1
|
Fu G, Qiu L, Wang J, Li S, Tian J, Wu J, Lin X, Zhu Y, Liu Z, Luo L, Wang K, Zhao F, Kuang J, Liang S, Liang S, Guo Y, Hong Y, Yi Y, Huang J, Niu Y, Kang K, Gou D. Genome-wide characterization of circular RNAs in three rat models of pulmonary hypertension reveals distinct pathological patterns. BMC Genomics 2025; 26:127. [PMID: 39930385 PMCID: PMC11812181 DOI: 10.1186/s12864-025-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disease marked by elevated pulmonary artery pressure, resulting in right ventricular (RV) failure and mortality. Despite the identification of several dysregulated genes in PH, the involvement of circular RNAs (circRNAs), a subset of long noncoding RNAs, remains largely unknown. METHODS In this study, high-throughput RNA sequencing was performed to analyze the genome-wide expression patterns of circRNAs in pulmonary arteries from three models of PH rats induced by hypoxia (Hyp), hypoxia/Sugen5416 (HySu), and monocrotaline (MCT). Differentially expressed circRNAs (DEcircRNAs) were identified, and a weighted gene coexpression network was constructed to explore circRNA networks associated with PH pathogenesis. A circRNA-miRNA-mRNA regulatory network was built, and the functional significance of targeted mRNAs was evaluated. Single-cell RNA sequencing provided insights into the distribution of cell type-specific circRNAs across PH progression. RESULTS Our analysis revealed 45 circRNAs exhibiting significant changes across all three PH rat models, with their host genes participating in the calcium signaling and muscle contraction. We identified 372 PH-related circRNA-miRNA-mRNA interactions, shedding light on the regulatory networks during PH development. Furthermore, we uncovered 186, 195 and 311 Hyp-, Hysu- and MCT-specific circRNAs, respectively. These circRNAs were enriched in distinct biological processes, emphasizing their unique regulatory roles. Single-cell spatial distribution analysis of these circRNAs in the pulmonary arteries of PH patients revealed that Hyp-specific circRNA predominantly appeared in the pulmonary vascular structural cells, while HySu- and MCT-specific circRNAs exhibited broader distribution, including significant enrichment in immune-related cells. CONCLUSION Our study presents the first comprehensive view of circRNA regulatory networks in the pulmonary arteries of three PH rat models. We provide insights into PH-associated circRNAs, particularly their involvement in calcium signaling and muscle contraction.
Collapse
Affiliation(s)
- Gaohui Fu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shujin Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jinglin Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jiayu Wu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xinyang Lin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yiheng Zhu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zixin Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lingjie Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ku Wang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Feilong Zhao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jiahao Kuang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Shuangqing Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shiran Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yuqing Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yuping Hong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yonghao Yi
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jinyong Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Kang Kang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Coons JC, Empey PE. Pharmacogenomics in the Management of Pulmonary Arterial Hypertension: Current Perspectives. Pharmgenomics Pers Med 2023; 16:729-737. [PMID: 37457231 PMCID: PMC10349598 DOI: 10.2147/pgpm.s361222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with heterogeneous causes that can lead to right ventricular (RV) failure and death if left untreated. There are currently 10 medications representative of five unique pharmacologic classes that are approved for treatment. These have led to significant improvements in overall clinical outcome. However, substantial variability in dosing requirements and treatment response is evident, leading to suboptimal outcome for many patients. Furthermore, dosing is empiric and iterative and can lead to delays in meeting treatment goals and burdensome adverse effects. Pharmacogenomic (PGx) associations have been reported with certain PAH medications, such as treprostinil and bosentan, and can explain some of the variability in response. Relevant genes associated with treprostinil include CYP2C8, CYP2C9, CAMK2D, and PFAS. CYP2C8 and CYP2C9 are the genes encoding the major metabolizing liver enzymes for treprostinil, and reduced function variants (*2, *3) with CYP2C9 were associated with lower treatment persistence. Additionally, a higher CYP2C9 activity score was associated with a significantly less risk of treatment discontinuation. Other genes of interest that have been explored with treprostinil include CAMK2D, which is associated with right ventricular dysfunction and significantly higher dose requirements. Similarly, PFAS is associated with lower concentrations of cyclic adenosine monophosphate and significantly higher dose requirements. Genes of interest with the endothelin receptor antagonist (ERA) class include GNG2 and CYP2C9. A genetic variant in GNG2 (rs11157866) was linked to a significantly increased rate of clinical improvement with ERAs. The *2 variant with CYP2C9 (encoding for the major metabolizing enzyme for bosentan) was significantly associated with a higher risk for elevations in hepatic aminotransferases and liver injury. In summary, this article reviews the relevant pharmacogenes that have been associated to date with dosing and outcome among patients who received PAH medications.
Collapse
Affiliation(s)
- James C Coons
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- Department of Pharmacy, UPMC Presbyterian-Shadyside Hospital, Pittsburgh, PA, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
4
|
Li H, Li X, Hao Y, Wu C, Fu Y, Su N, Chen H, Ying B, Wang H, Su L, Cai H, He Q, Cai M, Sun J, Lin J, Scott A, Smith F, Huang X, Jin S. Maresin 1 intervention Reverses Experimental Pulmonary Arterial Hypertension in mice. Br J Pharmacol 2022; 179:5132-5147. [PMID: 35764296 DOI: 10.1111/bph.15906] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. EXPERIMENTAL APPROACH The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure (SuHx). After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by hemodynamic measurement and echocardiography, respectively. Vascular remodeling was evaluated by histological staining. Confocal and western blot were used to test related protein expression. In vitro, cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. KEY RESULTS Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated the right ventricular dysfunction (RVD) in murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodeling, attenuating endothelial to mesenchymal transformation (EndoMT) and enhancing apoptosis of α-SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK and FoxO1 phosphorylation via LGR6. CONCLUSION AND IMPLICATIONS Maresin 1 improved abnormal pulmonary vascular remodeling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Fu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nana Su
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Houlin Chen
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binyu Ying
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haixing Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihuang Su
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Haijian Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Qinlian He
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Mengsi Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Junwei Sun
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Jing Lin
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aaron Scott
- The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Fanggao Smith
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Abman SH, Mullen MP, Sleeper LA, Austin ED, Rosenzweig EB, Kinsella JP, Ivy D, Hopper RK, Usha Raj J, Fineman J, Keller RL, Bates A, Krishnan US, Avitabile CM, Davidson A, Natter MD, Mandl KD. Characterisation of Pediatric Pulmonary Hypertensive Vascular Disease from the PPHNet Registry. Eur Respir J 2021; 59:13993003.03337-2020. [PMID: 34140292 DOI: 10.1183/13993003.03337-2020] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/15/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND There are limited data about the range of diseases, natural history, age-appropriate endpoints and optimal care for children with pulmonary hypertension (PH), including the need for developing high quality patient registries of children with diverse forms of PH to enhance care and research. OBJECTIVE To characterise the distribution and clinical features of diseases associated with pediatric PH, including natural history, evaluation, therapeutic interventions and outcomes, as defined by the WSPH Classification. METHODS 1475 patients were enrolled into a multisite registry across the Pediatric Pulmonary Hypertension Network (PPHNet), comprised of 8 interdisciplinary PH programs. RESULTS WSPH Groups 1 (PAH) and 3 (lung disease) were the most common primary classifications (45% and 49% of subjects, respectively). The most common Group 3 conditions were BPD and CDH. Group 1 disease was predominantly associated with congenital heart disease (60%) and idiopathic (23% of Group 1 cases). In comparison with Group 1, Group 3 subjects had better disease resolution (HR=3.1, p<0.001), tended to be younger at diagnosis (0.3 (0.0,0.6) versus 1.6 (0.1,6.9) years (median (IQR); p<0.001), and were more often male (57% versus. 45%, p<0.001). Down syndrome (DS), the most common genetic syndrome in the registry, constituted 11% of the entire PH cohort. CONCLUSIONS We find a striking proportion of pediatric PH patients with Group 3 disorders, reflecting the growing recognition of PH in diverse developmental lung diseases. Greater precision of clinical phenotyping based on disease-specific characterization may further enhance care and research of pediatric PH.
Collapse
Affiliation(s)
- Steven H Abman
- From the Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, CO, USA .,co-first authors
| | - Mary P Mullen
- Department of Cardiology, Boston Children's Hospital, and Dept. of Pediatrics, Harvard Medical School, Boston, MA, USA.,co-first authors
| | - Lynn A Sleeper
- Department of Cardiology, Boston Children's Hospital, and Dept. of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital, Nashville, TN, USA
| | - Erika B Rosenzweig
- Division of Pediatric Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - John P Kinsella
- Division of Neonatology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, CO, USA
| | - Dunbar Ivy
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, CO, USA
| | - Rachel K Hopper
- Department of Pediatrics, Stanford University School of Medicine, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeffrey Fineman
- Division of Critical Care, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Roberta L Keller
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Angela Bates
- Division of Cardiology, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Usha S Krishnan
- Division of Pediatric Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Catherine M Avitabile
- Division of Cardiology, Children's Hospital of Philadelphia, Departments of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexander Davidson
- Division of Cardiology, Children's Hospital of Philadelphia, Departments of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marc D Natter
- Computational Health Informatics Program, Departments of Pediatrics and Biomedical Informatics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth D Mandl
- Computational Health Informatics Program, Departments of Pediatrics and Biomedical Informatics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Coons JC, Crisamore K, Adams S, Modany A, Simon MA, Zhao W, Shaik IH, Venkataramanan R, Empey PE. A pilot study of oral treprostinil pharmacogenomics and treatment persistence in patients with pulmonary arterial hypertension. Ther Adv Respir Dis 2021; 15:17534666211013688. [PMID: 33929912 PMCID: PMC8111525 DOI: 10.1177/17534666211013688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/01/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIMS Treprostinil is a prostacyclin analog used to treat pulmonary arterial hypertension. Dosing is empiric and based on tolerability. Adverse effects are common and can affect treatment persistence. Pharmacogenomic variants that may affect treprostinil metabolism and transport have not been well-characterized. We aimed to investigate the pharmacogenomic sources of variability in treatment persistence and dosing. METHODS Patients were prospectively recruited from an IRB approved biobank registry at a single pulmonary hypertension center. A cohort of patients who received oral treprostinil were screened for participation. Pharmacogenomic analysis was for variants in CYP2C8, CYP2C9, and ABCC4. A retrospective review was conducted for demographics, clinical status, dosing, and response. Fisher's exact test was used for categorical data and Kruskal-Wallis test or Wilcoxon rank sum were used for continuous data. RESULTS A total of 15 patients received oral treprostinil and were consented. Their median age was 53 years, 73% were female, and 93% were White. The median total daily dose was 22.5 mg (13.5, 41) at last clinical observation. 40% of patients discontinued treatment with a majority due to adverse effects. Approximately 27% of patients had a loss-of-function variant in CYP2C8 (*1/*3 or *1/*4), whereas 47% of patients had a loss-of-function variant in CYP2C9 (*1/*2, *1/*3, or *2/*2). Minor allele frequencies for ABCC4 (rs1751034 and rs3742106) were 0.17 and 0.43, respectively. Survival analysis showed that increased CYP2C9 activity score was associated with decreased risk for treatment discontinuation [hazard ratio (HR): 0.13; 95% confidence interval (CI): 0.02, 0.91; p = 0.04]. Genetic variants were not significantly associated with dosing. CONCLUSION Genetic variants responsible for the metabolism and transport of oral treprostinil were common. Increased CYP2C9 activity score was associated with decreased risk for treatment discontinuation. However, dosing was not associated with genetic variants in metabolizing enzymes for treprostinil. Our findings suggest significant variability in treatment persistence to oral treprostinil, with pharmacogenomics being a potentially important contributor.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- James C. Coons
- University of Pittsburgh School of Pharmacy, Clinical Pharmacist, Cardiology, UPMC Presbyterian Hospital, Salk Hall, Room 727, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Karryn Crisamore
- Department of Pharmaceutical Sciences, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | | | | | - Marc A. Simon
- Bioengineering, and Clinical Translational Science, Department of Medicine/Division of Cardiology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Heart and Vascular Institute, Heart Failure Research, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Imam H. Shaik
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Philip E. Empey
- Pharmacogenomics Center of Excellence, Institute for Personalized Medicine, Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences and the Clinical and Translational Science Institute, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Wang J, Hu L, Huang H, Yu Y, Wang J, Yu Y, Li K, Li Y, Tian T, Chen F. CAR (CARSKNKDC) Peptide Modified ReNcell-Derived Extracellular Vesicles as a Novel Therapeutic Agent for Targeted Pulmonary Hypertension Therapy. Hypertension 2020; 76:1147-1160. [DOI: 10.1161/hypertensionaha.120.15554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, mesenchymal stem cells (MSCs)–derived extracellular vesicles (EVs) are emerging as a potential therapeutic agent for pulmonary hypertension (PH). However, the full realization of MSCs-derived EVs therapy has been hampered by the absence of standardization in MSCs culture and the challenges of industrial scale-up. The study was to exploit an alternative replacement for MSCs using currently commercialized stem cell lines for effective targeted PH therapy. ReNcell VM—a human neural stem cell line—has been utilized here as a reliable and easily adoptable source of EVs. We first demonstrated that ReNcell-derived EVs (ReNcell-EVs) pretreatment effectively prevented Su/Hx (SU5416/hypoxia)-induced PH in mice. Then for targeted therapy, we conjugated ReNcell-EVs with CAR (CARSKNKDC) peptide (CAR-EVs)—a peptide identified to specifically target hypertensive pulmonary arteries, by bio-orthogonal chemistry. Intravenous administration of CAR-EVs selectively targeted hypertensive pulmonary artery lesions especially pulmonary artery smooth muscle cells. Moreover, compared with unmodified ReNcell-EVs, CAR-EVs treatment significantly improved therapeutic effect in reversing Su/Hx-induced PH in mice. Mechanistically, ReNcell-EVs inhibited hypoxia-induced proliferation, migration, and phenotype switch of pulmonary artery smooth muscle cells, at least in part, via the delivery of its endogenous highly expressed miRNAs, let-7b-5p, miR-92b-3p, and miR-100-5p. In addition, we also found that ReNcell-EVs inhibited hypoxia-induced cell apoptosis and endothelial-mesenchymal transition in human microvascular endothelial cells. Taken together, our results provide an alternative to MSCs-derived EVs–based PH therapy via using ReNcell as a reliable source of EVs. Particularly, our CAR-conjugated EVs may serve as a novel drug carrier that enhances the specificity and efficiency of drug delivery for effective PH-targeted therapy.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Li Hu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Huijie Huang
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Yanfang Yu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Jingshen Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu (Jingshen Wang, T.T.), Nanjing Medical University, Jiangsu, China
| | - Youjia Yu
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Kai Li
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Yan Li
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu (Jingshen Wang, T.T.), Nanjing Medical University, Jiangsu, China
| | - Feng Chen
- From the Department of Forensic Medicine (Jie Wang, L.H., H.H., Yanfang Yu, Youjia Yu, K.L., Y.L., F.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (F.C.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
8
|
Abstract
Pulmonary hypertension (PH) is a common finding that can result from many different pathological conditions. Depending on the etiology, treatment may be quite different, but early diagnosis and correct classification of PH is difficult. With an aging population and recently suggested decreased pulmonary arterial pressure threshold defining PH, we are facing even more diagnostic uncertainties. A new approach to patients' phenotyping is needed. Here we present available data and future perspectives on employing an in-depth analysis of the omics cascade to allow an earlier and more reliable diagnosis and classification of PH. Indeed, with the help of super-fast computing, it became possible to simultaneously consider the levels of thousands of potential biomarkers to find patterns specific for clinically suspected disease. The omics cascade is an invaluable source of information. However, while the genome can be perceived as providing possibilities, transcriptome-as carving them this is metabolome that may tell us 'what is really going on' in an individual living organism. Metabolomics research requires blinded search for characteristic patterns of discreet changes in the levels of detectable metabolites. Since as many as 40,000 various substances are produced as a 'side effect of staying alive', metabolite profiling can be compared to fishing up for organized signals in a universe of chaos. Although difficult, such search for metabolic patterns that might lead to replacing the term biomarker by metabolic fingerprinting in the area of pulmonary circulation has already begun.
Collapse
|
9
|
Brittain EL, Thennapan T, Maron BA, Chan SY, Austin ED, Spiekerkoetter E, Bogaard HJ, Guignabert C, Paulin R, Machado RF, Yu PB. Update in Pulmonary Vascular Disease 2016 and 2017. Am J Respir Crit Care Med 2019. [PMID: 29533671 DOI: 10.1164/rccm.201801-0062up] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Evan L Brittain
- 1 Division of Cardiovascular Medicine, Department of Medicine.,2 Vanderbilt Translational and Clinical Cardiovascular Research Center.,3 Pulmonary Vascular Center, Department of Medicine, and
| | | | - Bradley A Maron
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,6 Department of Cardiology, Boston VA Healthcare System, Boston, Massachusetts
| | - Stephen Y Chan
- 7 Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric D Austin
- 3 Pulmonary Vascular Center, Department of Medicine, and.,8 Pediatric Pulmonary Hypertension Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edda Spiekerkoetter
- 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,10 Vera Moulton Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, California
| | - Harm J Bogaard
- 11 Pulmonary Hypertension Expert Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Christophe Guignabert
- 12 INSERM UMR-S 999, Le Plessis-Robinson, France.,13 Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Roxane Paulin
- 14 Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada; and
| | - Roberto F Machado
- 15 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Paul B Yu
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Weatherald J, Boucly A, Sahay S, Humbert M, Sitbon O. The Low-Risk Profile in Pulmonary Arterial Hypertension. Time for a Paradigm Shift to Goal-oriented Clinical Trial Endpoints? Am J Respir Crit Care Med 2019; 197:860-868. [PMID: 29256625 DOI: 10.1164/rccm.201709-1840pp] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Jason Weatherald
- 1 Division of Respirology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,2 Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Athénaïs Boucly
- 3 Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,4 Service de Pneumologie, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,5 INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; and
| | - Sandeep Sahay
- 6 Weill Cornell Medical College, Institute of Academic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Marc Humbert
- 3 Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,4 Service de Pneumologie, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,5 INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; and
| | - Olivier Sitbon
- 3 Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,4 Service de Pneumologie, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,5 INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; and
| |
Collapse
|
11
|
West J, Chen X, Yan L, Gladson S, Loyd J, Rizwan H, Talati M. Adverse effects of BMPR2 suppression in macrophages in animal models of pulmonary hypertension. Pulm Circ 2019; 10:2045894019856483. [PMID: 31124398 PMCID: PMC7074495 DOI: 10.1177/2045894019856483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023] Open
Abstract
Inflammatory cells contribute to irreversible damage in pulmonary arterial hypertension (PAH). We hypothesized that in PAH, dysfunctional BMPR2 signaling in macrophages contributes to pulmonary vascular injury and phenotypic changes via proinflammatory cytokine production. Studies were conducted in: (1) Rosa26-rtTA2 3 X TetO7-Bmpr2delx4 FVB/N mice (mutant Bmpr2 is universally expressed, BMPR2delx4 mice) given a weekly intra-tracheal liposomal clodronate injections for four weeks; and (2) LysM-Cre X floxed BMPR2 X floxed eGFP monocyte lineage-specific BMPR2 knockout (KO) mouse model (Bmpr2 gene expression knockdown in monocytic lineage cells) (BMPR2KO) following three weeks of sugen/hypoxia treatment. In the BMPR2delx4 mice, increased right ventricular systolic pressure (RVSP; P < 0.05) was normalized by clodronate, and in monocyte lineage-specific BMPR2KO mice sugen hypoxia treatment increased (P < 0.05) RVSP compared to control littermates, suggesting that suppressed BMPR2 in macrophages modulate RVSP in animal models of PH. In addition, in these mouse models, muscularized pulmonary vessels were increased (P < 0.05) and surrounded by an increased number of macrophages. Elimination of macrophages in BMPR2delx4 mice reduced the number of muscularized pulmonary vessels and macrophages surrounding these vessels. Further, in monocyte lineage-specific BMPR2KO mice, there was significant increase in proinflammatory cytokines, including C-X-C Motif Chemokine Ligand 12 (CXCL12), complement component 5 a (C5a), Interleukin-16 (IL-16), and secretory ICAM. C5a positive inflammatory cells present in and around the pulmonary vessels in the PAH lung could potentially be involved in pulmonary vessel remodeling. In summary, our data indicate that, in BMPR2-related PAH, macrophages with dysfunctional BMPR2 influence pulmonary vascular remodeling and phenotypic outcomes via proinflammatory cytokine production.
Collapse
Affiliation(s)
- James West
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xinping Chen
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ling Yan
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Santhi Gladson
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James Loyd
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hamid Rizwan
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Megha Talati
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
12
|
Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, Oudiz R, Satoh T, Torres F, Torbicki A. Diagnosis of pulmonary hypertension. Eur Respir J 2019; 53:1801904. [PMID: 30545972 PMCID: PMC6351333 DOI: 10.1183/13993003.01904-2018] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
A revised diagnostic algorithm provides guidelines for the diagnosis of patients with suspected pulmonary hypertension, both prior to and following referral to expert centres, and includes recommendations for expedited referral of high-risk or complicated patients and patients with confounding comorbidities. New recommendations for screening high-risk groups are given, and current diagnostic tools and emerging diagnostic technologies are reviewed.
Collapse
Affiliation(s)
- Adaani Frost
- Dept of Medicine, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - David Badesch
- Divisions of Pulmonary Sciences and Critical Care Medicine, and Cardiology, University of Colorado, Denver, CO, USA
| | - J. Simon R. Gibbs
- National Heart and Lung Institute, Imperial College of London, London, UK
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Healthcare NHS Trust and Imperial College London, Hammersmith Hospital, London, UK
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Alessandra Manes
- Cardio-Thoracic and Vascular Dept, Sant'Orsola University Hospital, Bologna, Italy
| | - Ronald Oudiz
- LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Toru Satoh
- Division of Cardiology, Kyorin University Hospital, Tokyo, Japan
| | - Fernando Torres
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Adam Torbicki
- Dept of Pulmonary Circulation and Cardidology, Medical Center for Postgraduate Education, ECZ-Otwock, Otwock, Poland
| |
Collapse
|
13
|
Identification of Novel Therapeutic Targets for Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19124081. [PMID: 30562953 PMCID: PMC6321293 DOI: 10.3390/ijms19124081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are fatal diseases; however, their pathogenesis still remains to be elucidated. We have recently screened novel pathogenic molecules and have performed drug discovery targeting those molecules. Pulmonary artery smooth muscle cells (PASMCs) in patients with PAH (PAH-PASMCs) have high proliferative properties like cancer cells, which leads to thickening and narrowing of distal pulmonary arteries. Thus, we conducted a comprehensive analysis of PAH-PASMCs and lung tissues to search for novel pathogenic proteins. We validated the pathogenic role of the selected proteins by using tissue-specific knockout mice. To confirm its clinical significance, we used patient-derived blood samples to evaluate the potential as a biomarker for diagnosis and prognosis. Finally, we conducted a high throughput screening and found inhibitors for the pathogenic proteins.
Collapse
|
14
|
Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, Oudiz R, Satoh T, Torres F, Torbicki A. Diagnosis of pulmonary hypertension. Eur Respir J 2018. [PMID: 30545972 DOI: 10.1183/13993003.01904‐2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A revised diagnostic algorithm provides guidelines for the diagnosis of patients with suspected pulmonary hypertension, both prior to and following referral to expert centres, and includes recommendations for expedited referral of high-risk or complicated patients and patients with confounding comorbidities. New recommendations for screening high-risk groups are given, and current diagnostic tools and emerging diagnostic technologies are reviewed.
Collapse
Affiliation(s)
- Adaani Frost
- Dept of Medicine, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - David Badesch
- Divisions of Pulmonary Sciences and Critical Care Medicine, and Cardiology, University of Colorado, Denver, CO, USA
| | - J Simon R Gibbs
- National Heart and Lung Institute, Imperial College of London, London, UK
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Healthcare NHS Trust and Imperial College London, Hammersmith Hospital, London, UK
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Alessandra Manes
- Cardio-Thoracic and Vascular Dept, Sant'Orsola University Hospital, Bologna, Italy
| | - Ronald Oudiz
- LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Toru Satoh
- Division of Cardiology, Kyorin University Hospital, Tokyo, Japan
| | - Fernando Torres
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Adam Torbicki
- Dept of Pulmonary Circulation and Cardidology, Medical Center for Postgraduate Education, ECZ-Otwock, Otwock, Poland
| |
Collapse
|
15
|
Abstract
: Improved survival among HIV-1-infected individuals with the advent of antiretroviral therapy has clearly led to a greater prevalence of noninfectious complications. One of the most devastating sequelae in these individuals is the development of pulmonary arterial hypertension (PAH). Various epidemiological studies suggest worse survival of HIV-PAH patients when compared with other forms of PAH. Given that only a subset and not all HIV-infected individuals develop HIV-PAH, it is suggested that an additional second-hit of genetic or environmental trigger is needed for the development of PAH. In this context, it has been well documented that HIV patients who abuse illicit drugs such as stimulants, opioids, and the like, are more susceptible to develop PAH. In this review, we highlight the studies that support the significance of a double hit of HIV and drug abuse in the incidence of PAH and focus on the research that has been undertaken to unravel the pathobiology and vascular remodeling mechanisms underlying the deleterious synergy between HIV infection and drugs of abuse in orchestrating the development of PAH.
Collapse
|
16
|
Mullin CJ, Ventetuolo CE. Nothing but a Number? Age and Precision Treatment in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2018; 198:986-988. [DOI: 10.1164/rccm.201806-1075ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Christopher J. Mullin
- Department of MedicineAlpert Medical School of Brown UniversityProvidence, Rhode Islandand
| | - Corey E. Ventetuolo
- Department of MedicineAlpert Medical School of Brown UniversityProvidence, Rhode Islandand
- Department of Health Services, Policy, & PracticeAlpert Medical School of Brown UniversityProvidence, Rhode Island
| |
Collapse
|
17
|
Pulmonary Vascular Platform Models the Effects of Flow and Pressure on Endothelial Dysfunction in BMPR2 Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19092561. [PMID: 30158434 PMCID: PMC6164056 DOI: 10.3390/ijms19092561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction is a known consequence of bone morphogenetic protein type II receptor (BMPR2) mutations seen in pulmonary arterial hypertension (PAH). However, standard 2D cell culture models fail to mimic the mechanical environment seen in the pulmonary vasculature. Hydrogels have emerged as promising platforms for 3D disease modeling due to their tunable physical and biochemical properties. In order to recreate the mechanical stimuli seen in the pulmonary vasculature, we have created a novel 3D hydrogel-based pulmonary vasculature model (“artificial arteriole”) that reproduces the pulsatile flow rates and pressures seen in the human lung. Using this platform, we studied both Bmpr2R899X and WT endothelial cells to better understand how the addition of oscillatory flow and physiological pressure influenced gene expression, cell morphology, and cell permeability. The addition of oscillatory flow and pressure resulted in several gene expression changes in both WT and Bmpr2R899X cells. However, for many pathways with relevance to PAH etiology, Bmpr2R899X cells responded differently when compared to the WT cells. Bmpr2R899X cells were also found not to elongate in the direction of flow, and instead remained stagnant in morphology despite mechanical stimuli. The increased permeability of the Bmpr2R899X layer was successfully reproduced in our artificial arteriole, with the addition of flow and pressure not leading to significant changes in permeability. Our artificial arteriole is the first to model many mechanical properties seen in the lung. Its tunability enables several new opportunities to study the endothelium in pulmonary vascular disease with increased control over environmental parameters.
Collapse
|
18
|
Halliday SJ, Xu M, Thayer TE, Mosley JD, Sheng Q, Ye F, Farber-Eger EH, Pugh ME, Robbins IR, Assad TR, West JD, Brittain EL, Hemnes AR. Clinical and genetic associations with prostacyclin response in pulmonary arterial hypertension. Pulm Circ 2018; 8:2045894018800544. [PMID: 30142026 PMCID: PMC6134494 DOI: 10.1177/2045894018800544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Parenteral prostacyclin therapy is the most efficacious pharmacologic treatment for pulmonary arterial hypertension (PAH), but clinical response is variable. We sought to identify clinical, hemodynamic, and genetic associations with response to prostacyclin therapy. We performed a retrospective analysis of patients within a de-identified electronic health record and associated DNA biobank. Patients with PAH and a right heart catheterization (RHC) in the six months before initiation of a parenteral prostacyclin were included. Responders were defined a priori by attainment of World Health Organization (WHO) functional class (FC) 2 or better at the time of repeat RHC within two years. We performed exploratory analyses to identify genomic associations with prostacyclin response. Of 129 patients identified, 54 met our criteria for “responders.” These patients were younger, more likely to be male, and were less likely to have connective tissue disease-related PAH. At follow-up, responders had improved hemodynamics, 6-min walk distance, and long-term survival. Baseline PA oxygen saturation (hazard ratio [HR] 0.568 [0.34–0.95]) and follow-up FC (HR = 2.57 [1.22–5.43]) were associated with survival. Prostacyclin responders were enriched in alleles related to cell development and circulatory system development and pathways related to aldosterone metabolism, cAMP signaling, and vascular smooth muscle contraction (P < 0.001). Age at treatment initiation, WHO FC at short-term follow-up, and PA O2% are associated with survival in patients with PAH exposed to parenteral prostacyclins. Exploratory genetic analysis yielded associations in biologically relevant pathways in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Stephen J Halliday
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meng Xu
- 2 Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy E Thayer
- 3 Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan D Mosley
- 4 Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- 5 Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fei Ye
- 2 Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric H Farber-Eger
- 6 Center for Translational and Clinical Cardiovascular Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith E Pugh
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivan R Robbins
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tufik R Assad
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James D West
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan L Brittain
- 3 Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,6 Center for Translational and Clinical Cardiovascular Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna R Hemnes
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Kikuchi N, Satoh K, Kurosawa R, Yaoita N, Elias-Al-Mamun M, Siddique MAH, Omura J, Satoh T, Nogi M, Sunamura S, Miyata S, Saito Y, Hoshikawa Y, Okada Y, Shimokawa H. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension: Possible Novel Therapeutic Target. Circulation 2018; 138:600-623. [PMID: 29636330 DOI: 10.1161/circulationaha.117.033113] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/28/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) are key mechanisms of pulmonary arterial hypertension (PAH). Despite the multiple combination therapy, a considerable number of patients develop severe pulmonary hypertension (PH) because of the lack of diagnostic biomarker and antiproliferative therapies for PASMCs. METHODS Microarray analyses were used to identify a novel therapeutic target for PAH. In vitro experiments, including lung and serum samples from patients with PAH, cultured PAH-PASMCs, and high-throughput screening of 3336 low-molecular-weight compounds, were used for mechanistic study and exploring a novel therapeutic agent. Five genetically modified mouse strains, including PASMC-specific selenoprotein P (SeP) knockout mice and PH model rats, were used to study the role of SeP and therapeutic capacity of the compounds for the development of PH in vivo. RESULTS Microarray analysis revealed a 32-fold increase in SeP in PAH-PASMCs compared with control PASMCs. SeP is a widely expressed extracellular protein maintaining cellular metabolism. Immunoreactivity of SeP was enhanced in the thickened media of pulmonary arteries in PAH. Serum SeP levels were also elevated in patients with PH compared with controls, and high serum SeP predicted poor outcome. SeP-knockout mice ( SeP-/-) exposed to chronic hypoxia showed significantly reduced right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary artery remodeling compared with controls. In contrast, systemic SeP-overexpressing mice showed exacerbation of hypoxia-induced PH. Furthermore, PASMC-specific SeP-/- mice showed reduced hypoxia-induced PH compared with controls, whereas neither liver-specific SeP knockout nor liver-specific SeP-overexpressing mice showed significant differences with controls. Altogether, protein levels of SeP in the lungs were associated with the development of PH. Mechanistic experiments demonstrated that SeP promotes PASMC proliferation and resistance to apoptosis through increased oxidative stress and mitochondrial dysfunction, which were associated with activated hypoxia-inducible factor-1α and dysregulated glutathione metabolism. It is important to note that the high-throughput screening of 3336 compounds identified that sanguinarine, a plant alkaloid with antiproliferative effects, reduced SeP expression and proliferation in PASMCs and ameliorated PH in mice and rats. CONCLUSIONS These results indicate that SeP promotes the development of PH, suggesting that it is a novel biomarker and therapeutic target of the disorder.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Apoptosis
- Arterial Pressure/drug effects
- Benzophenanthridines/pharmacology
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypoxia/complications
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Isoquinolines/pharmacology
- Male
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidative Stress
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats, Sprague-Dawley
- Selenoprotein P/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Nobuhiro Kikuchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
- Research Fellow of Japan Society for the Promotion of Science, Tokyo (N.K., R.K.)
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
- Research Fellow of Japan Society for the Promotion of Science, Tokyo (N.K., R.K.)
| | - Nobuhiro Yaoita
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Md Elias-Al-Mamun
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Mohammad Abdul Hai Siddique
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Junichi Omura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Taijyu Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Masamichi Nogi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Shinichiro Sunamura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan (Y.S.)
| | - Yasushi Hoshikawa
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (Y.H., Y.O.)
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (Y.H., Y.O.)
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| |
Collapse
|
20
|
Elinoff JM, Agarwal R, Barnett CF, Benza RL, Cuttica MJ, Gharib AM, Gray MP, Hassoun PM, Hemnes AR, Humbert M, Kolb TM, Lahm T, Leopold JA, Mathai SC, McLaughlin VV, Preston IR, Rosenzweig EB, Shlobin OA, Steen VD, Zamanian RT, Solomon MA. Challenges in Pulmonary Hypertension: Controversies in Treating the Tip of the Iceberg. A Joint National Institutes of Health Clinical Center and Pulmonary Hypertension Association Symposium Report. Am J Respir Crit Care Med 2018; 198:166-174. [PMID: 29425462 PMCID: PMC6058980 DOI: 10.1164/rccm.201710-2093pp] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/09/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Richa Agarwal
- Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | | | - Raymond L. Benza
- Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Michael J. Cuttica
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ahmed M. Gharib
- National Institute of Diabetes, Digestive, and Kidney Diseases, and
| | | | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marc Humbert
- Service de Pneumologie, Hôpital Bicêtre (Assistance Publique–Hôpitaux de Paris), Institut National de la Santé et de la Recherche Médicale U999, University Paris–Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Todd M. Kolb
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Tim Lahm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Jane A. Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen C. Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Vallerie V. McLaughlin
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ioana R. Preston
- Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | | | - Oksana A. Shlobin
- Pulmonary Vascular Disease Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - Virginia D. Steen
- Rheumatology Division, Department of Medicine, Georgetown University, Washington, DC; and
| | | | | |
Collapse
|
21
|
Savale L, Guignabert C, Weatherald J, Humbert M. Precision medicine and personalising therapy in pulmonary hypertension: seeing the light from the dawn of a new era. Eur Respir Rev 2018; 27:27/148/180004. [PMID: 29653948 PMCID: PMC9488842 DOI: 10.1183/16000617.0004-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH) include different cardiopulmonary disorders in which the interaction of multiple genes with environmental and behavioural factors modulates the onset and the progression of these severe conditions. Although the development of therapeutic agents that modulate abnormalities in three major pathobiological pathways for PAH has revolutionised our approach to the treatment of PAH, the long-term survival rate remains unsatisfactory. Accumulating evidence has underlined that clinical outcomes and responses to therapy in PAH are modified by multiple factors, including genetic variations, which will be different for each individual. Since precision medicine, also known as stratified medicine or personalised medicine, aims to better target intervention to the individual while maximising benefit and minimising harm, it has significant potential advantages. This article aims to assemble and discuss the different initiatives that are currently underway in the PH/PAH fields together with the opportunities and prospects for their use in the near future. Development of precision medicine strategies will be the next frontier in the evolution of PAH treatmenthttp://ow.ly/8T8730j7e36
Collapse
|
22
|
Gladwin MT. Translational Advances in the Field of Pulmonary Hypertension Bench to Bedside: How Fundamental Discoveries in Science Are Advancing Our Understanding and Therapy of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 195:1-3. [PMID: 28035850 DOI: 10.1164/rccm.201608-1637ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark T Gladwin
- 1 Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute University of Pittsburgh and University of Pittsburgh Medical Center Pittsburgh, Pennsylvania.,2 Division of Pulmonary, Allergy, and Critical Care Medicine and.,3 Department of Medicine University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Maron BA, Abman SH. Translational Advances in the Field of Pulmonary Hypertension. Focusing on Developmental Origins and Disease Inception for the Prevention of Pulmonary Hypertension. Am J Respir Crit Care Med 2017; 195:292-301. [PMID: 27854133 DOI: 10.1164/rccm.201604-0882pp] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bradley A Maron
- 1 Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,2 Department of Cardiology, Boston VA Healthcare System, Boston, Massachusetts; and
| | - Steven H Abman
- 3 Section of Pulmonary Medicine and.,4 Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Denver Anschutz Medical Center and Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
24
|
Talwar A, Garcia JGN, Tsai H, Moreno M, Lahm T, Zamanian RT, Machado R, Kawut SM, Selej M, Mathai S, D'Anna LH, Sahni S, Rodriquez EJ, Channick R, Fagan K, Gray M, Armstrong J, Rodriguez Lopez J, de Jesus Perez V. Health Disparities in Patients with Pulmonary Arterial Hypertension: A Blueprint for Action. An Official American Thoracic Society Statement. Am J Respir Crit Care Med 2017; 196:e32-e47. [PMID: 29028375 DOI: 10.1164/rccm.201709-1821st] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Health disparities have a major impact in the quality of life and clinical care received by minorities in the United States. Pulmonary arterial hypertension (PAH) is a rare cardiopulmonary disorder that affects children and adults and that, if untreated, results in premature death. The impact of health disparities in the diagnosis, treatment, and clinical outcome of patients with PAH has not been systematically investigated. OBJECTIVES The specific goals of this research statement were to conduct a critical review of the literature concerning health disparities in PAH, identify major research gaps and prioritize direction for future research. METHODS Literature searches from multiple reference databases were performed using medical subject headings and text words for pulmonary hypertension and health disparities. Members of the committee discussed the evidence and provided recommendations for future research. RESULTS Few studies were found discussing the impact of health disparities in PAH. Using recent research statements focused on health disparities, the group identified six major study topics that would help address the contribution of health disparities to PAH. Representative studies in each topic were discussed and specific recommendations were made by the group concerning the most urgent questions to address in future research studies. CONCLUSIONS At present, there are few studies that address health disparities in PAH. Given the potential adverse impact of health disparities, we recommend that research efforts be undertaken to address the topics discussed in the document. Awareness of health disparities will likely improve advocacy efforts, public health policy and the quality of care of vulnerable populations with PAH.
Collapse
|
25
|
Medrek SK, Sahay S. Ethnicity in Pulmonary Arterial Hypertension: Possibilities for Novel Phenotypes in the Age of Personalized Medicine. Chest 2017; 153:310-320. [PMID: 28887060 DOI: 10.1016/j.chest.2017.08.1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022] Open
Abstract
In the past decade and a half, the introduction of new therapeutic agents has revolutionized the management of pulmonary arterial hypertension (PAH). These new treatment options have improved the quality of life and survival in PAH. With an armamentarium of options available, the identification of unique phenotypes can help practitioners choose tailored treatment regimens. Experts in other cardiovascular diseases, such as congestive heart failure and hypertension, have recommended race-specific treatments in their fields based on data highlighting variations in response to therapies. With this perspective, we review evidence supporting the hypothesis that ethnicity or race plays an important role in the management of PAH. Preliminary research suggests that races/ethnicities have differences in the presentation and outcome of PAH and could respond to PAH-specific medications with varying efficacy. Genetic, physiological, and anatomic differences exist between races, particularly regarding the structure and function of the right ventricle. Unfortunately, clinical trials have not adequately included minorities, and registry data often omit inclusion of this demographic information. Further studies are needed to characterize the role that ethnicity plays in the prevalence, presentation, outcomes, and optimal treatment of PAH.
Collapse
Affiliation(s)
- Sarah K Medrek
- Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX
| | - Sandeep Sahay
- Department of Medicine, Weill Cornell Medical College and Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX.
| |
Collapse
|
26
|
Ghataorhe P, Rhodes CJ, Harbaum L, Attard M, Wharton J, Wilkins MR. Pulmonary arterial hypertension - progress in understanding the disease and prioritizing strategies for drug development. J Intern Med 2017; 282:129-141. [PMID: 28524624 DOI: 10.1111/joim.12623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH), at one time a largely overlooked disease, is now the subject of intense study in many academic and biotech groups. The availability of new treatments has increased awareness of the condition. This in turn has driven a change in the demographics of PAH, with an increase in the mean age at diagnosis. The diagnosis of PAH in more elderly patients has highlighted the need for careful phenotyping of patients and for further studies to understand how best to manage pulmonary hypertension associated with, for example, left heart disease. The breadth and depth of expertise focused on unravelling the molecular pathology of PAH has yielded novel insights, including the role of growth factors, inflammation and metabolic remodelling. The description of the genetic architecture of PAH is accelerating in parallel, with novel variants, such as those reported in potassium two-pore domain channel subfamily K member 3 (KCNK3), adding to the list of more established mutations in genes associated with bone morphogenetic protein receptor type 2 (BMPR2) signalling. These insights have supported a paradigm shift in treatment strategies away from simply addressing the imbalance of vasoactive mediators observed in PAH towards tackling more directly the structural remodelling of the pulmonary vasculature. Here, we summarize the changing clinical and molecular landscape of PAH. We highlight novel drug therapies that are in various stages of clinical development, targeting for example cell proliferation, metabolic, inflammatory/immune and BMPR2 dysfunction, and the challenges around developing these treatments. We argue that advances in the treatment of PAH will come through deep molecular phenotyping with the integration of clinical, genomic, transcriptomic, proteomic and metabolomic information in large populations of patients through international collaboration. This approach provides the best opportunity for identifying key signalling pathways, both as potential drug targets and as biomarkers for patient selection. The expectation is that together these will enable the prioritization of potential therapies in development and the evolution of personalized medicine for PAH.
Collapse
Affiliation(s)
- P Ghataorhe
- Department of Medicine, Imperial College London, London, UK
| | - C J Rhodes
- Department of Medicine, Imperial College London, London, UK
| | - L Harbaum
- Department of Medicine, Imperial College London, London, UK
| | - M Attard
- Department of Medicine, Imperial College London, London, UK
| | - J Wharton
- Department of Medicine, Imperial College London, London, UK
| | - M R Wilkins
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
27
|
Marshall JD, Sauler M, Tonelli A, Rao Y, Bucala R, Lee PJ, Fares WH. Complexity of macrophage migration inhibitory factor (MIF) and other angiogenic biomarkers profiling in pulmonary arterial hypertension. Pulm Circ 2017; 7:730-733. [PMID: 28714356 PMCID: PMC5841895 DOI: 10.1177/2045893217724141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) and 22 a priori selected biomarkers were measured from pulmonary arterial hypertension (PAH) patients. Significant positive correlations were found between MIF and several angiogenic factors suggesting a possible MIF regulation role in PAH angiogenesis and pathobiology, but simultaneously highlighting the biomarkers profiling complexity in PAH.
Collapse
Affiliation(s)
- Jeffrey D Marshall
- 1 Yale University School of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, New Haven, CT, USA
| | - Maor Sauler
- 1 Yale University School of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, New Haven, CT, USA
| | - Adriano Tonelli
- 2 Cleveland Clinic, Department of Pulmonary and Critical Care, Cleveland, OH, USA
| | - Youlan Rao
- 3 United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Richard Bucala
- 4 Yale University School of Medicine, Section of Rheumatology, New Haven, CT, USA
| | - Patty J Lee
- 1 Yale University School of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, New Haven, CT, USA
| | - Wassim H Fares
- 1 Yale University School of Medicine, Section of Pulmonary, Critical Care, & Sleep Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Newman JH, Rich S, Abman SH, Alexander JH, Barnard J, Beck GJ, Benza RL, Bull TM, Chan SY, Chun HJ, Doogan D, Dupuis J, Erzurum SC, Frantz RP, Geraci M, Gillies H, Gladwin M, Gray MP, Hemnes AR, Herbst RS, Hernandez AF, Hill NS, Horn EM, Hunter K, Jing ZC, Johns R, Kaul S, Kawut SM, Lahm T, Leopold JA, Lewis GD, Mathai SC, McLaughlin VV, Michelakis ED, Nathan SD, Nichols W, Page G, Rabinovitch M, Rich J, Rischard F, Rounds S, Shah SJ, Tapson VF, Lowy N, Stockbridge N, Weinmann G, Xiao L. Enhancing Insights into Pulmonary Vascular Disease through a Precision Medicine Approach. A Joint NHLBI-Cardiovascular Medical Research and Education Fund Workshop Report. Am J Respir Crit Care Med 2017; 195:1661-1670. [PMID: 28430547 PMCID: PMC5476915 DOI: 10.1164/rccm.201701-0150ws] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The Division of Lung Diseases of the NHLBI and the Cardiovascular Medical Education and Research Fund held a workshop to discuss how to leverage the anticipated scientific output from the recently launched "Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics" (PVDOMICS) program to develop newer approaches to pulmonary vascular disease. PVDOMICS is a collaborative, protocol-driven network to analyze all patient populations with pulmonary hypertension to define novel pulmonary vascular disease (PVD) phenotypes. Stakeholders, including basic, translational, and clinical investigators; clinicians; patient advocacy organizations; regulatory agencies; and pharmaceutical industry experts, joined to discuss the application of precision medicine to PVD clinical trials. Recommendations were generated for discussion of research priorities in line with NHLBI Strategic Vision Goals that include: (1) A national effort, involving all the stakeholders, should seek to coordinate biosamples and biodata from all funded programs to a web-based repository so that information can be shared and correlated with other research projects. Example programs sponsored by NHLBI include PVDOMICS, Pulmonary Hypertension Breakthrough Initiative, the National Biological Sample and Data Repository for PAH, and the National Precision Medicine Initiative. (2) A task force to develop a master clinical trials protocol for PVD to apply precision medicine principles to future clinical trials. Specific features include: (a) adoption of smaller clinical trials that incorporate biomarker-guided enrichment strategies, using adaptive and innovative statistical designs; and (b) development of newer endpoints that reflect well-defined and clinically meaningful changes. (3) Development of updated and systematic variables in imaging, hemodynamic, cellular, genomic, and metabolic tests that will help precisely identify individual and shared features of PVD and serve as the basis of novel phenotypes for therapeutic interventions.
Collapse
Affiliation(s)
- John H. Newman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Stuart Rich
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Steven H. Abman
- Pediatric Heart and Lung Center, University of Colorado, Aurora, Colorado
| | | | | | | | - Raymond L. Benza
- Department of Cardiovascular Disease, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Todd M. Bull
- Division of Pulmonary and Critical Care Medicine and
| | - Stephen Y. Chan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Jocelyn Dupuis
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Serpil C. Erzurum
- Department of Pathobiology, and
- Department of Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Mark Geraci
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Hunter Gillies
- Independent Consultant and Pharmaceutical Physician, Half Moon Bay, California
| | - Mark Gladwin
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt Medical Center, Nashville, Tennessee
| | - Roy S. Herbst
- Division of Medical Oncology, Department of Medicine, Yale University, New Haven, Connecticut
| | | | - Nicholas S. Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts University, Boston, Massachusetts
| | - Evelyn M. Horn
- Division of Cardiology, Cornell University, New York, New York
| | - Kendall Hunter
- College of Engineering and Applied Science, University of Colorado, Denver, Colorado
| | - Zhi-Cheng Jing
- FuWai Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Roger Johns
- Department of Anesthesiology and Critical Care and
| | | | - Steven M. Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tim Lahm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Jane A. Leopold
- Division of Cardiology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Greg D. Lewis
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen C. Mathai
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Vallerie V. McLaughlin
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Steven D. Nathan
- Advanced Lung Disease Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - William Nichols
- Department of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | | | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, California
| | - Jonathan Rich
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Franz Rischard
- Division of Cardiology, University of Arizona, Tucson, Arizona
| | - Sharon Rounds
- Department of Medicine and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Victor F. Tapson
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Naomi Lowy
- Division of Cardiovascular and Renal Products, Food and Drug Administration, Office of Drug Evaluation I, Office of New Drugs, Food and Drug Administration Silver Spring, Maryland; and
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Food and Drug Administration, Office of Drug Evaluation I, Office of New Drugs, Food and Drug Administration Silver Spring, Maryland; and
| | - Gail Weinmann
- Division of Lung Diseases, NHLBI, National Institutes of Health, Bethesda, Maryland
| | - Lei Xiao
- Division of Lung Diseases, NHLBI, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Nicolls MR, Voelkel NF. The Roles of Immunity in the Prevention and Evolution of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 195:1292-1299. [PMID: 27786553 PMCID: PMC5443903 DOI: 10.1164/rccm.201608-1630pp] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark R. Nicolls
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Palo Alto/Stanford University, Palo Alto, California; and
| | - Norbert F. Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
30
|
Interleukin-6 -572C/G polymorphism is associated with serum interleukin-6 levels and risk of idiopathic pulmonary arterial hypertension. ACTA ACUST UNITED AC 2017; 11:171-177. [DOI: 10.1016/j.jash.2017.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
|
31
|
Hayabuchi Y. The Action of Smooth Muscle Cell Potassium Channels in the Pathology of Pulmonary Arterial Hypertension. Pediatr Cardiol 2017; 38:1-14. [PMID: 27826710 DOI: 10.1007/s00246-016-1491-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
Many different types of potassium channels with various functions exist in pulmonary artery smooth muscle cells, contributing to many physiological actions and pathological conditions. The deep involvement of these channels in the onset and exacerbation of pulmonary arterial hypertension (PAH) also continues to be revealed. In 2013, KCNK3 (TASK1), which encodes a type of two-pore domain potassium channel, was shown to be a predisposing gene for PAH by genetic mutation, and it was added to the PAH classification at the Fifth World Symposium on Pulmonary Hypertension (Nice International Conference). Decreased expression and inhibited activity of voltage-gated potassium channels, particularly KCNA5 (Kv1.5), are also seen in PAH, regardless of the cause, and facilitation of pulmonary arterial contraction and vascular remodeling has been shown. The calcium-activated potassium channels seen in smooth muscle cells also change from BKca (Kca1.1) to IKca (Kca3.1) predominance in PAH due to transformation and have effects including the facilitation of smooth muscle cell migration, enhancement of proliferation, and inhibition of apoptosis. Elucidation of these roles for potassium channels in pulmonary vasoconstriction and remodeling may help bring new therapeutic strategies into view.
Collapse
Affiliation(s)
- Yasunobu Hayabuchi
- Department of Pediatrics, Tokushima University, Kuramoto-cho-3, Tokushima, 770-8503, Japan.
| |
Collapse
|
32
|
Abman SH, Ivy DD, Archer SL, Wilson K. Executive Summary of the American Heart Association and American Thoracic Society Joint Guidelines for Pediatric Pulmonary Hypertension. Am J Respir Crit Care Med 2016; 194:898-906. [PMID: 27689707 DOI: 10.1164/rccm.201606-1183st] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although pulmonary hypertension (PH) contributes significantly to poor outcomes in diverse pediatric diseases, approaches toward the care of children with PH have been limited by the lack of consensus guidelines from experts in the field. In a joint effort from the American Heart Association and American Thoracic Society, a committee of experienced clinicians was formed to systematically identify, synthesize, and appraise relevant evidence and then to formulate evidence-based recommendations regarding the diagnosis and management of pediatric PH. This brief report is an executive summary of the officially approved guidelines developed by the committee, highlighting a few key recommendations regarding the care of children with PH. Guidelines and the rationale for grading the strength of each recommendation are included in the online supplement.
Collapse
Affiliation(s)
- Steven H Abman
- 1 Department of Pediatrics, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - D Dunbar Ivy
- 1 Department of Pediatrics, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Stephen L Archer
- 2 Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Kevin Wilson
- 3 American Thoracic Society, New York, New York; and.,4 The Pulmonary Center, Boston University Medical Center, Boston, Massachusetts
| | | |
Collapse
|
33
|
Nayak L, Ray I, De RK. Precision medicine with electronic medical records: from the patients and for the patients. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S61. [PMID: 27868029 PMCID: PMC5104599 DOI: 10.21037/atm.2016.10.40] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Losiana Nayak
- Machine Intelligence Unit, Indian Statistical Institute, 203 Barackpore Trunk Road, Kolkata 700108, West Bengal, India
| | - Indrani Ray
- Machine Intelligence Unit, Indian Statistical Institute, 203 Barackpore Trunk Road, Kolkata 700108, West Bengal, India
| | - Rajat K De
- Machine Intelligence Unit, Indian Statistical Institute, 203 Barackpore Trunk Road, Kolkata 700108, West Bengal, India
| |
Collapse
|