1
|
Danielson MD, Antonelli BJ, Gonzalez MR, Bavis RW. Role of non-NMDA glutamate receptors in respiratory control and hyperoxia-induced plasticity in neonatal rats. Respir Physiol Neurobiol 2025; 336:104440. [PMID: 40320102 DOI: 10.1016/j.resp.2025.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Newborn rats have a biphasic hypoxic ventilatory response (HVR) that typically matures during the second postnatal week, but rats reared in moderate hyperoxia (30-60 % O2) already exhibit a sustained increase in ventilation during the late-phase of the HVR by 3 days of age (P3). Enhanced glutamatergic neurotransmission through NMDA receptors contributes to both normal maturation of the HVR and hyperoxia-induced developmental plasticity, but the role of non-NMDA glutamate receptors is unclear. To investigate the involvement of non-NMDA glutamate receptors in respiratory control and hyperoxia-induced plasticity, newborn Sprague Dawley rats were exposed to 21 % O2 (Control) or 60 % O2 (Hyperoxia) until their HVR was measured by head-body plethysmography at P3-4. Systemic administration of the AMPA/kainate receptor antagonist NBQX (12.5 mg kg-1, i.p.) caused rats from both treatment groups to adopt a slower, deeper breathing pattern with a modest reduction in baseline minute ventilation and convection requirement. NBQX also attenuated the HVR measured during the first minute of hypoxia in both treatment groups, but it did not alter the overall shape of the HVR; Hyperoxia rats exhibited a sustained increase in ventilation throughout the entire 15-min exposure to 11 % O2 regardless of whether they received saline or NBQX injections, while Control rats had a strongly biphasic HVR. Therefore, glutamatergic neurotransmission via non-NMDA glutamate receptors plays an important role in the respiratory control of neonatal rats but not in the respiratory plasticity expressed after chronic postnatal hyperoxia.
Collapse
Affiliation(s)
| | | | | | - Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| |
Collapse
|
2
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2025; 265:108744. [PMID: 39521442 PMCID: PMC11849399 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Daniel P Radin
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
3
|
Radin DP, Cerne R, Witkin JM, Lippa A. Safety, Tolerability, and Pharmacokinetic Profile of the Low-Impact Ampakine CX1739 in Young Healthy Volunteers. Clin Pharmacol Drug Dev 2025; 14:50-58. [PMID: 39302241 DOI: 10.1002/cpdd.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
AMPA-type glutamate receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the mammalian brain. Ampakines, positive allosteric modulators of AMPAR, hold significant potential for the treatment of a wide range of neurological/neuropsychiatric disorders in which excitatory synaptic transmission is compromised. Low-impact ampakines are a distinct subset of ampakines that accelerate channel opening yet minimally affect receptor desensitization, which may explain their lack of seizurogenic effects at therapeutic doses in preclinical models. CX1739 is a low-impact ampakine that has shown efficacy in preclinical studies. The current clinical study examined the tolerability and pharmacokinetics of CX1739 in healthy male volunteers in a 2-part study. Part A was a single dose escalation study (100-1200 mg, 48 patients) and Part B was a multiple dose ascending study (300-600 mg BID for 7-10 days, 32 patients). CX1739 was well tolerated up to 900 mg once daily (QD) and 450 mg twice a day, with the prominent side effects being headache and nausea. Importantly, the half-life of CX1739 was 6-9 hours, and Tmax was 1-5 hours. CX1739 Cmax and AUC were dose-proportional. These findings thus set the stage for further explorations of this drug candidate in phase 2 clinical studies.
Collapse
Affiliation(s)
| | - Rok Cerne
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| |
Collapse
|
4
|
Chowdhuri S, Badr MS. Opioid-related sleep-disordered breathing: correlates and conundrums. Sleep 2024; 47:zsae104. [PMID: 39096239 DOI: 10.1093/sleep/zsae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 08/05/2024] Open
Affiliation(s)
- Susmita Chowdhuri
- John D. Dingell VA Medical Center, Medicine Service, Detroit, MI, USA
- Wayne State University, Division of Pulmonary, Critical Care and Sleep Medicine, Detroit, MI, USA
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Medicine Service, Detroit, MI, USA
- Wayne State University, Division of Pulmonary, Critical Care and Sleep Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Witkin JM, Radin DP, Rana S, Fuller DD, Fusco AF, Demers JC, Pradeep Thakre P, Smith JL, Lippa A, Cerne R. AMPA receptors play an important role in the biological consequences of spinal cord injury: Implications for AMPA receptor modulators for therapeutic benefit. Biochem Pharmacol 2024; 228:116302. [PMID: 38763261 DOI: 10.1016/j.bcp.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Julie C Demers
- Indiana University/Purdue University, Indianapolis, IN, USA
| | - Prajwal Pradeep Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, Ljubljana, Slovenia
| |
Collapse
|
6
|
Rana S, Thakre PP, Fuller DD. Ampakines increase diaphragm activation following mid-cervical contusion injury in rats. Exp Neurol 2024; 376:114769. [PMID: 38582278 DOI: 10.1016/j.expneurol.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Ampakines are positive allosteric modulators of AMPA receptors. We hypothesized that low-dose ampakine treatment increases diaphragm electromyogram (EMG) activity after mid-cervical contusion injury in rats. Adult male and female Sprague Dawley rats were implanted with in-dwelling bilateral diaphragm EMG electrodes. Rats received a 150 kDyn C4 unilateral contusion (C4Ct). At 4- and 14-days following C4Ct, rats were given an intravenous bolus of ampakine CX717 (5 mg/kg, n = 10) or vehicle (2-hydroxypropyl-beta-cyclodextrin; HPCD; n = 10). Diaphragm EMG was recorded while breathing was assessed using whole-body plethysmography. At 4-days, ampakine administration caused an immediate and sustained increase in bilateral peak inspiratory diaphragm EMG bursting and ventilation. The vehicle had no impact on EMG bursting. CX717 treated rats were able to increase EMG activity during a respiratory challenge to a greater extent vs. vehicle treated. Rats showed a considerable degree of spontaneous recovery of EMG bursting by 14 days, and the impact of CX717 delivery was blunted as compared to 4-days. Direct recordings from the phrenic nerve at 21-24 days following C4Ct confirmed that ampakines stimulated bilateral phrenic neural output in injured rats. We conclude that low-dose intravenous treatment with a low-impact ampakine can enhance diaphragm activation shortly following mid-cervical contusion injury, when deficits in diaphragm activation are prominent.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, Gainesville, FL 32610, United States of America
| | - Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, Gainesville, FL 32610, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, Gainesville, FL 32610, United States of America.
| |
Collapse
|
7
|
Oliveira LM, Severs L, Moreira TS, Ramirez JM, Takakura AC. Ampakine CX614 increases respiratory rate in a mouse model of Parkinson's disease. Brain Res 2023; 1815:148448. [PMID: 37301422 DOI: 10.1016/j.brainres.2023.148448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). In a mouse model of PD induced by the injection of 6-hydroxydopamine (6-OHDA) into the caudate putamen (CPu) dyspnea events are very common. Neuroanatomical and functional studies show that the number of glutamatergic neurons in the pre-Bötzinger Complex (preBötC) are reduced. We hypothesize that the neuronal loss, and consequently loss of glutamatergic connections in the respiratory network previously investigated, are responsible for the breathing impairment in PD. Here, we tested whether ampakines (CX614), a subgroup of AMPA receptor positive allosteric modulators, could stimulate the respiratory activity in PD-induced animals. CX614 (50 µM) injected intraperitoneally or directly into the preBötC region reduced the irregularity pattern and increased the respiratory rate by 37% or 82%, respectively, in PD-induced animals. CX614 also increased the respiratory frequency in healthy animals. These data suggest that ampakine CX614 could become a tool to restore breathing in PD.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Liza Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil.
| |
Collapse
|
8
|
Tian L, Jia Z, Yan Y, Jia Q, Shi W, Cui S, Chen H, Han Y, Zhao X, He K. Low-dose of caffeine alleviates high altitude pulmonary edema via regulating mitochondrial quality control process in AT1 cells. Front Pharmacol 2023; 14:1155414. [PMID: 37081967 PMCID: PMC10110878 DOI: 10.3389/fphar.2023.1155414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Backgrounds: High-altitude pulmonary edema (HAPE) is a life-threatening disease without effective drugs. Caffeine is a small molecule compound with antioxidant biological activity used to treat respiratory distress syndrome. However, it is unclear whether caffeine plays a role in alleviating HAPE.Methods: We combined a series of biological experiments and label-free quantitative proteomics analysis to detect the effect of caffeine on treating HAPE and explore its mechanism in vivo and in vitro.Results: Dry and wet weight ratio and HE staining of pulmonary tissues showed that the HAPE model was constructed successfully, and caffeine relieved pulmonary edema. The proteomic results of mice lungs indicated that regulating mitochondria might be the mechanism by which caffeine reduced HAPE. We found that caffeine blocked the reduction of ATP production and oxygen consumption rate, decreased ROS accumulation, and stabilized mitochondrial membrane potential to protect AT1 cells from oxidative stress damage under hypoxia. Caffeine promoted the PINK1/parkin-dependent mitophagy and enhanced mitochondrial fission to maintain the mitochondria quality control process.Conclusion: Low-dose of caffeine alleviated HAPE by promoting PINK1/parkin-dependent mitophagy and mitochondrial fission to control the mitochondria quality. Therefore, caffeine could be a potential treatment for HAPE.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin, China
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| | - Yan Yan
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qian Jia
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Wenjie Shi
- Technical Research Centre for Prevention and Control of Birth Defects, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Saijia Cui
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Huining Chen
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yang Han
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| | - Kunlun He
- School of Medicine, Nankai University, Tianjin, China
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhilong Jia, ; Xiaojing Zhao, ; Kunlun He,
| |
Collapse
|
9
|
Ren J, Gosgnach S. Localization of Rhythm Generating Components of the Mammalian Locomotor Central Pattern Generator. Neuroscience 2023; 513:28-37. [PMID: 36702374 DOI: 10.1016/j.neuroscience.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Locomotor movements in mammals are generated by neural networks, situated in the spinal cord, known as central pattern generators (CPGs). Recently, significant strides have been made in the genetic identification of interneuronal components of the locomotor CPG and their specific function. Despite this progress, a population of interneurons that is required for locomotor rhythmogenesis has yet to be identified, and it has been suggested that subsets of interneurons belonging to several genetically-defined populations may be involved. In this study, rather than hunt for rhythmogenic neurons, we take a different approach and attempt to identify the specific region of the spinal cord in which they are located. Focal application of 5-hydroxytryptamine creatine sulfate complex (5-HT) and N-methyl-D-aspartate (NMDA) to the central canal of the rostral lumbar segments of newborn male and female mouse spinal cords quickly generates a robust pattern of fictive locomotion, while inhibition or ablation of neurons in this region disrupts the locomotor rhythm in both rostral and caudal lumbar segments. When applied to the central canal at caudal lumbar levels a higher volume of 5-HT and NMDA are required to elicit fictive locomotion, while inhibition of neurons surrounding the central canal at caudal levels again interrupts rhythmic activity at local segmental levels with minimal effects rostrally. The results of this study indicate that interneurons in the most medial laminae of the neonatal mouse spinal cord are both necessary and sufficient for the generation of locomotor activity, and suggests that this is the region where the rhythm generating core of the locomotor CPG resides.
Collapse
Affiliation(s)
- Jun Ren
- University of Alberta, Dept. of Physiology, 3-020M Katz Building, Edmonton, AL T6G 2E1, Canada
| | - Simon Gosgnach
- University of Alberta, Dept. of Physiology, 3-020M Katz Building, Edmonton, AL T6G 2E1, Canada.
| |
Collapse
|
10
|
Abstract
Opiates, such as morphine, and synthetic opioids, such as fentanyl, constitute a class of drugs acting on opioid receptors which have been used therapeutically and recreationally for centuries. Opioid drugs have strong analgesic properties and are used to treat moderate to severe pain, but also present side effects including opioid dependence, tolerance, addiction, and respiratory depression, which can lead to lethal overdose if not treated. This chapter explores the pathophysiology, the neural circuits, and the cellular mechanisms underlying opioid-induced respiratory depression and provides a translational perspective of the most recent research. The pathophysiology discussed includes the effects of opioid drugs on the respiratory system in patients, as well as the animal models used to identify underlying mechanisms. Using a combination of gene editing and pharmacology, the neural circuits and molecular pathways mediating neuronal inhibition by opioids are examined. By using pharmacology and neuroscience approaches, new therapies to prevent or reverse respiratory depression by opioid drugs have been identified and are currently being developed. Considering the health and economic burden associated with the current opioid epidemic, innovative research is needed to better understand the side effects of opioid drugs and to discover new therapeutic solutions to reduce the incidence of lethal overdoses.
Collapse
|
11
|
Rana S, Sunshine MD, Greer JJ, Fuller DD. Ampakines Stimulate Diaphragm Activity after Spinal Cord Injury. J Neurotrauma 2021; 38:3467-3482. [PMID: 34806433 PMCID: PMC8713281 DOI: 10.1089/neu.2021.0301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Respiratory compromise after cervical spinal cord injury (SCI) is a leading cause of mortality and morbidity. Most SCIs are incomplete, and spinal respiratory motoneurons as well as proprio- and bulbospinal synaptic pathways provide a neurological substrate to enhance respiratory output. Ampakines are allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which are prevalent on respiratory neurons. We hypothesized that low dose ampakine treatment could safely and effectively increase diaphragm electromyography (EMG) activity that has been impaired as a result of acute- or sub-acute cervical SCI. Diaphragm EMG was recorded using chronic indwelling electrodes in unanesthetized, freely moving rats. A spinal hemi-lesion was induced at C2 (C2Hx), and rats were studied at 4 and 14 days post-injury during room air breathing and acute respiratory challenge accomplished by inspiring a 10% O2, 7% CO2 gas mixture. Once a stable baseline recording was established, one of two different ampakines (CX717 or CX1739, 5 mg/kg, intravenous) or a vehicle (2-hydroxypropyl-beta-cyclodextrin [HPCD]) was delivered. At 4 days post-injury, both ampakines increased diaphragm EMG output ipsilateral to C2Hx during both baseline breathing and acute respiratory challenge. Only CX1739 treatment also led to a sustained (15 min) increase in ipsilateral EMG output. At 14 days post-injury, both ampakines produced sustained increases in ipsilateral diaphragm EMG output and enabled increased output during the respiratory challenge. We conclude that low dose ampakine treatment can increase diaphragm EMG activity after cervical SCI, and therefore may provide a pharmacological strategy that could be useful in the context of respiratory rehabilitation.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy and University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, Gainesville, Florida, USA
| | - Michael D. Sunshine
- Department of Physical Therapy and University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, Gainesville, Florida, USA
| | - John J. Greer
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - David D. Fuller
- Department of Physical Therapy and University of Florida, Gainesville, Florida, USA
- McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, Gainesville, Florida, USA
| |
Collapse
|
12
|
Thakre PP, Sunshine MD, Fuller DD. Ampakine pretreatment enables a single hypoxic episode to produce phrenic motor facilitation with no added benefit of additional episodes. J Neurophysiol 2021; 126:1420-1429. [PMID: 34495779 DOI: 10.1152/jn.00307.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Repeated short episodes of hypoxia produce a sustained increase in phrenic nerve output lasting well beyond acute intermittent hypoxia (AIH) exposure (i.e., phrenic long-term facilitation; pLTF). Pretreatment with ampakines, drugs which allosterically modulate AMPA receptors, enables a single brief episode of hypoxia to produce pLTF, lasting up to 90 min after hypoxia. Here, we tested the hypothesis that ampakine pretreatment would enhance the magnitude of pLTF evoked by repeated bouts of hypoxia. Phrenic nerve output was recorded in urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats. Initial experiments demonstrated that ampakine CX717 (15 mg/kg iv) caused an acute increase in phrenic nerve inspiratory burst amplitude reaching 70 ± 48% baseline (BL) after 2 min (P = 0.01). This increased bursting was not sustained (2 ± 32% BL at 60 min, P = 0.9). When CX717 was delivered 2 min before a single episode of isocapnic hypoxia (5 min, [Formula: see text] = 44 ± 9 mmHg), facilitation of phrenic nerve burst amplitude occurred (96 ± 62% BL at 60 min, P < 0.001). However, when CX717 was given 2 min before three, 5-min hypoxic episodes ([Formula: see text] = 45 ± 6 mmHg) pLTF was attenuated and did not reach statistical significance (24 ± 29% BL, P = 0.08). In the absence of CX717 pretreatment, pLTF was observed after three (74 ± 33% BL at 60 min, P < 0.001) but not one episode of hypoxia (1 ± 8% BL at 60 min, P = 0.9). We conclude that pLTF is not enhanced when ampakine pretreatment is followed by repeated bouts of hypoxia. Rather, the combination of ampakine and a single hypoxic episode appears to be ideal for producing sustained increase in phrenic motor output.NEW & NOTEWORTHY Pretreatment with ampakine CX717 created conditions that enabled an acute bout of moderate hypoxia to evoke phrenic motor facilitation, but this response was not observed when ampakine pretreatment was followed by intermittent hypoxia. Thus, in anesthetized and spinal intact rats, the combination of ampakine and one bout of hypoxia appears ideal for triggering respiratory neuroplasticity.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, Florida.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, Florida.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida.,McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
13
|
Erickson G, Dobson NR, Hunt CE. Immature control of breathing and apnea of prematurity: the known and unknown. J Perinatol 2021; 41:2111-2123. [PMID: 33712716 PMCID: PMC7952819 DOI: 10.1038/s41372-021-01010-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
This narrative review provides a broad perspective on immature control of breathing, which is universal in infants born premature. The degree of immaturity and severity of clinical symptoms are inversely correlated with gestational age. This immaturity presents as prolonged apneas with associated bradycardia or desaturation, or brief respiratory pauses, periodic breathing, and intermittent hypoxia. These manifestations are encompassed within the clinical diagnosis of apnea of prematurity, but there is no consensus on minimum criteria required for diagnosis. Common treatment strategies include caffeine and noninvasive respiratory support, but other therapies have also been advocated with varying effectiveness. There is considerable variability in when and how to initiate and discontinue treatment. There are significant knowledge gaps regarding effective strategies to quantify the severity of clinical manifestations of immature breathing, which prevent us from better understanding the long-term potential adverse outcomes, including neurodevelopment and sudden unexpected infant death.
Collapse
Affiliation(s)
- Grant Erickson
- National Capital Consortium Neonatal-Perinatal Medicine Fellowship, Uniformed Services University, Bethesda, MD, USA
| | - Nicole R Dobson
- Department of Pediatrics, Uniformed Services University, Bethesda, MD, USA.
| | - Carl E Hunt
- Department of Pediatrics, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
14
|
Baertsch NA, Bush NE, Burgraff NJ, Ramirez JM. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. eLife 2021; 10:e67523. [PMID: 34402425 PMCID: PMC8390004 DOI: 10.7554/elife.67523] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
The analgesic utility of opioid-based drugs is limited by the life-threatening risk of respiratory depression. Opioid-induced respiratory depression (OIRD), mediated by the μ-opioid receptor (MOR), is characterized by a pronounced decrease in the frequency and regularity of the inspiratory rhythm, which originates from the medullary preBötzinger Complex (preBötC). To unravel the cellular- and network-level consequences of MOR activation in the preBötC, MOR-expressing neurons were optogenetically identified and manipulated in transgenic mice in vitro and in vivo. Based on these results, a model of OIRD was developed in silico. We conclude that hyperpolarization of MOR-expressing preBötC neurons alone does not phenocopy OIRD. Instead, the effects of MOR activation are twofold: (1) pre-inspiratory spiking is reduced and (2) excitatory synaptic transmission is suppressed, thereby disrupting network-driven rhythmogenesis. These dual mechanisms of opioid action act synergistically to make the normally robust inspiratory rhythm-generating network particularly prone to collapse when challenged with exogenous opioids.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department Neurological Surgery, University of WashingtonSeattleUnited States
| |
Collapse
|
15
|
Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J Neurophysiol 2021; 125:1899-1919. [PMID: 33826874 DOI: 10.1152/jn.00017.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) represents the primary cause of death associated with therapeutic and recreational opioid use. Within the United States, the rate of death from opioid abuse since the early 1990s has grown disproportionally, prompting the classification as a nationwide "epidemic." Since this time, we have begun to unravel many fundamental cellular and systems-level mechanisms associated with opioid-related death. However, factors such as individual vulnerability, neuromodulatory compensation, and redundancy of opioid effects across central and peripheral nervous systems have created a barrier to a concise, integrative view of OIRD. Within this review, we bring together multiple perspectives in the field of OIRD to create an overarching viewpoint of what we know, and where we view this essential topic of research going forward into the future.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Helen A Baghdoyan
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ralph Lydic
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Abstract
Incorporation of heterocycles into drug molecules can enhance physical properties and biological activity. A variety of heterocyclic groups is available to medicinal chemists, many of which have been reviewed in detail elsewhere. Oxadiazoles are a class of heterocycle containing one oxygen and two nitrogen atoms, available in three isomeric forms. While the 1,2,4- and 1,3,4-oxadiazoles have seen widespread application in medicinal chemistry, 1,2,5-oxadiazoles (furazans) are less common. This Review provides a summary of the application of furazan-containing molecules in medicinal chemistry and drug development programs from analysis of both patent and academic literature. Emphasis is placed on programs that reached clinical or preclinical stages of development. The examples provided herein describe the pharmacology and biological activity of furazan derivatives with comparative data provided where possible for other heterocyclic groups and pharmacophores commonly used in medicinal chemistry.
Collapse
Affiliation(s)
| | | | - Donald F Weaver
- Department of Fundamental Neurobiology, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Mark A Reed
- Treventis Corporation, Toronto, Ontario M5T 0S8, Canada.,Department of Fundamental Neurobiology, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada
| |
Collapse
|
17
|
Altamirano AE, Wilson CG. An overview of developmental dysregulation of autonomic control in infants. Birth Defects Res 2021; 113:864-871. [PMID: 33421331 DOI: 10.1002/bdr2.1855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
In this short review, we provide an overview of developmental disorders causing autonomic nervous system dysregulation. We briefly discuss perinatal conditions that adversely impact developmental outcomes including apnea of prematurity, sudden infant death syndrome, and Rett syndrome. We provide a brief clinical description, an overview of known or hypothesized mechanisms for the disorder, and current standard of practice for treatment of each condition. Additionally, we consider preventative measures and complications of these disorders to provide further insight into the pathogenesis of specific autonomic dysregulation in neonates. The goal of this short review is to provide an updated understanding of the impact of autonomic dysregulation on development of brainstem circuits and to briefly highlight promising future treatment options and controversies.
Collapse
Affiliation(s)
- Adulzir E Altamirano
- Center for Health Disparities, Loma Linda University, Loma Linda, California, USA.,Lawrence D. Longo, M.D. Center for Perinatal Biology, Loma Linda, California, USA
| | - Christopher G Wilson
- Lawrence D. Longo, M.D. Center for Perinatal Biology, Loma Linda, California, USA
| |
Collapse
|
18
|
Wollman LB, Streeter KA, Fusco AF, Gonzalez-Rothi EJ, Sandhu MS, Greer JJ, Fuller DD. Ampakines stimulate phrenic motor output after cervical spinal cord injury. Exp Neurol 2020; 334:113465. [PMID: 32949571 DOI: 10.1016/j.expneurol.2020.113465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors increases phrenic motor output. Ampakines are a class of drugs that are positive allosteric modulators of AMPA receptors. We hypothesized that 1) ampakines can stimulate phrenic activity after incomplete cervical spinal cord injury (SCI), and 2) pairing ampakines with brief hypoxia could enable sustained facilitation of phrenic bursting. Phrenic activity was recorded ipsilateral (IL) and contralateral (CL) to C2 spinal cord hemisection (C2Hx) in anesthetized adult rats. Two weeks after C2Hx, ampakine CX717 (15 mg/kg, i.v.) increased IL (61 ± 46% baseline, BL) and CL burst amplitude (47 ± 26%BL) in 8 of 8 rats. After 90 min, IL and CL bursting remained above baseline (BL) in 7 of 8 rats. Pairing ampakine with a single bout of acute hypoxia (5-min, arterial partial pressure of O2 ~ 50 mmHg) had a variable impact on phrenic bursting, with some rats showing a large facilitation that exceeded the response of the ampakine alone group. At 8 weeks post-C2Hx, 7 of 8 rats increased IL (115 ± 117%BL) and CL burst amplitude (45 ± 27%BL) after ampakine. The IL burst amplitude remained above BL for 90-min in 7 of 8 rats; CL bursting remained elevated in 6 of 8 rats. The sustained impact of ampakine at 8 weeks was not enhanced by hypoxia exposure. Intravenous vehicle (10% 2-Hydroxypropyl-β-cyclodextrin) did not increase phrenic bursting at either time point. We conclude that ampakines effectively stimulate neural drive to the diaphragm after cervical SCI. Pairing ampakines with a single hypoxic exposure did not consistently enhance phrenic motor facilitation.
Collapse
Affiliation(s)
- L B Wollman
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - K A Streeter
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - A F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America
| | - E J Gonzalez-Rothi
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - M S Sandhu
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America
| | - J J Greer
- Department of Physiology, University of Alberta, Edmonton, AB T6G2SE, Canada
| | - D D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
19
|
Katayama PL, Abdala AP, Charles I, Pijacka W, Salgado HC, Gever J, Ford AP, Paton JFR. P2X3 receptor antagonism reduces the occurrence of apnoeas in newborn rats. Respir Physiol Neurobiol 2020; 277:103438. [PMID: 32259688 PMCID: PMC8208833 DOI: 10.1016/j.resp.2020.103438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Hyperreflexia of the peripheral chemoreceptors is a potential contributor of apnoeas of prematurity (AoP). Recently, it was shown that elevated P2X3 receptor expression was associated with elevated carotid body afferent sensitivity. Therefore, we tested whether P2X3 receptor antagonism would reduce AoP known to occur in newborn rats. Unrestrained whole-body plethysmography was used to record breathing and from this the frequency of apnoeas at baseline and following administration of either a P2X3 receptor antagonist - AF-454 (5 mg/kg or 10 mg/kg s.c.) or vehicle was derived. In a separate group, we tested the effects of AF-454 (10 mg/kg) on the hypoxic ventilatory response (10 % FiO2). Ten but not 5 mg/kg AF-454 reduced the frequency of AoP and improved breathing regularity significantly compared to vehicle. Neither AF-454 (both 5 and 10 mg/kg) nor vehicle affected baseline respiration. However, P2X3 receptor antagonism (10 mg/kg) powerfully blunted hypoxic ventilatory response to 10 % FiO2. These data suggest that P2X3 receptors contribute to AoP and the hypoxic ventilatory response in newborn rats but play no role in the drive to breathe at rest.
Collapse
Affiliation(s)
- Pedro Lourenço Katayama
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Abdala
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK
| | - Ian Charles
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK
| | - Wioletta Pijacka
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK; Department of Cardiovascular, Renal and Metabolism, MedImmune Ltd, Granta Park, Cambridge, UK
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Joel Gever
- Afferent Pharmaceuticals, San Mateo, CA, USA
| | | | - Julian F R Paton
- Bristol CardioNomics Group, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, England, UK; Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
20
|
Wollman LB, Streeter KA, Fuller DD. Ampakine pretreatment enables a single brief hypoxic episode to evoke phrenic motor facilitation. J Neurophysiol 2020; 123:993-1003. [PMID: 31940229 PMCID: PMC7099472 DOI: 10.1152/jn.00708.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Phrenic long-term facilitation (LTF) is a sustained increase in phrenic motor output occurring after exposure to multiple (but not single) hypoxic episodes. Ampakines are a class of drugs that enhance AMPA receptor function. Ampakines can enhance expression of neuroplasticity, and the phrenic motor system is fundamentally dependent on excitatory glutamatergic currents. Accordingly, we tested the hypothesis that combining ampakine pretreatment with a single brief hypoxic exposure would result in phrenic motor facilitation lasting well beyond the period of hypoxia. Phrenic nerve output was recorded in urethane-anesthetized, ventilated, and vagotomized adult Sprague-Dawley rats. Ampakine CX717 (15 mg/kg iv; n = 8) produced a small increase in phrenic inspiratory burst amplitude and frequency, but values quickly returned to predrug baseline. When CX717 was followed 2 min later by a 5-min exposure to hypoxia (n = 8; PaO2 ~45 mmHg), a persistent increase in phrenic inspiratory burst amplitude (i.e., phrenic motor facilitation) was observed up to 60 min posthypoxia (103 ± 53% increase from baseline). In contrast, when hypoxia was preceded by vehicle injection (10% 2-hydroxypropyl-β-cyclodextrin; n = 8), inspiratory phrenic bursting was similar to baseline values at 60 min. Additional experiments with another ampakine (CX1739, 15 mg/kg) produced comparable results. We conclude that pairing low-dose ampakine treatment with a single brief hypoxic exposure can evoke sustained phrenic motor facilitation. This targeted approach for enhancing respiratory neuroplasticity may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY A single brief episode of hypoxia (e.g., 3-5 min) does not evoke long-lasting increases in respiratory motor output after the hypoxia is concluded. Ampakines are a class of drugs that enhance AMPA receptor function. We show that pairing low-dose ampakine treatment with a single brief hypoxic exposure can evoke sustained phrenic motor facilitation after the acute hypoxic episode.
Collapse
Affiliation(s)
- L B Wollman
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - K A Streeter
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - D D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
Imam MZ, Kuo A, Smith MT. Countering opioid-induced respiratory depression by non-opioids that are respiratory stimulants. F1000Res 2020; 9. [PMID: 32089833 PMCID: PMC7008602 DOI: 10.12688/f1000research.21738.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Strong opioid analgesics are the mainstay of therapy for the relief of moderate to severe acute nociceptive pain that may occur post-operatively or following major trauma, as well as for the management of chronic cancer-related pain. Opioid-related adverse effects include nausea and vomiting, sedation, respiratory depression, constipation, tolerance, and addiction/abuse liability. Of these, respiratory depression is of the most concern to clinicians owing to the potential for fatal consequences. In the broader community, opioid overdose due to either prescription or illicit opioids or co-administration with central nervous system depressants may evoke respiratory depression. To address this problem, there is ongoing interest in the identification of non-opioid respiratory stimulants to reverse opioid-induced respiratory depression but without reversing opioid analgesia. Promising compound classes evaluated to date include those that act on a diverse array of receptors including 5-hydroxytryptamine, D
1-dopamine, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA) receptor antagonists, and nicotinic acetylcholine as well as phosphodiesterase inhibitors and molecules that act on potassium channels on oxygen-sensing cells in the carotid body. The aim of this article is to review recent advances in the development potential of these compounds for countering opioid-induced respiratory depression.
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Wei AD, Ramirez JM. Presynaptic Mechanisms and KCNQ Potassium Channels Modulate Opioid Depression of Respiratory Drive. Front Physiol 2019; 10:1407. [PMID: 31824331 PMCID: PMC6882777 DOI: 10.3389/fphys.2019.01407] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) is the major cause of death associated with opioid analgesics and drugs of abuse, but the underlying cellular and molecular mechanisms remain poorly understood. We investigated opioid action in vivo in unanesthetized mice and in in vitro medullary slices containing the preBötzinger Complex (preBötC), a locus critical for breathing and inspiratory rhythm generation. Although hypothesized as a primary mechanism, we found that mu-opioid receptor (MOR1)-mediated GIRK activation contributed only modestly to OIRD. Instead, mEPSC recordings from genetically identified Dbx1-derived interneurons, essential for rhythmogenesis, revealed a prevalent presynaptic mode of action for OIRD. Consistent with MOR1-mediated suppression of presynaptic release as a major component of OIRD, Cacna1a KO slices lacking P/Q-type Ca2+ channels enhanced OIRD. Furthermore, OIRD was mimicked and reversed by KCNQ potassium channel activators and blockers, respectively. In vivo whole-body plethysmography combined with systemic delivery of GIRK- and KCNQ-specific potassium channel drugs largely recapitulated these in vitro results, and revealed state-dependent modulation of OIRD. We propose that respiratory failure from OIRD results from a general reduction of synaptic efficacy, leading to a state-dependent collapse of rhythmic network activity.
Collapse
Affiliation(s)
- Aguan D. Wei
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
23
|
Abstract
The ventilatory control system is highly vulnerable to exogenous administered opioid analgesics. Particularly respiratory depression is a potentially lethal complication that may occur when opioids are overdosed or consumed in combination with other depressants such as sleep medication or alcohol. Fatalities occur in acute and chronic pain patients on opioid therapy and individuals that abuse prescription or illicit opioids for their hedonistic pleasure. One important strategy to mitigate opioid-induced respiratory depression is cotreatment with nonopioid respiratory stimulants. Effective stimulants prevent respiratory depression without affecting the analgesic opioid response. Several pharmaceutical classes of nonopioid respiratory stimulants are currently under investigation. The majority acts at sites within the brainstem respiratory network including drugs that act at α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (ampakines), 5-hydroxytryptamine receptor agonists, phospodiesterase-4 inhibitors, D1-dopamine receptor agonists, the endogenous peptide glycyl-glutamine, and thyrotropin-releasing hormone. Others act peripherally at potassium channels expressed on oxygen-sensing cells of the carotid bodies, such as doxapram and GAL021 (Galleon Pharmaceuticals Corp., USA). In this review we critically appraise the efficacy of these agents. We conclude that none of the experimental drugs are adequate for therapeutic use in opioid-induced respiratory depression and all need further study of efficacy and toxicity. All discussed drugs, however, do highlight potential mechanisms of action and possible templates for further study and development.
Collapse
|
24
|
Dai W, Gao X, Xiao D, Li YL, Zhou XB, Yong Z, Su RB. The Impact and Mechanism of a Novel Allosteric AMPA Receptor Modulator LCX001 on Protection Against Respiratory Depression in Rodents. Front Pharmacol 2019; 10:105. [PMID: 30837875 PMCID: PMC6389625 DOI: 10.3389/fphar.2019.00105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/28/2019] [Indexed: 11/30/2022] Open
Abstract
Analgesics and sedative hypnotics in clinical use often give rise to significant side effects, particularly respiratory depression. For emergency use, specific antagonists are currently administered to counteract respiratory depression. However, antagonists are often short-lasting and eliminate drug generated analgesia. To resolve this issue, novel positive AMPA modulators, LCX001, was tested to alleviate respiratory depression triggered by different drugs. The acetic acid writhing and hot-plate test were conducted to evaluate analgesic effect of LCX001. Binding assay, whole-cell recording, live cell imaging, and Ca2+ imaging were used to clarify mechanism and impact of LCX001 on respiratory protection. Results showed that LCX001 effectively rescued and prevented opioid (fentanyl and TH-030418), propofol, and pentobarbital-induced respiratory depression by strengthening respiratory frequency and minute ventilation. The acetic acid writhing test and hot-plate test revealed potent anti-nociceptive efficacy of LCX001, in contrast to other typical ampakines that did not affect analgesia. Furthermore, LCX001 potentiated [3H]AMPA and L-glutamate binding affinity to AMPA receptors, and facilitated glutamate-evoked inward currents in HEK293 cells stably expressing GluA2(R). LCX001 had a typical positive modulatory impact on AMPAR-mediated function. Importantly, application of LCX001 generated a significant increase in GluA2(R) surface expression, and restrained opioid-induced abnormal intracellular Ca2+ load, which might participate in breathing modulation. Our study improves therapeutic interventions for the treatment of drug induced respiratory depression, and increases understanding of potential mechanism of AMPA receptor modulators.
Collapse
Affiliation(s)
- Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dian Xiao
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu-Lei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin-Bo Zhou
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zheng Yong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Rui-Bin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
25
|
Algera MH, Kamp J, van der Schrier R, van Velzen M, Niesters M, Aarts L, Dahan A, Olofsen E. Opioid-induced respiratory depression in humans: a review of pharmacokinetic-pharmacodynamic modelling of reversal. Br J Anaesth 2019; 122:e168-e179. [PMID: 30915997 DOI: 10.1016/j.bja.2018.12.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/26/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Opioids are potent painkillers but come with serious adverse effects ranging from addiction to potentially lethal respiratory depression. A variety of drugs with separate mechanisms of action are available to prevent or reverse opioid-induced respiratory depression (OIRD). METHODS The authors reviewed human studies on reversal of OIRD using models that describe and predict the time course of pharmacokinetics (PK) and pharmacodynamics (PD) of opioids and reversal agents and link PK to PD. RESULTS The PKPD models differ in their basic structure to capture the specific pharmacological mechanisms by which reversal agents interact with opioid effects on breathing. The effect of naloxone, a competitive opioid receptor antagonist, is described by the combined effect-compartment receptor-binding model to quantify rate limitation at the level of drug distribution and receptor kinetics. The effects of reversal agents that act through non-opioidergic pathways, such as ketamine and the experimental drug GAL021, are described by physiological models, in which stimulants act at CO2 chemosensitivity, CO2-independent ventilation, or both. The PKPD analyses show that although all reversal strategies may be effective under certain circumstances, there are conditions at which reversal is less efficacious and sometimes even impossible. CONCLUSIONS Model-based drug development is needed to design an 'ideal' reversal agent-that is, one that is not influenced by opioid receptor kinetics, does not interfere with opioid analgesia, has a rapid onset of action with long-lasting effects, and is devoid of adverse effects.
Collapse
Affiliation(s)
- Marijke Hyke Algera
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jasper Kamp
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leon Aarts
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Erik Olofsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
26
|
Murru L, Vezzoli E, Longatti A, Ponzoni L, Falqui A, Folci A, Moretto E, Bianchi V, Braida D, Sala M, D'Adamo P, Bassani S, Francolini M, Passafaro M. Pharmacological Modulation of AMPAR Rescues Intellectual Disability-Like Phenotype in Tm4sf2-/y Mice. Cereb Cortex 2018; 27:5369-5384. [PMID: 28968657 PMCID: PMC5939231 DOI: 10.1093/cercor/bhx221] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 01/02/2023] Open
Abstract
Intellectual disability affects 2–3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1–GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1–GluA2 binding restored synaptic function in Tm4sf2−/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2−/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.
Collapse
Affiliation(s)
- Luca Murru
- CNR Institute of Neuroscience, 20129 Milano, Italy
| | - Elena Vezzoli
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy.,Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università di Milano, Via Balzaretti 9, 20133 Milano, Italy.,Department of Biosciences and Centre for Stem Cell Research, University of Milan and Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" Milan, Italy
| | - Anna Longatti
- CNR Institute of Neuroscience, 20129 Milano, Italy.,Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy.,Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milan, Italy
| | - Andrea Falqui
- Biological and Environmental Sciences and Engineering Division, King Abdullah University for Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Veronica Bianchi
- Division of Neuroscience, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano,Italy
| | | | - Patrizia D'Adamo
- Division of Neuroscience, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano,Italy
| | | |
Collapse
|
27
|
Saini JK, Pagliardini S. Breathing During Sleep in the Postnatal Period of Rats: The Contribution of Active Expiration. Sleep 2017; 40:4411430. [DOI: 10.1093/sleep/zsx172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, , Canada
- Women and Children Research Institute, University of Alberta, Canada
| | - Silvia Pagliardini
- Neuroscience and Mental Health Institute, University of Alberta, , Canada
- Women and Children Research Institute, University of Alberta, Canada
- Department of Physiology, University of Alberta, Canada
| |
Collapse
|
28
|
Ren J, Ding X, Trudel M, Greer JJ, MacLean JE. Cardiorespiratory pathogenesis of sickle cell disease in a mouse model. Sci Rep 2017; 7:8665. [PMID: 28819305 PMCID: PMC5561125 DOI: 10.1038/s41598-017-08860-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/19/2017] [Indexed: 02/02/2023] Open
Abstract
The nature and development of cardiorespiratory impairments associated with sickle cell disease are poorly understood. Given that the mechanisms of these impairments cannot be addressed adequately in clinical studies, we characterized cardiorespiratory pathophysiology from birth to maturity in the sickle cell disease SAD mouse model. We identified two critical phases of respiratory dysfunction in SAD mice; the first prior to weaning and the second in adulthood. At postnatal day 3, 43% of SAD mice showed marked apneas, anemia, and pulmonary vascular congestion typical of acute chest syndrome; none of these mice survived to maturity. The remaining SAD mice had mild lung histological changes in room air with an altered respiratory pattern, seizures, and a high rate of death in response to hypoxia. Approximately half the SAD mice that survived to adulthood had an identifiable respiratory phenotype including baseline tachypnea at 7–8 months of age, restrictive lung disease, pulmonary hypertension, cardiac enlargement, lower total lung capacity, and pulmonary vascular congestion. All adult SAD mice demonstrated impairments in exercise capacity and response to hypoxia, with a more severe phenotype in the tachypneic mice. The model revealed distinguishable subgroups of SAD mice with cardiorespiratory pathophysiology mimicking the complications of human sickle cell disease.
Collapse
Affiliation(s)
- Jun Ren
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuqing Ding
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marie Trudel
- Molecular Genetics and Development, Institut de recherches cliniques de Montréal, Université de Montréal, Faculté de Médecine, Montreal, Quebec, Canada
| | - John J Greer
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joanna E MacLean
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada. .,Women and Children's Health Research Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
29
|
Dai W, Xiao D, Gao X, Zhou XB, Fang TY, Yong Z, Su RB. A brain-targeted ampakine compound protects against opioid-induced respiratory depression. Eur J Pharmacol 2017; 809:122-129. [DOI: 10.1016/j.ejphar.2017.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 02/02/2023]
|
30
|
Ren J, Ding X, Greer JJ. Mechanistic Studies of Capsaicin-Induced Apnea in Rodents. Am J Respir Cell Mol Biol 2017; 56:252-260. [PMID: 27710012 DOI: 10.1165/rcmb.2016-0228oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inhalation of capsaicin-based sprays can cause central respiratory depression and lethal apneas. There are contradictory reports regarding the sites of capsaicin action. Furthermore, an understanding of the neurochemical mechanisms underlying capsaicin-induced apneas and the development of pharmacological interventions is lacking. The main objectives of this study were to perform a systematic study of the mechanisms of action of capsaicin-induced apneas and to provide insights relevant to pharmacological intervention. In vitro and in vivo rat and transient receptor potential vanilloid superfamily member 1 (TRPV1)-null mouse models were used to measure respiratory parameters and seizure-like activity in the presence of capsaicin and compounds that modulate glutamatergic neurotransmission. Administration of capsaicin to in vitro and in vivo rat and wild-type mouse models induced dose-dependent apneas and the production of seizure-like activity. No significant changes were observed in TRPV1-null mice or rat medullary slice preparations. The capsaicin-induced effects were inhibited by the TRPV1 antagonist capsazepine, amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonists CNQX, NBQX, perampanel, and riluzole, a drug that inhibits glutamate release and increases glutamate uptake. The capsaicin-induced effects on breathing and seizure-like activity were accentuated by positive allosteric modulators of the AMPA receptors, CX717 and cyclothiazide. To summarize, capsaicin-induced apneas and seizure-like behaviors are mediated via TRPV1 activation acting at lung afferents, spinal cord-ascending tracts, and medullary structures (including nucleus tractus solitarius). AMPA receptor-mediated conductances play an important role in capsaicin-induced apneas and seizure-like activity. A pharmaceutical strategy targeted at reducing AMPA receptor-mediated glutamatergic signaling may reduce capsaicin-induced deleterious effects.
Collapse
Affiliation(s)
- Jun Ren
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuqing Ding
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John J Greer
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Abstract
Neurophysiologically, central apnea is due to a temporary cessation of respiratory rhythmogenesis in medullary respiratory networks. Central apneas occur in several disorders and result in pathophysiological consequences, including arousals and desaturation. The 2 most common causes in adults are congestive heart failure and chronic use of opioids to treat pain. Under such circumstances, diagnosis and treatment of central sleep apnea may improve quality of life, morbidity, and mortality. This article discusses recent developments in the treatment of central sleep apnea in heart failure and opioids use.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Bethesda North Hospital, 10535 Montgomery Road, Suite 200, Cincinnati, OH 45242, USA.
| | - Robin Germany
- Section of Cardiology, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - John J Greer
- University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Morton SU, Smith VC. Treatment options for apnoea of prematurity. Arch Dis Child Fetal Neonatal Ed 2016; 101:F352-6. [PMID: 27010019 DOI: 10.1136/archdischild-2015-310228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/26/2016] [Indexed: 12/29/2022]
Abstract
Apnoea of prematurity (AOP) affects almost all infants born at <28 weeks gestation or with birth weight <1000 g. When untreated, AOP may be associated with negative outcomes. Because of these negative outcomes, effective treatment for AOP is an important part of optimising care of preterm infants. Standard treatment usually involves xanthine therapy and respiratory support. Cutting-edge work with stochastic vibrotactile stimulation and new pharmaceutical agents continues to expand therapeutic options. In this article, we review the pathophysiology of AOP, associated conditions and treatment options.
Collapse
Affiliation(s)
- Sarah U Morton
- Harvard Neonatal-Perinatal Fellowship Program, Boston Children's Hospital Boston, Boston, Massachusetts, USA
| | - Vincent C Smith
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Turner SM, ElMallah MK, Hoyt AK, Greer JJ, Fuller DD. Ampakine CX717 potentiates intermittent hypoxia-induced hypoglossal long-term facilitation. J Neurophysiol 2016; 116:1232-8. [PMID: 27306673 DOI: 10.1152/jn.00210.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/10/2016] [Indexed: 01/26/2023] Open
Abstract
Glutamatergic currents play a fundamental role in regulating respiratory motor output and are partially mediated by α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors throughout the premotor and motor respiratory circuitry. Ampakines are pharmacological compounds that enhance glutamatergic transmission by altering AMPA receptor channel kinetics. Here, we examined if ampakines alter the expression of respiratory long-term facilitation (LTF), a form of neuroplasticity manifested as a persistent increase in inspiratory activity following brief periods of reduced O2 [intermittent hypoxia (IH)]. Current synaptic models indicate enhanced effectiveness of glutamatergic synapses after IH, and we hypothesized that ampakine pretreatment would potentiate IH-induced LTF of respiratory activity. Inspiratory bursting was recorded from the hypoglossal nerve of anesthetized and mechanically ventilated mice. During baseline (BL) recording conditions, burst amplitude was stable for at least 90 min (98 ± 5% BL). Exposure to IH (3 × 1 min, 15% O2) resulted in a sustained increase in burst amplitude (218 ± 44% BL at 90 min following final bout of hypoxia). Mice given an intraperitoneal injection of ampakine CX717 (15 mg/kg) 10 min before IH showed enhanced LTF (500 ± 110% BL at 90 min). Post hoc analyses indicated that CX717 potentiated LTF only when initial baseline burst amplitude was low. We conclude that under appropriate conditions ampakine pretreatment can potentiate IH-induced respiratory LTF. These data suggest that ampakines may have therapeutic value in the context of hypoxia-based neurorehabilitation strategies, particularly in disorders with blunted respiratory motor output such as spinal cord injury.
Collapse
Affiliation(s)
- S M Turner
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida; and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - M K ElMallah
- Department of Pediatrics, Division of Pulmonary Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - A K Hoyt
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - J J Greer
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - D D Fuller
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida; and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| |
Collapse
|
34
|
Design, Synthesis and Biological Evaluation of Brain-Targeted Thiamine Disulfide Prodrugs of Ampakine Compound LCX001. Molecules 2016; 21:488. [PMID: 27089316 PMCID: PMC6274124 DOI: 10.3390/molecules21040488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 01/28/2023] Open
Abstract
Ampakine compounds have been shown to reverse opiate-induced respiratory depression by activation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. However, their pharmacological exploitations are hindered by low blood-brain barrier (BBB) permeability and limited brain distribution. Here, we explored whether thiamine disulfide prodrugs with the ability of “lock-in” can be used to solve these problems. A series of thiamine disulfide prodrugs 7a–7f of ampakine compound LCX001 was synthesized and evaluated. The trials in vitro showed that prodrugs 7e, 7d, 7f possessed a certain stability in plasma and quickly decomposed in brain homogenate by the disulfide reductase. In vivo, prodrug 7e decreased the peripheral distribution of LCX001 and significantly increased brain distribution of LCX001 after i.v. administration. This compound showed 2.23- and 3.29-fold greater increases in the AUC0-t and MRT0-t of LCX001 in brain, respectively, than did LCX001 itself. A preliminary pharmacodynamic study indicated that the required molar dose of prodrug 7e was only one eighth that of LCX001 required to achieve the same effect in mice. These findings provide an important reference to evaluate the clinical outlook of ampakine compounds.
Collapse
|
35
|
Haw AJ, Meyer LC, Greer JJ, Fuller A. Ampakine CX1942 attenuates opioid-induced respiratory depression and corrects the hypoxaemic effects of etorphine in immobilized goats (Capra hircus). Vet Anaesth Analg 2016; 43:528-38. [PMID: 27531058 DOI: 10.1111/vaa.12358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To determine whether CX1942 reverses respiratory depression in etorphine-immobilized goats, and to compare its effects with those of doxapram hydrochloride. STUDY DESIGN A prospective, crossover experimental trial conducted at 1753 m.a.s.l. ANIMALS Eight adult female Boer goats (Capra hircus) with a mean ± standard deviation mass of 27.1 ± 1.6 kg. METHODS Following immobilization with 0.1 mg kg(-1) etorphine, goats received one of doxapram, CX1942 or sterile water intravenously, in random order in three trials. Respiratory rate, ventilation and tidal volume were measured continuously. Arterial blood samples for the determination of PaO2 , PaCO2 , pH and SaO2 were taken 2 minutes before and then at 5 minute intervals after drug administration for 25 minutes. RESULTS Doxapram corrected etorphine-induced respiratory depression but also led to arousal and hyperventilation at 2 minutes after its administration, as indicated by the low PaCO2 (27.8 ± 4.5 mmHg) and ventilation of 5.32 ± 5.24 L minute(-1) above pre-immobilization values. CX1942 improved respiratory parameters and corrected etorphine's hypoxaemic effects more gradually than did doxapram, with a more sustained improvement in PaO2 and SaO2 in comparison with the control trial. CONCLUSIONS CX1942 attenuated opioid-induced respiratory depression and corrected the hypoxaemic effects of etorphine in immobilized goats. CLINICAL RELEVANCE Ampakines potentially offer advantages over doxapram, a conventional treatment, in reversing etorphine-induced respiratory depression without causing unwanted side effects, particularly arousal, in immobilized animals.
Collapse
Affiliation(s)
- Anna J Haw
- Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Parktown, South Africa
| | - Leith Cr Meyer
- Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Parktown, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - John J Greer
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrea Fuller
- Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Parktown, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
36
|
Uppari N, Joseph V, Bairam A. Inhibitory respiratory responses to progesterone and allopregnanolone in newborn rats chronically treated with caffeine. J Physiol 2015; 594:373-89. [PMID: 26497835 DOI: 10.1113/jp270914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/21/2015] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS In premature newborns, recurrent apnoea is systematically treated with caffeine to prevent long-term neurocognitive disorders, but a substantial percentage of apnoea persists particularly in neonates born before 28 weeks of gestation. Progesterone has been proposed as a respiratory stimulant potentially suitable for the treatment of newborn apnoea persistent to caffeine. Accordingly we asked whether acute progesterone administration reduces apnoea frequency in newborn rats treated with caffeine. Surprisingly our results show that in newborn rats treated with caffeine, administration of progesterone inhibits breathing and increases apnoea frequency. Additional experiments showed an enhanced GABAergic inhibitory drive on breathing after caffeine treatment, and that progesterone is converted to allopregnanolone (an allosteric modulator of GABAA receptors) to inhibit breathing. We conclude that combining progesterone and chronic caffeine is not an option in preterm neonates, unless the effects of allopregnanolone can be counteracted. ABSTRACT Caffeine is the main treatment for apnoea in preterm neonates, but its interactions with other respiratory stimulants like progesterone are unknown. We tested the hypothesis that the addition of progesterone to caffeine treatments further stimulates ventilation. Newborn rats were treated with water (control) or caffeine (15 mg kg(-1)) by daily gavage between postnatal day (P)3 and P12. At P4 and P12, we measured apnoea frequency, ventilatory responses and metabolic parameters under both normoxia and hypoxia (12% O2, 20 min) following an acute administration of either saline or progesterone (4 mg kg(-1); i.p.). Progesterone injection increased the serum levels of both progesterone and its neuroactive metabolite allopregnanolone. Progesterone had no effect on ventilation in control rats under normoxia. Progesterone depressed ventilation in P12 caffeine-treated rats under normoxia and hypoxia and increased apnoea frequency in both P4 and P12 rats. Because allopregnanolone is an allosteric modulator of GABAA receptors and caffeine may enhance GABAergic inhibition in newborns, we studied the effects of the GABAA receptor antagonist bicuculline at 0, 1, 2 and 3 mg kg(-1) doses and allopregnanolone (10 mg kg(-1) dose) in P12 rats. In caffeine-treated rats, bicuculline enhanced ventilation, while allopregnanolone decreased ventilation and increased total apnoea time. Progesterone had no effect on ventilation and apnoea frequency in caffeine-treated rats injected with finasteride, which blocks the conversion of progesterone to allopregnanolone. We conclude that combining progesterone and chronic caffeine therapy is not an option for the treatment of persistent apnoea in preterm neonates, unless the effects of allopregnanolone can be counteracted.
Collapse
Affiliation(s)
- NagaPraveena Uppari
- Unité de recherche en périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, QC, Canada
| | - Vincent Joseph
- Unité de recherche en périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, QC, Canada
| | - Aida Bairam
- Unité de recherche en périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, QC, Canada
| |
Collapse
|
37
|
Affiliation(s)
- Christopher G. Wilson
- Department of Pediatrics and Center for Perinatal BiologyLoma Linda UniversityLoma Linda, California
| |
Collapse
|