 112, Taiwan.,2 Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Li-Fu Li
- 3 Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.,4 Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
47
|
Schreiber A, Bertoni M, Goligher EC. Avoiding Respiratory and Peripheral Muscle Injury During Mechanical Ventilation: Diaphragm-Protective Ventilation and Early Mobilization. Crit Care Clin 2018; 34:357-381. [PMID: 29907270 DOI: 10.1016/j.ccc.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Both limb muscle weakness and respiratory muscle weakness are exceedingly common in critically ill patients. Respiratory muscle weakness prolongs ventilator dependence, predisposing to nosocomial complications and death. Limb muscle weakness persists for months after discharge from intensive care and results in poor long-term functional status and quality of life. Major mechanisms of muscle injury include critical illness polymyoneuropathy, sepsis, pharmacologic exposures, metabolic derangements, and excessive muscle loading and unloading. The diaphragm may become weak because of excessive unloading (leading to atrophy) or because of excessive loading (either concentric or eccentric) owing to insufficient ventilator assistance.
Collapse
Affiliation(s)
- Annia Schreiber
- Respiratory Intensive Care Unit and Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri, Scientific Institute of Pavia, Via Salvatore Maugeri 10, Pavia 27100, Italy
| | - Michele Bertoni
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Piazzale Spedali Civili 1, Brescia 25123, Italy
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, 585 University Avenue, Peter Munk Building, 11th Floor Room 192, Toronto, ON M5G 2N2, Canada.
| |
Collapse
|
48
|
Respiratory Muscle Effort during Expiration in Successful and Failed Weaning from Mechanical Ventilation. Anesthesiology 2018; 129:490-501. [DOI: 10.1097/aln.0000000000002256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
Respiratory muscle weakness in critically ill patients is associated with difficulty in weaning from mechanical ventilation. Previous studies have mainly focused on inspiratory muscle activity during weaning; expiratory muscle activity is less well understood. The current study describes expiratory muscle activity during weaning, including tonic diaphragm activity. The authors hypothesized that expiratory muscle effort is greater in patients who fail to wean compared to those who wean successfully.
Methods
Twenty adult patients receiving mechanical ventilation (more than 72 h) performed a spontaneous breathing trial. Tidal volume, transdiaphragmatic pressure, diaphragm electrical activity, and diaphragm neuromechanical efficiency were calculated on a breath-by-breath basis. Inspiratory (and expiratory) muscle efforts were calculated as the inspiratory esophageal (and expiratory gastric) pressure–time products, respectively.
Results
Nine patients failed weaning. The contribution of the expiratory muscles to total respiratory muscle effort increased in the “failure” group from 13 ± 9% at onset to 24 ± 10% at the end of the breathing trial (P = 0.047); there was no increase in the “success” group. Diaphragm electrical activity (expressed as the percentage of inspiratory peak) was low at end expiration (failure, 3 ± 2%; success, 4 ± 6%) and equal between groups during the entire expiratory phase (P = 0.407). Diaphragm neuromechanical efficiency was lower in the failure versus success groups (0.38 ± 0.16 vs. 0.71 ± 0.36 cm H2O/μV; P = 0.054).
Conclusions
Weaning failure (vs. success) is associated with increased effort of the expiratory muscles and impaired neuromechanical efficiency of the diaphragm but no difference in tonic activity of the diaphragm.
Collapse
|
49
|
Greising SM, Ottenheijm CAC, O'Halloran KD, Barreiro E. Diaphragm plasticity in aging and disease: therapies for muscle weakness go from strength to strength. J Appl Physiol (1985) 2018; 125:243-253. [PMID: 29672230 PMCID: PMC6139508 DOI: 10.1152/japplphysiol.01059.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
The diaphragm is the main inspiratory muscle and is required to be highly active throughout the life span. The diaphragm muscle must be able to produce and sustain various behaviors that range from ventilatory to nonventilatory such as those required for airway maintenance and clearance. Throughout the life span various circumstances and conditions may affect the ability of the diaphragm muscle to generate requisite forces, and in turn the diaphragm muscle may undergo significant weakness and dysfunction. For example, hypoxic stress, critical illness, cancer cachexia, chronic obstructive pulmonary disorder, and age-related sarcopenia all represent conditions in which significant diaphragm muscle dysfunction exits. This perspective review article presents several interesting topics involving diaphragm plasticity in aging and disease that were presented at the International Union of Physiological Sciences Conference in 2017. This review seeks to maximize the broad and collective research impact on diaphragm muscle dysfunction in the search for transformative treatment approaches to improve the diaphragm muscle health during aging and disease.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Kinesiology, University of Minnesota , Minneapolis, Minnesota
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center , Amsterdam , The Netherlands
- Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona
| | - Ken D O'Halloran
- Department of Physiology, University College Cork , Cork , Ireland
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Barcelona , Spain
| |
Collapse
|
50
|
Oppersma E, Doorduin J, Gooskens PJ, Roesthuis LH, van der Heijden EHFM, van der Hoeven JG, Veltink PH, Heunks LMA. Glottic patency during noninvasive ventilation in patients with chronic obstructive pulmonary disease. Respir Physiol Neurobiol 2018; 259:53-57. [PMID: 30026086 DOI: 10.1016/j.resp.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Non-invasive ventilation (NIV) provides ventilatory support for patients with respiratory failure. However, the glottis can act as a closing valve, limiting effectiveness of NIV. This study investigates the patency of the glottis during NIV in patients with acute exacerbation of Chronic Obstructive Pulmonary Disease (COPD). METHODS Electrical activity of the diaphragm, flow, pressure and videolaryngoscopy were acquired. NIV was randomly applied in pressure support (PSV) and neurally adjusted ventilatory assist (NAVA) mode with two levels of support. The angle formed by the vocal cords represented glottis patency. RESULTS Eight COPD patients with acute exacerbation requiring NIV were included. No differences were found in median glottis angle during inspiration or peak inspiratory effort between PSV and NAVA at low and high support levels. CONCLUSIONS The present study showed that glottis patency during inspiration in patients with an acute exacerbation of COPD is not affected by mode (PSV or NAVA) or level of assist (5 or 15 cm H2O) during NIV.
Collapse
Affiliation(s)
- Eline Oppersma
- Cardiovascular and Respiratory Physiology, Faculty of Science and Technology, University of Twente, Postbox 217, 7500 AE, Enschede, The Netherlands; Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Postbox 217, 7500 AE, Enschede, The Netherlands; Department of Intensive Care Medicine, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Jonne Doorduin
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands; Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Petra J Gooskens
- Cardiovascular and Respiratory Physiology, Faculty of Science and Technology, University of Twente, Postbox 217, 7500 AE, Enschede, The Netherlands; Department of Intensive Care Medicine, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Lisanne H Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Erik H F M van der Heijden
- Department of Pulmonology, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Peter H Veltink
- Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Postbox 217, 7500 AE, Enschede, The Netherlands.
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Radboud University Medical Center, Postbox 9101, 6500 HB, Nijmegen, The Netherlands; Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Postbox 7057, 1007MB, Amsterdam, The Netherlands.
| |
Collapse
|