1
|
Li C, Liu Z, Anderson J, Liu Z, Tang L, Li Y, Peng N, Chen J, Liu X, Fu L, Townes TM, Rowe SM, Bedwell DM, Guimbellot J, Zhao R. Prime editing-mediated correction of the CFTR W1282X mutation in iPSCs and derived airway epithelial cells. PLoS One 2023; 18:e0295009. [PMID: 38019847 PMCID: PMC10686454 DOI: 10.1371/journal.pone.0295009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
A major unmet need in the cystic fibrosis (CF) therapeutic landscape is the lack of effective treatments for nonsense CFTR mutations, which affect approximately 10% of CF patients. Correction of nonsense CFTR mutations via genomic editing represents a promising therapeutic approach. In this study, we tested whether prime editing, a novel CRISPR-based genomic editing method, can be a potential therapeutic modality to correct nonsense CFTR mutations. We generated iPSCs from a CF patient homozygous for the CFTR W1282X mutation. We demonstrated that prime editing corrected one mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. We further demonstrated that prime editing may directly repair mutations in iPSC-derived airway epithelial cells when the prime editing machinery is efficiently delivered by helper-dependent adenovirus (HDAd). Together, our data demonstrated that prime editing may potentially be applied to correct CFTR mutations such as W1282X.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhong Liu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Justin Anderson
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Liping Tang
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yao Li
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ning Peng
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jianguo Chen
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xueming Liu
- Key Laboratory of Imaging Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tim M. Townes
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David M. Bedwell
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer Guimbellot
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
2
|
Guimbellot JS, Ryan KJ, Anderson JD, Parker KL, Odom LV, Rowe SM, Acosta EP. Plasma and cellular ivacaftor concentrations in patients with cystic fibrosis. Pediatr Pulmonol 2022; 57:2745-2753. [PMID: 35927224 PMCID: PMC9588676 DOI: 10.1002/ppul.26093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Access to cystic fibrosis transmembrane conductance regulator (CFTR) modulators has been gradually increasing for people with cystic fibrosis, the first of which was ivacaftor, a CFTR potentiator that is part of all clinically available modulator treatments. In this study, we hypothesized that the steady-state concentrations in blood and tissue are highly variable in patients taking ivacaftor in a real-world context, which may have an impact on the treatment approach. We collected nasal epithelial cells to estimate target site concentrations and blood samples to estimate pharmacokinetic parameters at a steady state. We found that patients on ivacaftor monotherapy have variable concentrations well above the maximal effective concentration and may maintain concentrations necessary for the clinical benefit even if dosing is reduced. We also are the first to provide detailed target site concentration data over time, which shows that tissue concentrations do not fluctuate significantly and do not correlate with plasma concentrations. These findings show that some patients may have higher-than-expected concentrations and may benefit from tailored dosing to balance clinical response with side effects or adherence needs.
Collapse
Affiliation(s)
- Jennifer S. Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Kevin J. Ryan
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, UAB, Birmingham, AL
| | - Justin D. Anderson
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Kennedy L. Parker
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - L. Victoria Odom
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
- Departments of Medicine and Cell Developmental and Integrative Biology, UAB, Birmingham, AL
| | - Edward P. Acosta
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, UAB, Birmingham, AL
| |
Collapse
|
3
|
Anderson JD, Liu Z, Odom LV, Kersh L, Guimbellot JS. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L119-L129. [PMID: 34009038 DOI: 10.1152/ajplung.00639.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients' cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.
Collapse
Affiliation(s)
- Justin D Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - L Victoria Odom
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Guimbellot JS, Leach JM, Chaudhry IG, Quinney NL, Boyles SE, Chua M, Aban I, Jaspers I, Gentzsch M. Nasospheroids permit measurements of CFTR-dependent fluid transport. JCI Insight 2017; 2:95734. [PMID: 29202459 DOI: 10.1172/jci.insight.95734] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022] Open
Abstract
Expansion of novel therapeutics to all patients with cystic fibrosis (CF) requires personalized CFTR modulator therapy. We have developed nasospheroids, a primary cell culture-based model derived from individual CF patients and healthy subjects by a minimally invasive nasal biopsy. Confocal microscopy was utilized to measure CFTR activity by analyzing changes in cross-sectional area over time that resulted from CFTR-mediated ion and fluid movement. Both the rate of change over time and AUC were calculated. Non-CF nasospheroids with active CFTR-mediated ion and fluid movement showed a reduction in cross-sectional area, whereas no changes were observed in CF spheroids. Non-CF spheroids treated with CFTR inhibitor lost responsiveness for CFTR activation. However, nasospheroids from F508del CF homozygotes that were treated with lumacaftor and ivacaftor showed a significant reduction in cross-sectional area, indicating pharmacologic rescue of CFTR function. This model employs a simple measurement of size corresponding to changes in CFTR activity and is applicable for detection of small changes in CFTR activity from individual patients in vitro. Advancements of this technique will provide a robust model for individualized prediction of CFTR modulator efficacy.
Collapse
Affiliation(s)
| | - Justin M Leach
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | - Michael Chua
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, and
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Zeybel GL, Pearson JP, Krishnan A, Bourke SJ, Doe S, Anderson A, Faruqi S, Morice AH, Jones R, McDonnell M, Zeybel M, Dettmar PW, Brodlie M, Ward C. Ivacaftor and symptoms of extra-oesophageal reflux in patients with cystic fibrosis and G551D mutation. J Cyst Fibros 2017; 16:124-131. [PMID: 27475719 PMCID: PMC5264566 DOI: 10.1016/j.jcf.2016.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/09/2016] [Accepted: 07/12/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Extra-oesophageal reflux (EOR) may lead to microaspiration in patients with cystic fibrosis (CF), a probable cause of deteriorating lung function. Successful clinical trials of ivacaftor highlight opportunities to understand EOR in a real world study. METHODS Data from 12 patients with CF and the G551D mutation prescribed ivacaftor (150mg bd) was collected at baseline, 6, 26 and 52weeks. The changes in symptoms of EOR were assessed by questionnaire (reflux symptom index (RSI) and Hull airway reflux questionnaire (HARQ)). RESULTS Six patients presented EOR at baseline (RSI >13; median 13; range 2-29) and 5 presented airway reflux (HARQ >13; median 12; range 3 to 33). Treatment with ivacaftor was associated with a significant reduction of EOR symptoms (P<0∙04 versus baseline) denoted by the reflux symptom index and Hull airway reflux questionnaire. CONCLUSION Ivacaftor treatment was beneficial for patients with symptoms of EOR, thought to be a precursor to microaspiration.
Collapse
Affiliation(s)
- Gemma L Zeybel
- Institute for Cell and Molecular Bioscience, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Jeffrey P Pearson
- Institute for Cell and Molecular Bioscience, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Amaran Krishnan
- Northern Aerodigestive group, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Stephen J Bourke
- Department of Respiratory Medicine, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Simon Doe
- Department of Respiratory Medicine, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Alan Anderson
- Department of Respiratory Medicine, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Shoaib Faruqi
- Academic Department of Respiratory Medicine, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, United Kingdom
| | - Alyn H Morice
- Academic Department of Respiratory Medicine, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, United Kingdom
| | - Rhys Jones
- Northern Aerodigestive group, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Melissa McDonnell
- Institute for Cell and Molecular Bioscience, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Mujdat Zeybel
- Institute for Cellular Medicine, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom; School of Medicine, Koç University, Istanbul, Turkey
| | - Peter W Dettmar
- RD Biomed Ltd, Castle Hill Hospital, Cottingham, United Kingdom
| | - Malcolm Brodlie
- Institute for Cellular Medicine, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom; Department of Paediatric Respiratory Medicine, Great North Children's Hospital, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Chris Ward
- Institute for Cellular Medicine, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom; Northern Aerodigestive group, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| |
Collapse
|
6
|
Affiliation(s)
- Thida Ong
- 1 Department of Pediatrics, University of Washington, Seattle, Washington.,2 Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington; and
| | - Bonnie W Ramsey
- 1 Department of Pediatrics, University of Washington, Seattle, Washington.,3 Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
7
|
Abstract
Cystic fibrosis is the most common genetically determined, life-limiting disorder in populations of European ancestry. The genetic basis of cystic fibrosis is well established to be mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for an apical membrane chloride channel principally expressed by epithelial cells. Conventional approaches to cystic fibrosis care involve a heavy daily burden of supportive treatments to combat lung infection, help clear airway secretions and maintain nutritional status. In 2012, a new era of precision medicine in cystic fibrosis therapeutics began with the licensing of a small molecule, ivacaftor, which successfully targets the underlying defect and improves CFTR function in a subgroup of patients in a genotype-specific manner. Here, we review the three main targeted approaches that have been adopted to improve CFTR function: potentiators, which recover the function of CFTR at the apical surface of epithelial cells that is disrupted in class III and IV genetic mutations; correctors, which improve intracellular processing of CFTR, increasing surface expression, in class II mutations; and production correctors or read-through agents, which promote transcription of CFTR in class I mutations. The further development of such approaches offers great promise for future therapeutic strategies in cystic fibrosis.
Collapse
|
8
|
Agustí A, Antó JM, Auffray C, Barbé F, Barreiro E, Dorca J, Escarrabill J, Faner R, Furlong LI, Garcia-Aymerich J, Gea J, Lindmark B, Monsó E, Plaza V, Puhan MA, Roca J, Ruiz-Manzano J, Sampietro-Colom L, Sanz F, Serrano L, Sharpe J, Sibila O, Silverman EK, Sterk PJ, Sznajder JI. Personalized respiratory medicine: exploring the horizon, addressing the issues. Summary of a BRN-AJRCCM workshop held in Barcelona on June 12, 2014. Am J Respir Crit Care Med 2015; 191:391-401. [PMID: 25531178 PMCID: PMC4351599 DOI: 10.1164/rccm.201410-1935pp] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022] Open
Abstract
This Pulmonary Perspective summarizes the content and main conclusions of an international workshop on personalized respiratory medicine coorganized by the Barcelona Respiratory Network ( www.brn.cat ) and the AJRCCM in June 2014. It discusses (1) its definition and historical, social, legal, and ethical aspects; (2) the view from different disciplines, including basic science, epidemiology, bioinformatics, and network/systems medicine; (3) the bottlenecks and opportunities identified by some currently ongoing projects; and (4) the implications for the individual, the healthcare system and the pharmaceutical industry. The authors hope that, although it is not a systematic review on the subject, this document can be a useful reference for researchers, clinicians, healthcare managers, policy-makers, and industry parties interested in personalized respiratory medicine.
Collapse
Affiliation(s)
- Alvar Agustí
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Maria Antó
- Centre for Research in Environmental Epidemiology, Hospital del Mar Medical Research Institute, Universitat Pompeu Fabra, Centros de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, Lyon, France
| | - Ferran Barbé
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Esther Barreiro
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Pulmonology Department, Hospital del Mar-Hospital del Mar Medical Research Institute, CEXS, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Jordi Dorca
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Hospital University Bellvitge, University Barcelona, El Institut d’Investigació Biomèdica de Bellvitge, Hospitalet Ll., Spain
| | - Joan Escarrabill
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
| | - Rosa Faner
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Laura I. Furlong
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, University Pompeu Fabra, Barcelona, Spain
| | - Judith Garcia-Aymerich
- Centre for Research in Environmental Epidemiology, Hospital del Mar Medical Research Institute, Universitat Pompeu Fabra, Centros de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Joaquim Gea
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Pulmonology Department, Hospital del Mar-Hospital del Mar Medical Research Institute, CEXS, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | | | - Eduard Monsó
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Hospital University Parc Taulí, Sabadell, Spain
| | - Vicente Plaza
- Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, University Autonoma de Barcelona, Barcelona, Spain
| | - Milo A. Puhan
- Epidemiology, Biostatistics & Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Josep Roca
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Juan Ruiz-Manzano
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Hospital University Germans Trias i Pujol, University Autónoma Barcelona, Badalona, Spain
| | - Laura Sampietro-Colom
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, University Pompeu Fabra, Barcelona, Spain
| | - Luis Serrano
- European Molecular Biology Laboratory/Centre for Genomic Regulation Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - James Sharpe
- European Molecular Biology Laboratory/Centre for Genomic Regulation Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Oriol Sibila
- Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, University Autonoma de Barcelona, Barcelona, Spain
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Peter J. Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; and
| | | |
Collapse
|