1
|
Safi S, Krzykalla J, Hoffmann H, Benner A, Bischoff H, Eichhorn M, Kriegsmann M, Poschke I, Stögbauer F, Umansky L, Mogler C, Weichert W, Winter H, Beckhove P, Muley T. Low tumor interleukin-1β expression predicts a limited effect of adjuvant platinum-based chemotherapy for patients with completely resected lung adenocarcinoma: An identification and validation study. Pulmonology 2025; 31:2416803. [PMID: 38614857 DOI: 10.1016/j.pulmoe.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES Adjuvant platinum-based chemotherapy for completely resected non-small cell lung cancer is associated with modest improvement in survival; nevertheless, no validated biomarker exists for predicting the benefit or harm of adjuvant platinum-based chemotherapy. MATERIALS AND METHODS We simultaneously measured 27 cytokines in operative tumor specimens from a discovery cohort (n = 97) by multiplex immunoassay; half of the patients received adjuvant platinum-based chemotherapy, and the other half were observed. We tested possible prognostic and predictive factors in multivariate Cox models for overall survival (OS) and relapse-free survival (RFS), and a tree-based method was applied to detect predictive factors with respect to RFS. The results were validated in an independent validation cohort (n = 93). RESULTS Fifty-two of 97 (54 %) patients in the discovery cohort and 50 of 93 (54 %) in the validation cohort received adjuvant chemotherapy; forty-four (85 %) patients in the discovery cohort and 37 (74 %) in the validation cohort received four cycles as planned. In patients with low IL-1β-expressing tumors, RFS and OS were worse after adjuvant chemotherapy than after observation. The limited effect of adjuvant chemotherapy for patients with low IL-1β-expressing tumors was confirmed in the validation cohort. Additionally, RFS and OS were prolonged by adjuvant chemotherapy only in patients with high IL-1β-expressing tumors in the validation cohort. CONCLUSIONS This study identified and validated low tumor IL-1β expression as a potential biomarker of a limited response to adjuvant platinum-based chemotherapy after complete resection of pulmonary adenocarcinoma. This finding has the potential to inform adjuvant treatment decisions.
Collapse
Affiliation(s)
- S Safi
- Division of Thoracic Surgery, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - J Krzykalla
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - H Hoffmann
- Division of Thoracic Surgery, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - A Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - H Bischoff
- Department of Thoracic Oncology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - M Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - M Kriegsmann
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - I Poschke
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
| | - F Stögbauer
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - L Umansky
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | - C Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - W Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - H Winter
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - P Beckhove
- Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - T Muley
- Translational Research Unit, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Chen N, Zhang T, Yang X, Wang D, Yu S. Myeloid cells in the microenvironment of brain metastases. Biochim Biophys Acta Rev Cancer 2025; 1880:189311. [PMID: 40189115 DOI: 10.1016/j.bbcan.2025.189311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Brain metastasis (BrM) from peripheral solid tumors has a high mortality rate and remains a daunting clinical challenge. In addition to the targeting of tumor cells, studies have focused on the regulation of the tumor microenvironment (TME) for BrM treatment. Here, through a review of recent studies, we revealed that myeloid infiltration is a common feature of the TME in BrMs from different primary sites even though the brain is regarded as an immune-privileged site and is always in an immunosuppressive state. Tumor-educated bone marrow progenitors, especially mesenchymal stem cells (MSCs), may impact the brain tropism and and phenotypic switching of myeloid cells. Additionally, chronic inflammation may be key factors regulating the immunosuppressive TME and myeloid cell reprogramming. Here, the role of myeloid cells in the formation of the TME and strategies for targeting these cells before and after BrM are reviewed, emphasizing the potential for the use of myeloid cells in BrM treatment. However, the direct relationship between the neuronal system and myeloid cell filtration is still unclear and worthy of further study.
Collapse
Affiliation(s)
- Nian Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Tao Zhang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Xianyan Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China
| | - Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China; Jin-Feng Laboratory, ChongQing 401329, China.
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing 400038, China.; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, ChongQing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing 400038, China; Jin-Feng Laboratory, ChongQing 401329, China.
| |
Collapse
|
3
|
Piqueras-Nebot M, Benet M, Estors M, Cremades A, Juan-Vidal Ó, Carretero J, Galbis-Caravajal JM, Lahoz A. A novel method for isolation of tumor infiltrating myeloid-derived suppressor cells from human lung tumor tissue. Sci Rep 2025; 15:15175. [PMID: 40307421 PMCID: PMC12044027 DOI: 10.1038/s41598-025-99877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
The tumor microenvironment comprises different cell subsets including myeloid-derived suppressor cells, which exert intratumoral immunosuppression and favor cancer progression. Isolating tumor-infiltrating myeloid-derived suppressor cells (tMDSCs) from human tumor samples remains a challenge. Current methods such as magnetic bead sorting (MACS) or flow cytometry sorting (FACS) present some drawbacks in terms of purity and viability. Here, we have setup an innovative workflow that combines RosetteSep technology and MACS for isolation of tMDSCs from lung cancer biopsies. To evaluate our Rosette-MACS approach, we compared its performance with MACS and FACS. The isolated cells were characterized by flow cytometry, gene expression analysis and proliferation assays for comparison purposes. The results showed that the Rosette-MACS protocol had the highest yield and purity of tMDSCs (79.64% vs 13.30% with FACS and 0.39% with MACS). Furthermore, the functionality of the isolated tMDSCs was tested not only by upregulation of immunosuppressive genes (e.g. ARG1, IDO1, or PD-L1), but also by their capacity to inhibit CD8+ T cells proliferation. The combined use of RosetteSep and MACS provides an improved approach for the isolation of functional tMDSCs, which delineates a suitable experimental framework to selectively study the molecular mechanisms underpinning tMDSCs-derived immunosuppression in the TME.
Collapse
Affiliation(s)
- Marta Piqueras-Nebot
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
| | - Marta Benet
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
| | - Miriam Estors
- Thoracic Surgery Service, Hospital Universitario de La Ribera, Valencia, Spain
| | - Antonio Cremades
- Pathological Anatomy Service, Hospital Universitario de La Ribera, Valencia, Spain
| | - Óscar Juan-Vidal
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
- Medical Oncology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| |
Collapse
|
4
|
Jackson LR, Erickson A, Camphausen K, Krauze AV. Understanding the Immune System and Biospecimen-Based Response in Glioblastoma: A Practical Guide to Utilizing Signal Redundancy for Biomarker and Immune Signature Discovery. Curr Oncol 2024; 32:16. [PMID: 39851932 PMCID: PMC11763554 DOI: 10.3390/curroncol32010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
Glioblastoma (GBM) is a primary central nervous system malignancy with a median survival of 15-20 months. The presence of both intra- and intertumoral heterogeneity limits understanding of biological mechanisms leading to tumor resistance, including immune escape. An attractive field of research to examine treatment resistance are immune signatures composed of cluster of differentiation (CD) markers and cytokines. CD markers are surface markers expressed on various cells throughout the body, often associated with immune cells. Cytokines are the effector molecules of the immune system. Together, CD markers and cytokines can serve as useful biomarkers to reflect immune status in patients with GBM. However, there are gaps in the understanding of the intricate interactions between GBM and the peripheral immune system and how these interactions change with standard and immune-modulating treatments. The key to understanding the true nature of these interactions is through multi-omic analysis of tumor progression and treatment response. This review aims to identify potential non-invasive blood-based biomarkers that can contribute to an immune signature through multi-omic approaches, leading to a better understanding of immune involvement in GBM.
Collapse
Affiliation(s)
| | | | | | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (L.R.J.); (A.E.); (K.C.)
| |
Collapse
|
5
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
6
|
Yue Y, Ren Z, Wang Y, Liu Y, Yang X, Wang T, Bai Y, Zhou H, Chen Q, Li S, Zhang Y. Impact of Microparticle Transarterial Chemoembolization (mTACE) on myeloid-derived suppressor cell subtypes in hepatocellular carcinoma: Clinical correlations and therapeutic implications. Immun Inflamm Dis 2024; 12:e70007. [PMID: 39222024 PMCID: PMC11367920 DOI: 10.1002/iid3.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) play a pivotal role in immunosuppression and tumor progression in hepatocellular carcinoma (HCC). While various treatments like surgical resection, ablation, and radiotherapy have been studied for their effects on circulating MDSC frequencies in HCC patients, the findings remain inconclusive. Transarterial Chemoembolization (TACE) stands as the standard care for unresectable HCC, with Microparticle TACE (mTACE) gaining prominence for its capacity to induce significant tumor necrosis. However, the immunological ramifications of such pathological outcomes are scarcely reported. METHODS AND RESULTS This study aims to elucidate the alterations in MDSC subtypes, specifically monocytic MDSCs (mMDSCs) and early-stage MDSCs (eMDSCs), post-mTACE and to investigate their clinical correlations in HCC patients. A cohort comprising 75 HCC patients, 16 liver cirrhosis patients, and 20 healthy controls (HC) was studied. Peripheral blood samples were collected and analyzed for MDSC subtypes. The study also explored the associations between MDSC frequencies and various clinical parameters in HCC patients. The frequency of mMDSCs was significantly elevated in the HCC group compared to liver cirrhosis and HC. Importantly, mMDSC levels were strongly correlated with aggressive clinical features of HCC, including tumor size, vascular invasion, and distant metastasis. Post-mTACE, a marked reduction in mMDSC frequencies was observed, while eMDSC levels remained stable. CONCLUSIONS Our findings underscore the critical role of mMDSCs in HCC pathogenesis and their potential as a therapeutic target. The study also highlights the efficacy of mTACE in modulating the immunosuppressive tumor microenvironment, thereby opening new avenues for combinatorial immunotherapeutic strategies in HCC management.
Collapse
Affiliation(s)
- Yuanxun Yue
- Department of Interventional and Pain, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Zhizhong Ren
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | - Yaqin Wang
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | - Ying Liu
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | - Xiaowei Yang
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | - Tianxiao Wang
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| | | | - He Zhou
- Shanghai Dengding BioAI Co.ShanghaiChina
| | | | - Sujun Li
- Translational Medicine Institute of Jiangxi, The First Affiliated Hospital of Nanchang UniversityNanchangChina
- JiangXi Key Laboratory of Transfusion MedicineNanchangChina
| | - Yuewei Zhang
- Hepatobiliary Interventional DepartmentBeijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua UniversityBeijingChina
| |
Collapse
|
7
|
Miao S, Rodriguez BL, Gibbons DL. The Multifaceted Role of Neutrophils in NSCLC in the Era of Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:2507. [PMID: 39061147 PMCID: PMC11274601 DOI: 10.3390/cancers16142507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer is the most common cause of cancer-related death in both males and females in the U.S. and non-small-cell lung cancer (NSCLC) accounts for 85%. Although the use of first- or second-line immune checkpoint inhibitors (ICIs) exhibits remarkable clinical benefits, resistance to ICIs develops over time and dampens the efficacy of ICIs in patients. Tumor-associated neutrophils (TANs) have an important role in modulating the tumor microenvironment (TME) and tumor immune response. The major challenge in the field is to characterize the TANs in NSCLC TME and understand the link between TAN-related immunosuppression with ICI treatment response. In this review, we summarize the current studies of neutrophil interaction with malignant cells, T-cells, and other components in the TME. Ongoing clinical trials are aimed at utilizing reagents that have putative effects on tumor-associated neutrophils, in combination with ICI. Elevated neutrophil populations and neutrophil-associated factors could be potential therapeutic targets to enhance anti-PD1 treatment in NSCLC.
Collapse
Affiliation(s)
- Shucheng Miao
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bertha Leticia Rodriguez
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
| | - Don L. Gibbons
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Li Y, Tuerxun H, Zhao Y, Liu X, Li X, Wen S, Zhao Y. The new era of lung cancer therapy: Combining immunotherapy with ferroptosis. Crit Rev Oncol Hematol 2024; 198:104359. [PMID: 38615871 DOI: 10.1016/j.critrevonc.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Ferroptosis is an unconventional programmed cell death mode caused by phospholipid peroxidation dependent on iron. Emerging immunotherapies (especially immune checkpoint inhibitors) have the potential to enhance lung cancer patients' long-term survival. Although immunotherapy has yielded significant positive applications in some patients, there are still many mechanisms that can cause lung cancer cells to evade immunity, thus leading to the failure of targeted therapies. Immune-tolerant cancer cells are insensitive to conventional death pathways such as apoptosis and necrosis, whereas mesenchymal and metastasis-prone cancer cells are particularly vulnerable to ferroptosis, which plays a vital role in mediating immune tolerance resistance by tumors and immune cells. As a result, triggering lung cancer cell ferroptosis holds significant therapeutic potential for drug-resistant malignancies. Here, we summarize the mechanisms underlying the suppression of ferroptosis in lung cancer, highlight its function in the lung cancer immune microenvironment, and propose possible therapeutic strategies.
Collapse
Affiliation(s)
- Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xi Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
9
|
Tamberi L, Belloni A, Pugnaloni A, Rippo MR, Olivieri F, Procopio AD, Bronte G. The Influence of Myeloid-Derived Suppressor Cell Expansion in Neuroinflammation and Neurodegenerative Diseases. Cells 2024; 13:643. [PMID: 38607083 PMCID: PMC11011419 DOI: 10.3390/cells13070643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.
Collapse
Affiliation(s)
- Lorenza Tamberi
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| |
Collapse
|
10
|
Gelibter A, Asquino A, Strigari L, Zizzari IG, Tuosto L, Scirocchi F, Pace A, Siringo M, Tramontano E, Bianchini S, Bellati F, Botticelli A, Paoli D, Santini D, Nuti M, Rughetti A, Napoletano C. CD137 + and regulatory T cells as independent prognostic factors of survival in advanced non-oncogene addicted NSCLC patients treated with immunotherapy as first-line. J Transl Med 2024; 22:329. [PMID: 38570798 PMCID: PMC10993529 DOI: 10.1186/s12967-024-05142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), administered alone or combined with chemotherapy, are the standard of care in advanced non-oncogene addicted Non-Small Cell Lung Cancer (NSCLC). Despite these treatments' success, most long-term survival benefit is restricted to approximately 20% of patients, highlighting the need to identify novel biomarkers to optimize treatment strategies. In several solid tumors, immune soluble factors, the activatory CD137+ Tcells, and the immunosuppressive cell subsets Tregs and MDSCs (PMN(Lox1+)-MDSC and M-MDSCs) correlated with responses to ICIs and clinical outcomes thus becoming appealing predictive and prognostic factors. This study investigated the role of distinct CD137+ Tcell subsets, Tregs, MDSCs, and immune-soluble factors in NSCLC patients as possible biomarkers. METHODS The levels of T cells, MDSCs and soluble factors were evaluated in 89 metastatic NSCLC patients who underwent ICIs as first- or second-line treatment. T cell analysis was performed by cytoflurimetry evaluating Tregs and different CD137+ Tcell subsets also combined with CD3+, CD8+, PD1+, and Ki67+ markers. Circulating cytokines and immune checkpoints were also evaluated by Luminex analysis. All these parameters were correlated with several clinical factors (age, sex, smoking status, PS and TPS), response to therapy, PFS , and OS . The analyses were conducted in the overall population and in patients treated with ICIs as first-line (naïve patients). RESULTS In both groups of patients, high levels of circulating CD137+ and CD137+PD1+ T cells (total, CD4 and CD8) and the soluble factor LAG3 positively correlated with response to therapy. In naïve patients, PMN(Lox1+)-MDSCs negatively correlated with clinical response, and a high percentage of Tregs was associated with favorable survival. Moreover, the balance between Treg/CD137+ Tcells or PMN(Lox1+)-MDSC/CD137+ Tcells was higher in non-responding patients and was associated with poor survival. CD137+ Tcells and Tregs resulted as two positive independent prognostic factors. CONCLUSION High levels of CD137+, CD137+PD1+ Tcells and sLAG3 could predict the response to ICIs in NSCLC patients independently by previous therapy. Combining the evaluation of CD137+ Tcells and Tregs also as Treg/CD137+ T cells ratio it is possible to identify naive patients with longer survival.
Collapse
Affiliation(s)
- Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Angela Asquino
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliera-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lucrezia Tuosto
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Angelica Pace
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marco Siringo
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Elisa Tramontano
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Serena Bianchini
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Filippo Bellati
- Department of Medical and Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa 1035, 00189, Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Daniele Santini
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
11
|
Nie J, Ai J, Hong W, Bai Z, Wang B, Yang J, Zhang Z, Mo F, Yang J, Sun Q, Wei X. Cisplatin-induced oxPAPC release enhances MDSCs infiltration into LL2 tumour tissues through MCP-1/CCL2 and LTB4/LTB4R pathways. Cell Prolif 2024; 57:e13570. [PMID: 37905494 PMCID: PMC10984104 DOI: 10.1111/cpr.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
Lung cancer is the leading global cause of cancer-related death, however, resistance to chemotherapy drugs remains a huge barrier to effective treatment. The elevated recruitment of myeloid derived suppressor cells (MDSCs) to tumour after chemotherapy has been linked to resistance of chemotherapy drugs. Nevertheless, the specific mechanism remains unclear. oxPAPC is a bioactive principal component of minimally modified low-density lipoproteins and regulates inflammatory response. In this work, we found that cisplatin, oxaliplatin and ADM all increased oxPAPC release in tumour. Treating macrophages with oxPAPC in vitro stimulated the secretion of MCP-1 and LTB4, which strongly induced monocytes and neutrophils chemotaxis, respectively. Injection of oxPAPC in vivo significantly upregulated the percentage of MDSCs in tumour microenvironment (TME) of wild-type LL2 tumour-bearing mice, but not CCL2-/- mice and LTB4R-/- mice. Critically, oxPAPC acted as a pro-tumor factor in LL2 tumour model. Indeed, cisplatin increased oxPAPC level in tumour tissues of WT mice, CCL2-/- and LTB4R-/- mice, but caused increased infiltration of Ly6Chigh monocytes and neutrophils only in WT LL2-bearing mice. Collectively, our work demonstrates cisplatin treatment induces an overproduction of oxPAPC and thus recruits MDSCs infiltration to promote the tumour growth through the MCP-1/CCL2 and LTB4/LTB4R pathways, which may restrict the effect of multiple chemotherapy. This provides evidence for a potential strategy to enhance the efficacy of multiple chemotherapeutic drugs in the treatment of lung cancer by targeting oxPAPC.
Collapse
Affiliation(s)
- Ji Nie
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
| | - Jiayuan Ai
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Binhan Wang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziqi Zhang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Fei Mo
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jing Yang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiu Sun
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
- West China Medical Publishers, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiawei Wei
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
12
|
Wan Y, Mu X, Zhao J, Li L, Xu W, Zhang M. Myeloid‑derived suppressor cell accumulation induces Treg expansion and modulates lung malignancy progression. Biomed Rep 2024; 20:68. [PMID: 38533389 PMCID: PMC10963946 DOI: 10.3892/br.2024.1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/01/2023] [Indexed: 03/28/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous family of myeloid cells that suppress T cell immunity in tumor-bearing hosts. The present study aimed to examine roles of T and MDSC subsets in lung malignancy. The study analyzed 102 cases with lung malignancy and 34 healthy individuals. Flow cytometry was performed for identification of T cell and MDSC subsets and their phenotypic characteristics in peripheral blood. The lung malignancy cases exhibited lower frequencies of granulocyte-like MDSCs (G-MDSCs) expressing PD-L2 and PD-L1 than healthy controls (P=0.013 and P<0.001, respectively). Additionally, there was a higher frequency of monocyte-like MDSCs (M-MDSCs) expressing PD-L1 in the peripheral blood of patients with lung malignancy than healthy controls (P<0.001). The frequencies of G-MDSCs and M-MDSCs were positively correlated with proportions of PD-1+ and CTLA-4+ regulatory T cells (Tregs). In vitro co-culture assay demonstrated M-MDSCs of lung malignancy enhanced naive T cell apoptosis and promoted Treg subset differentiation compared with M-MDSCs of healthy controls. The findings suggested accumulation of MDSC subsets in lung malignancy and MDSCs expressing PD-L2 and PD-L1 induced Treg expansion by binding to PD-1 on the surface of Tregs.
Collapse
Affiliation(s)
- Yinghua Wan
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Jingquan Zhao
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Wenshuai Xu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
13
|
Shi X, Pang S, Zhou J, Yan G, Gao R, Wu H, Wang Z, Wei Y, Liu X, Tan W. Bladder-cancer-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating fatty acid transporter protein 2 and down-regulating receptor-interacting protein kinase 3 in PMN-MDSCs. Mol Cancer 2024; 23:52. [PMID: 38461272 PMCID: PMC10924381 DOI: 10.1186/s12943-024-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.
Collapse
Affiliation(s)
- Xiaojun Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruxi Gao
- Southern Medical University, Guangzhou, China
| | - Haowei Wu
- Southern Medical University, Guangzhou, China
| | - Zhou Wang
- Southern Medical University, Guangzhou, China
| | - Yuqing Wei
- Southern Medical University, Guangzhou, China
| | - Xinyu Liu
- Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
15
|
Hou C, Wang Z, Lu X. Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors. CANCER PATHOGENESIS AND THERAPY 2024; 2:24-30. [PMID: 38328711 PMCID: PMC10846300 DOI: 10.1016/j.cpt.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 02/09/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are employed in immunotherapeutic applications for patients with weakened immune systems and can improve the ability of T cells to kill cancer cells. Although ICIs can potentially treat different types of cancers in various groups of patients, their effectiveness may differ among older individuals. The reason ICIs are less effective in older adults is not yet clearly understood, but age-related changes in the immune system, such as immunosenescence and inflammation, may play a role. Therefore, this review focuses on recent advances in understanding the effects of immunosenescence and inflammation on the efficacy of ICIs.
Collapse
Affiliation(s)
- Chuandong Hou
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zining Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
16
|
Mosca M, Nigro MC, Pagani R, De Giglio A, Di Federico A. Neutrophil-to-Lymphocyte Ratio (NLR) in NSCLC, Gastrointestinal, and Other Solid Tumors: Immunotherapy and Beyond. Biomolecules 2023; 13:1803. [PMID: 38136673 PMCID: PMC10741961 DOI: 10.3390/biom13121803] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
In the era of immunotherapy, identifying biomarkers of immune system activation has become a high-priority challenge. The blood neutrophil-to-lymphocyte ratio (NLR) has been largely investigated as a biomarker in several cancer types. NLR values have been shown to mirror the tumor-induced inflammatory status and have been demonstrated to be a reliable prognostic tool across stages of disease and therapeutic approaches. When integrated with other biomarkers of response to immunotherapy, such as PD-L1, tumor mutational burden, and tumor-associated immune cells, the NLR may allow to further stratify patients with different likelihoods of deriving a significant clinical benefit. However, despite its accessibility, low cost, and easy interpretation, the NLR is still poorly used as a prognostic tool in daily clinical practice. In this review, we analyze the role of the NLR in defining the relationship between cancer and the immune system, its usefulness in daily clinical practice, and its relationship with other established or emerging biomarkers of immunotherapy outcomes.
Collapse
Affiliation(s)
- Mirta Mosca
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.M.); (M.C.N.); (R.P.); (A.D.F.)
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maria Concetta Nigro
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.M.); (M.C.N.); (R.P.); (A.D.F.)
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Rachele Pagani
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.M.); (M.C.N.); (R.P.); (A.D.F.)
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.M.); (M.C.N.); (R.P.); (A.D.F.)
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Di Federico
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.M.); (M.C.N.); (R.P.); (A.D.F.)
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
17
|
He ZN, Zhang CY, Zhao YW, He SL, Li Y, Shi BL, Hu JQ, Qi RZ, Hua BJ. Regulation of T cells by myeloid-derived suppressor cells: emerging immunosuppressor in lung cancer. Discov Oncol 2023; 14:185. [PMID: 37857728 PMCID: PMC10587041 DOI: 10.1007/s12672-023-00793-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), major components maintaining the immune suppressive microenvironment in lung cancer, are relevant to the invasion, metastasis, and poor prognosis of lung cancer, through the regulation of epithelial-mesenchymal transition, remodeling of the immune microenvironment, and regulation of angiogenesis. MDSCs regulate T-cell immune functions by maintaining a strong immunosuppressive microenvironment and promoting tumor invasion. This raises the question of whether reversing the immunosuppressive effect of MDSCs on T cells can improve lung cancer treatment. To understand this further, this review explores the interactions and specific mechanisms of different MDSCs subsets, including regulatory T cells, T helper cells, CD8 + T cells, natural killer T cells, and exhausted T cells, as part of the lung cancer immune microenvironment. Second, it focuses on the guiding significance confirmed via clinical liquid biopsy and tissue biopsy that different MDSC subsets improve the prognosis of lung cancer. Finally, we conclude that targeting MDSCs through action targets or signaling pathways can help regulate T-cell immune functions and suppress T-cell exhaustion. In addition, immune checkpoint inhibitors targeting MDSCs may serve as a new approach for enhancing the efficiency of immunotherapy and targeted therapy for lung cancer in the future, providing better comprehensive options for lung cancer treatment.
Collapse
Affiliation(s)
- Zhong-Ning He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Yu-Wei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu-Lin He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Shanxi Medical University, Shanxi, China
| | - Yue Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Shanxi Medical University, Shanxi, China
| | - Bo-Lun Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Qi Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Shanxi Medical University, Shanxi, China
| | - Run-Zhi Qi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bao-Jin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Bahhar I, Eş Z, Köse O, Turna A, Günlüoğlu MZ, Çakır A, Duralı D, Magnusson FC. The IL-25/ILC2 axis promotes lung cancer with a concomitant accumulation of immune-suppressive cells in tumors in humans and mice. Front Immunol 2023; 14:1244437. [PMID: 37781372 PMCID: PMC10540623 DOI: 10.3389/fimmu.2023.1244437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Group 2 innate lymphoid cells (ILC2) can be activated by interleukin (IL)-33 or IL-25. IL-25-activated ILC2 cells help protect the host against helminth infection while exacerbating allergic-like inflammation and tissue damage in the lung. In the context of cancer, IL-33-activated ILC2 cells were found to bear anti-tumoral functions in lung cancer while IL-25-activated ILC2 cells promoted tumorigenesis in colorectal cancer. The role of IL-25-activated ILC2 cells in lung cancer remains to be addressed. Methods We examined the overall survival of human non-small cell lung cancer (NSCLC) patients according to IL25 expression as well as the distribution of ILC2 cells and regulatory T cells (Tregs) in various NSCLC patient tissues and peripheral blood (PB) of healthy donors (HDs). We analyzed the effect of adoptive transfer of IL-25-activated ILC2 cells on tumor growth, metastasis and survival in a heterotopic murine model of lung cancer. Results We report that human NSCLC patients with high IL-25 expression have reduced overall survival. Moreover, NSCLC patients bear increased frequencies of ILC2s compared to HDs. Frequencies of Tregs were also increased in NSCLC patients, concomitantly with ILC2s. In mice bearing heterotopic lung cancer, adoptive transfer of IL-25-activated ILC2s led to increased tumor growth, increased metastasis and reduced survival. The frequencies of monocytic myeloid-derived suppressor cells (M-MDSCs) were found to be increased in the tumors of mice that received ILC2s as compared to controls. Conclusion Overall, our results indicate that the IL-25/ILC2 axis promotes lung cancer potentially by recruiting immune-suppressive cells to the tumors both in humans and in mice, and that it may therefore represent a suitable novel target for NSCLC immunotherapeutic development.
Collapse
Affiliation(s)
- Ilham Bahhar
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Zeynep Eş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Oğuzhan Köse
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Akif Turna
- Department of Thoracic Surgery, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Fatih, Istanbul, Türkiye
| | - Mehmet Zeki Günlüoğlu
- Department of Thoracic Surgery, Faculty of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Aslı Çakır
- Department of Pathology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Deniz Duralı
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Medical Microbiology, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Fay C. Magnusson
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Medical Microbiology, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
19
|
Bronte G, Calabrò L, Olivieri F, Procopio AD, Crinò L. The prognostic effects of circulating myeloid-derived suppressor cells in non-small cell lung cancer: systematic review and meta-analysis. Clin Exp Med 2023; 23:1551-1561. [PMID: 36401744 PMCID: PMC10460713 DOI: 10.1007/s10238-022-00946-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Immunotherapy is the main standard treatment for non-small cell lung cancer (NSCLC) patients. Immune suppressive cells in tumor microenvironment can counteract its efficacy. Myeloid-derived suppressor cells (MDSCs) include two major subsets: polymorphonuclear (PMN-MDSCs) and monocytic (M-MDSCs). Many studies explored the prognostic impact of these cell populations in NSCLC patients. The aim of this systematic review is to select studies for a meta-analysis, which compares prognosis between patients with high vs low circulating MDSC levels. We collected hazard ratios (HRs) and relative 95% confidence intervals (CIs) in terms of progression-free survival (PFS) or recurrence-free survival (RFS), and overall survival (OS). Among 139 studies retrieved from literature search, 14 eligible studies (905 NSCLC patients) met inclusion criteria. Low circulating MDSC levels favor a better PFS/RFS (HR = 1.84; 95% CI = 1.28-2.65) and OS (HR = 1.78; 95% CI = 1.29-2.46). The subgroup analysis based on MDSC subtypes (total-, PMN-, and M-MDSCs) obtained a statistical significance only for M-MDSCs, both in terms of PFS/RFS (HR = 2.67; 95% CI = 2.04-3.50) and OS (HR = 2.10; 95% CI = 1.61-2.75). NSCLC patients bearing high M-MDSC levels in peripheral blood experience a worse prognosis than those with low levels, both in terms of PFS/RFS and OS. This finding suggests that detecting and targeting this MDSC subset could help to improve NSCLC treatment efficacy.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy.
| | - Luana Calabrò
- Medical Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences On Ageing (IRCCS INRCA), Ancona, Italy
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
20
|
Marcos Rubio A, Everaert C, Van Damme E, De Preter K, Vermaelen K. Circulating immune cell dynamics as outcome predictors for immunotherapy in non-small cell lung cancer. J Immunother Cancer 2023; 11:e007023. [PMID: 37536935 PMCID: PMC10401220 DOI: 10.1136/jitc-2023-007023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 08/05/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) continues to transform the therapeutic landscape of non-small cell lung cancer (NSCLC), with these drugs now being evaluated at every stage of the disease. In contrast to these advances, little progress has been made with respect to reliable predictive biomarkers that can inform clinicians on therapeutic efficacy. All current biomarkers for outcome prediction, including PD-L1, tumor mutational burden or complex immune gene expression signatures, require access to tumor tissue. Besides the invasive nature of the sampling procedure, other disadvantages of tumor tissue biopsies are the inability to capture the complete spatial heterogeneity of the tumor and the difficulty to perform longitudinal follow-up on treatment. A concept emerges in which systemic immune events developing at a distance from the tumor reflect local response or resistance to immunotherapy. The importance of this cancer 'macroenvironment', which can be deciphered by comprehensive analysis of peripheral blood immune cell subsets, has been demonstrated in several cutting-edge preclinical reports, and is corroborated by intriguing data emerging from ICI-treated patients. In this review, we will provide the biological rationale underlying the potential of blood immune cell-based biomarkers in guiding treatment decision in immunotherapy-eligible NSCLC patients. Finally, we will describe new techniques that will facilitate the discovery of more immune cell subpopulations with potential to become predictive biomarkers, and reflect on ways and the remaining challenges to bring this type of analysis to the routine clinical care in the near future.
Collapse
Affiliation(s)
- Alvaro Marcos Rubio
- VIB UGent Center for Medical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Celine Everaert
- VIB UGent Center for Medical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Eufra Van Damme
- VIB UGent Center for Medical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Katleen De Preter
- VIB UGent Center for Medical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
21
|
Ren R, Xiong C, Ma R, Wang Y, Yue T, Yu J, Shao B. The recent progress of myeloid-derived suppressor cell and its targeted therapies in cancers. MedComm (Beijing) 2023; 4:e323. [PMID: 37547175 PMCID: PMC10397484 DOI: 10.1002/mco2.323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature group of myeloid-derived cells generated from myeloid cell precursors in the bone marrow. MDSCs appear almost exclusively in pathological conditions, such as tumor progression and various inflammatory diseases. The leading function of MDSCs is their immunosuppressive ability, which plays a crucial role in tumor progression and metastasis through their immunosuppressive effects. Since MDSCs have specific molecular features, and only a tiny amount exists in physiological conditions, MDSC-targeted therapy has become a promising research direction for tumor treatment with minimal side effects. In this review, we briefly introduce the classification, generation and maturation process, and features of MDSCs, and detail their functions under various circumstances. The present review specifically demonstrates the environmental specificity of MDSCs, highlighting the differences between MDSCs from cancer and healthy individuals, as well as tumor-infiltrating MDSCs and circulating MDSCs. Then, we further describe recent advances in MDSC-targeted therapies. The existing and potential targeted drugs are divided into three categories, monoclonal antibodies, small-molecular inhibitors, and peptides. Their targeting mechanisms and characteristics have been summarized respectively. We believe that a comprehensive in-depth understanding of MDSC-targeted therapy could provide more possibilities for the treatment of cancer.
Collapse
Affiliation(s)
- Ruiyang Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Chenyi Xiong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Runyu Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yixuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Tianyang Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiayun Yu
- Department of RadiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
22
|
Shaw JA, Malherbe ST, Walzl G, du Plessis N. Suppressive myeloid cells in SARS-CoV-2 and Mycobacterium tuberculosis co-infection. Front Immunol 2023; 14:1222911. [PMID: 37545508 PMCID: PMC10399583 DOI: 10.3389/fimmu.2023.1222911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Epidemiologic data show that both current and previous tuberculosis (TB) increase the risk of in-hospital mortality from coronavirus disease-2019 (COVID-19), and there is a similar trend for poor outcomes from Mycobacterium tuberculosis (Mtb) infection after recent SARS-CoV-2. A shared dysregulation of immunity explains the dual risk posed by co-infection, but the specific mechanisms are being explored. While initial attention focused on T cell immunity, more comprehensive analyses revealed a dysfunctional innate immune response in COVID-19, characterized by reduced numbers of dendritic cells, NK cells and a redistribution of mononuclear phagocytes towards intermediate myeloid subsets. During hyper- or chronic inflammatory processes, activation signals from molecules such as growth factors and alarmins lead to the expansion of an immature population of myeloid cells called myeloid-deprived suppressor cells (MDSC). These cells enter a state of pathological activation, lose their ability to rapidly clear pathogens, and instead become broadly immunosuppressive. MDSC are enriched in the peripheral blood of patients with severe COVID-19; associated with mortality; and with higher levels of inflammatory cytokines. In TB, MDSC have been implicated in loss of control of Mtb in the granuloma and ineffective innate and T cell immunity to the pathogen. Considering that innate immune sensing serves as first line of both anti-bacterial and anti-viral defence mechanisms, we propose MDSC as a crucial mechanism for the adverse clinical trajectories of TB-COVID-19 coinfection.
Collapse
|
23
|
Huang Z, Bu D, Yang N, Huang W, Zhang L, Li X, Ding BS. Integrated analyses of single-cell transcriptomics identify metastasis-associated myeloid subpopulations in breast cancer lung metastasis. Front Immunol 2023; 14:1180402. [PMID: 37483625 PMCID: PMC10361816 DOI: 10.3389/fimmu.2023.1180402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Lung metastasis of breast cancer is closely associated with patient morbidity and mortality, which correlates with myeloid cells in the lung microenvironment. However, the heterogeneity and specificity of metastasis-associated myeloid cells have not been fully established in lung metastasis. Here, by integrating and analyzing single-cell transcriptomics, we found that myeloid subpopulations (Tppp3 + monocytes, Isg15 + macrophages, Ifit3 + neutrophils, and Il12b + DCs) play critical roles in the formation and development of the metastatic niche. Gene enrichment analyses indicate that several tumor-promoting pathways should be responsible for the process, including angiogenesis (Anxa1 and Anxa2 by Tppp3 + monocytes), immunosuppression (Isg15 and Cxcl10 by Isg15 + macrophages; Il12b and Ccl22 by Il12b + DCs), and tumor growth and metastasis (Isg15 and Isg20 by Ifit3 + neutrophils). Furthermore, we have validated these subpopulations in lung microenvironment of MMTV-PyVT transgenic mice and verified their association with poor progression of human breast cancer. Also, our results elucidated a crosstalk network among four myeloid subpopulations by cell-cell communication analysis. This study, therefore, highlights the crucial role of myeloid cells in lung metastasis and provides insights into underlying molecular mechanisms, which pave the way for therapeutic interventions in breast cancer metastasis to lung.
Collapse
|
24
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
25
|
Safi S, Messner L, Kliebisch M, Eggert L, Ceylangil C, Lennartz P, Jefferies B, Klein H, Schirren M, Dommasch M, Lobinger D, Multhoff G. Circulating Hsp70 Levels and the Immunophenotype of Peripheral Blood Lymphocytes as Potential Biomarkers for Advanced Lung Cancer and Therapy Failure after Surgery. Biomolecules 2023; 13:biom13050874. [PMID: 37238744 DOI: 10.3390/biom13050874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Lung cancer remains a devastating disease with a poor clinical outcome. A biomarker signature which could distinguish lung cancer from metastatic disease and detect therapeutic failure would significantly improve patient management and allow for individualized, risk-adjusted therapeutic decisions. In this study, circulating Hsp70 levels were measured using ELISA, and the immunophenotype of the peripheral blood lymphocytes were measured using multiparameter flow cytometry, to identify a predictive biomarker signature for lung cancer patients pre- and post-operatively, in patients with lung metastases and in patients with COPD as an inflammatory lung disease. The lowest Hsp70 concentrations were found in the healthy controls followed by the patients with advanced COPD. Hsp70 levels sequentially increased with an advancing tumor stage and metastatic disease. In the early-recurrence patients, Hsp70 levels started to increase within the first three months after surgery, but remained unaltered in the recurrence-free patients. An early recurrence was associated with a significant drop in B cells and an increase in Tregs, whereas the recurrence-free patients had elevated T and NK cell levels. We conclude that circulating Hsp70 concentrations might have the potential to distinguish lung cancer from metastatic disease, and might be able to predict an advanced tumor stage and early recurrence in lung cancer patients. Further studies with larger patient cohorts and longer follow-up periods are needed to validate Hsp70 and immunophenotypic profiles as predictive biomarker signatures.
Collapse
Affiliation(s)
- Seyer Safi
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
| | - Luis Messner
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Einsteinstr. 25, 81675 Munich, Germany
| | - Merten Kliebisch
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Einsteinstr. 25, 81675 Munich, Germany
| | - Linn Eggert
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Einsteinstr. 25, 81675 Munich, Germany
| | - Ceyra Ceylangil
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Einsteinstr. 25, 81675 Munich, Germany
| | - Philipp Lennartz
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Einsteinstr. 25, 81675 Munich, Germany
| | - Benedict Jefferies
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
| | - Henriette Klein
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
| | - Moritz Schirren
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
| | - Michael Dommasch
- Emergency Department, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
| | - Dominik Lobinger
- Department of Thoracic Surgery, München Klinik Bogenhausen, Lehrkrankenhaus der Technischen Universität München (TUM), Englschalkinger Str. 77, 81925 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research Technische Universität München (TranslaTUM), Einsteinstr. 25, 81675 Munich, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaningerstr. 22, 81675 Munich, Germany
| |
Collapse
|
26
|
Li J, Kong C, Song W, Fu T. Identification of Cuproptosis-Related Subtypes, Establishment of a Prognostic Signature and Characterization of the Tumor Microenvironment in Gastric Cancer. Int J Gen Med 2023; 16:1631-1652. [PMID: 37168531 PMCID: PMC10164657 DOI: 10.2147/ijgm.s404847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE Cuproptosis is a newly identified form of programmed cell death. We aimed to comprehensively discuss the correlation of cuproptosis with gastric cancer (GC) using bioinformatic methods. PATIENTS AND METHODS This study selected GC bulk and single-cell RNA sequencing profiles from public databases. Based on the enrichment pattern of cuproptosis-related gene sets (CRGSs), GC patients were classified into different cuproptosis subtypes. A series of systematic analyses was performed to investigate the correlation of cuproptosis subtype with biological function and immune cell infiltration. In addition, we established a CRGS risk score signature to quantify GC patients' risk level, and analyzed the signature's relationship with clinical features, tumor microenvironment (TME) and treatment responses. Genes used for the construction of the risk score model were also detected in GC tumor and normal tissues by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS First, analysis of scRNA-seq data revealed the alterations in CRGS enrichment scores for patients with GC and precancerous diseases. Then, based on large GC patient cohorts, two cuproptosis subtypes with significant differences in survival, biological function and TME were identified. Furthermore, we established a CRGS risk score signature. High-risk patients on the CRGS risk score signature with worse overall survival were characterized by higher immune and stromal contents in the TME, more advanced clinicopathological features, and better sensitivity to a wider range of anti-tumor drugs. Low-risk patients were correlated with higher tumor purity, and demonstrated more favorable clinical outcomes and higher sensitivity to immunotherapy. CONCLUSION The current work elucidated that cuproptosis plays an important role in the regulation of TME landscapes in GC. Two cuproptosis subtypes with distinct TME characteristics were identified. In addition, the establishment of a CRGS risk score signature could provide novel insights into accurate prediction and personalized treatment for GC patients.
Collapse
Affiliation(s)
- Jiazheng Li
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Can Kong
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wei Song
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Tao Fu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao, People’s Republic of China
| |
Collapse
|
27
|
Systemic immune modulation by stereotactic radiotherapy in early-stage lung cancer. NPJ Precis Oncol 2023; 7:24. [PMID: 36864234 PMCID: PMC9981559 DOI: 10.1038/s41698-023-00358-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
We performed a prospective study of circulating immune cell changes after stereotactic body radiotherapy (SBRT) in 50 early-stage NSCLC patients. We found no significant increase in CD8+ cytotoxic T lymphocytes at first follow-up (the primary endpoint) but detected a significant increase in expanding Ki-67+CD8+ and Ki-67+CD4+ T-cell fractions in patients treated with 10 Gy or less per fraction. SBRT can induce significant expansion in circulating effector T-cells immediately post-treatment.
Collapse
|
28
|
Wang L, Jia Q, Chu Q, Zhu B. Targeting tumor microenvironment for non-small cell lung cancer immunotherapy. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:18-29. [PMID: 39170874 PMCID: PMC11332857 DOI: 10.1016/j.pccm.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 08/23/2024]
Abstract
The tumor microenvironment (TME) is composed of different cellular and non-cellular elements. Constant interactions between tumor cells and the TME are responsible for tumor initiation, tumor progression, and responses to therapies. Immune cells in the TME can be classified into two broad categories, namely adaptive and innate immunity. Targeting these immune cells has attracted substantial research and clinical interest. Current research focuses on identifying key molecular players and developing targeted therapies. These approaches may offer more efficient ways of treating different cancers. In this review, we explore the heterogeneity of the TME in non-small cell lung cancer, summarize progress made in targeting the TME in preclinical and clinical studies, discuss the potential predictive value of the TME in immunotherapy, and highlight the promising effects of bispecific antibodies in the era of immunotherapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
29
|
Backman M, Strell C, Lindberg A, Mattsson JSM, Elfving H, Brunnström H, O'Reilly A, Bosic M, Gulyas M, Isaksson J, Botling J, Kärre K, Jirström K, Lamberg K, Pontén F, Leandersson K, Mezheyeuski A, Micke P. Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer. Eur J Cancer 2023; 185:40-52. [PMID: 36963351 DOI: 10.1016/j.ejca.2023.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Immune cells in the tumour microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterise the spatial immune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC). METHODS We established a multiplexed fluorescence imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4-Eff), CD4 regulatory cells (CD4-Treg), CD8 effector cells (CD8-Eff), CD8 regulatory cells (CD8-Treg), B-cells, natural killer cells, natural killer T-cells, M1 macrophages (M1), CD163+ myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs). RESULTS CD4-Eff cells, CD8-Eff cells and M1 macrophages were the most abundant immune cells invading the tumour cell compartment and indicated a patient group with a favourable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4-Eff, CD4-Treg, CD8-Treg, B-cells and pDCs) were independently associated with longer survival. However, when these immune cells were located close to CD8-Treg cells, the favourable impact was attenuated. In the multivariable Cox regression model, including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8-Treg-B-cells, CD8-Eff-cancer cells and B-cells-CD4-Treg) demonstrated positive prognostic impact, whereas short M2-M1 distances were prognostically unfavourable. CONCLUSION We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is crucial for diagnostic use.
Collapse
Affiliation(s)
- Max Backman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hedvig Elfving
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Aine O'Reilly
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martina Bosic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miklos Gulyas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Klas Kärre
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Kristina Lamberg
- Department of Respiratory Medicine, Akademiska Sjukhuset, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Lund University, Skånes University Hospital, Malmö, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Roulleaux Dugage M, Albarrán-Artahona V, Laguna JC, Chaput N, Vignot S, Besse B, Mezquita L, Auclin E. Biomarkers of response to immunotherapy in early stage non-small cell lung cancer. Eur J Cancer 2023; 184:179-196. [PMID: 36963241 DOI: 10.1016/j.ejca.2023.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023]
Abstract
Immunotherapy with immune-checkpoint inhibitors (ICIs) targeting programmed cell death 1 or programmed death-ligand 1 has revolutionised the treatment of advanced non-small cell lung cancer (NSCLC) and has been investigated in early NSCLC, alone or in combination with chemotherapy, anti-CTLA-4 antibodies and radiotherapy. Although more mature data are needed before setting a change of paradigm in early stages, reports of pathological response rates and disease-free survival are promising, especially with neoadjuvant multimodality approaches. Nevertheless, major pathological response rates for neoadjuvant anti-PD-(L)1 monotherapy rarely exceed 40%, and biomarkers for characterising patients who may benefit the most from ICIs are lacking. These biomarkers have a distinct value from the metastatic setting, with highly different tumour biologies. Among the most investigated so far in this context, programmed death-ligand 1 expression and, to a lesser extent, tumour mutational burden seem to correlate better with higher pathological response rates and survival. Epidermal growth factor receptor, Serine/Threonine Kinase 11and Kelch-like ECH-associated protein 1 mutations rise as essential determinations for the treatment selection in early-stage NSCLC. Emerging and promising approaches comprise evaluation of blood-based ratios, microbiota, and baseline intratumoural TCR clonality. Circulating tumour DNA will be of great help in the near future when selecting best candidates for adjuvant ICIs, monitoring the tumour response to the neoadjuvant treatment in order to improve the rates of complete resections in the early stage.
Collapse
Affiliation(s)
- Matthieu Roulleaux Dugage
- Department of Oncology, Hôpital Européen Georges Pompidou, AP-HP, Université Paris Cité, Paris, France; Laboratoire D'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, Île-de-France, France
| | - Víctor Albarrán-Artahona
- Medical Oncology Department, Hospital Clinic de Barcelona, Spain; Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | | | - Nathalie Chaput
- Laboratoire D'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Benjamin Besse
- Department of Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic de Barcelona, Spain; Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Edouard Auclin
- Department of Oncology, Hôpital Européen Georges Pompidou, AP-HP, Université Paris Cité, Paris, France.
| |
Collapse
|
31
|
Liu Y, Han Y, Zhang Y, Lv T, Peng X, Huang J. LncRNAs has been identified as regulators of Myeloid-derived suppressor cells in lung cancer. Front Immunol 2023; 14:1067520. [PMID: 36817434 PMCID: PMC9932034 DOI: 10.3389/fimmu.2023.1067520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lung tumours are widespread pathological conditions that attract much attention due to their high incidence of death. The immune system contributes to the progression of these diseases, especially non-small cell lung cancer, resulting in the fast evolution of immune-targeted therapy. Myeloid-derived suppressor cells (MDSCs) have been suggested to promote the progression of cancer in the lungs by suppressing the immune response through various mechanisms. Herein, we summarized the clinical studies on lung cancer related to MDSCs. However, it is noteworthy to mention the discovery of long non-coding RNAs (lncRNAs) that had different phenotypes and could regulate MDSCs in lung cancer. Therefore, by reviewing the different phenotypes of lncRNAs and their regulation on MDSCs, we summarized the lncRNAs' impact on the progression of lung tumours. Data highlight LncRNAs as anti-cancer agents. Hence, we aim to discuss their possibilities to inhibit tumour growth and trigger the development of immunosuppressive factors such as MDSCs in lung cancer through the regulation of lncRNAs. The ultimate purpose is to propose novel and efficient therapy methods for curing patients with lung tumours.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yukun Han
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| | - Yanhua Zhang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
32
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
33
|
Liu W, Cui Y, Zheng X, Yu K, Sun G. Application status and future prospects of the PDX model in lung cancer. Front Oncol 2023; 13:1098581. [PMID: 37035154 PMCID: PMC10080030 DOI: 10.3389/fonc.2023.1098581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Lung cancer is one of the most prevalent, fatal, and highly heterogeneous diseases that, seriously threaten human health. Lung cancer is primarily caused by the aberrant expression of multiple genes in the cells. Lung cancer treatment options include surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. In recent decades, significant progress has been made in developing therapeutic agents for lung cancer as well as a biomarker for its early diagnosis. Nonetheless, the alternative applications of traditional pre-clinical models (cell line models) for diagnosis and prognosis prediction are constrained by several factors, including the lack of microenvironment components necessary to affect cancer biology and drug response, and the differences between laboratory and clinical results. The leading reason is that substantial shifts accrued to cell biological behaviors, such as cell proliferative, metastatic, invasive, and gene expression capabilities of different cancer cells after decades of growing indefinitely in vitro. Moreover, the introduction of individualized treatment has prompted the development of appropriate experimental models. In recent years, preclinical research on lung cancer has primarily relied on the patient-derived tumor xenograft (PDX) model. The PDX provides stable models with recapitulate characteristics of the parental tumor such as the histopathology and genetic blueprint. Additionally, PDXs offer valuable models for efficacy screening of new cancer drugs, thus, advancing the understanding of tumor biology. Concurrently, with the heightened interest in the PDX models, potential shortcomings have gradually emerged. This review summarizes the significant advantages of PDXs over the previous models, their benefits, potential future uses and interrogating open issues.
Collapse
|
34
|
Immunophenotype and function of circulating myeloid derived suppressor cells in COVID-19 patients. Sci Rep 2022; 12:22570. [PMID: 36581679 PMCID: PMC9799710 DOI: 10.1038/s41598-022-26943-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of coronavirus disease 2019 (COVID-19) is not fully elucidated. COVID-19 is due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes severe illness and death in some people by causing immune dysregulation and blood T cell depletion. Increased numbers of myeloid-derived suppressor cells (MDSCs) play a diverse role in the pathogenesis of many infections and cancers but their function in COVID-19 remains unclear. To evaluate the function of MDSCs in relation with the severity of COVID-19. 26 PCR-confirmed COVID-19 patients including 12 moderate and 14 severe patients along with 11 healthy age- and sex-matched controls were enrolled. 10 ml whole blood was harvested for cell isolation, immunophenotyping and stimulation. The immunophenotype of MDSCs by flow cytometry and T cells proliferation in the presence of MDSCs was evaluated. Serum TGF-β was assessed by ELISA. High percentages of M-MDSCs in males and of P-MDSCs in female patients were found in severe and moderate affected patients. Isolated MDSCs of COVID-19 patients suppressed the proliferation and intracellular levels of IFN-γ in T cells despite significant suppression of T regulatory cells but up-regulation of precursor regulatory T cells. Serum analysis shows increased levels of TGF-β in severe patients compared to moderate and control subjects (HC) (P = 0.003, P < 0.0001, respectively). The frequency of MDSCs in blood shows higher frequency among both moderate and severe patients and may be considered as a predictive factor for disease severity. MDSCs may suppress T cell proliferation by releasing TGF-β.
Collapse
|
35
|
Zhao J, Dong Y, Zhang Y, Wang J, Wang Z. Biophysical heterogeneity of myeloid-derived microenvironment to regulate resistance to cancer immunotherapy. Adv Drug Deliv Rev 2022; 191:114585. [PMID: 36273512 DOI: 10.1016/j.addr.2022.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
Despite the advances in immunotherapy for cancer treatment, patients still obtain limited benefits, mostly owing to unrestrained tumour self-expansion and immune evasion that exploits immunoregulatory mechanisms. Traditionally, myeloid cells have a dominantly immunosuppressive role. However, the complicated populations of the myeloid cells and their multilateral interactions with tumour/stromal/lymphoid cells and physical abnormalities in the tumour microenvironment (TME) determine their heterogeneous functions in tumour development and immune response. Tumour-associated myeloid cells (TAMCs) include monocytes, tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and granulocytes. Single-cell profiling revealed heterogeneous TAMCs composition, sub-types, and transcriptomic signatures across 15 human cancer types. We systematically reviewed the biophysical heterogeneity of TAMC composition and pro/anti-tumoral and immuno-suppressive/stimulating properties of myeloid-derived microenvironments. We also summarised comprehensive clinical strategies to overcome resistance to immunotherapy from three dimensions: targeting TAMCs, reversing physical abnormalities, utilising nanomedicines, and finally, put forward futuristic perspectives for scientific and clinical research.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yundi Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
36
|
Yin N, Liu Y, Weems C, Shreeder B, Lou Y, Knutson KL, Murray NR, Fields AP. Protein kinase Cι mediates immunosuppression in lung adenocarcinoma. Sci Transl Med 2022; 14:eabq5931. [PMID: 36383684 PMCID: PMC11457891 DOI: 10.1126/scitranslmed.abq5931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent form of non-small cell lung cancer (NSCLC) and a leading cause of cancer death. Immune checkpoint inhibitors (ICIs) of programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) signaling induce tumor regressions in a subset of LUAD, but many LUAD tumors exhibit resistance to ICI therapy. Here, we identified Prkci as a major determinant of response to ICI in a syngeneic mouse model of oncogenic mutant Kras/Trp53 loss (KP)-driven LUAD. Protein kinase Cι (PKCι)-dependent KP tumors exhibited resistance to anti-PD-1 antibody therapy (α-PD-1), whereas KP tumors in which Prkci was genetically deleted (KPI tumors) were highly responsive. Prkci-dependent resistance to α-PD-1 was characterized by enhanced infiltration of myeloid-derived suppressor cells (MDSCs) and decreased infiltration of CD8+ T cells in response to α-PD-1. Mechanistically, Prkci regulated YAP1-dependent expression of Cxcl5, which served to attract MDSCs to KP tumors. The PKCι inhibitor auranofin inhibited KP tumor growth and sensitized these tumors to α-PD-1, whereas expression of either Prkci or its downstream effector Cxcl5 in KPI tumors induced intratumoral infiltration of MDSCs and resistance to α-PD-1. PRKCI expression in tumors of patients with LUAD correlated with genomic signatures indicative of high YAP1-mediated transcription, elevated MDSC infiltration and low CD8+ T cell infiltration, and with elevated CXCL5/6 expression. Last, PKCι-YAP1 signaling was a biomarker associated with poor response to ICI in patients with LUAD. Our data indicate that immunosuppressive PKCι-YAP1-CXCL5 signaling is a key determinant of response to ICI, and pharmacologic inhibition of PKCι may improve therapeutic response to ICI in patients with LUAD.
Collapse
Affiliation(s)
- Ning Yin
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Yi Liu
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Capella Weems
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Barath Shreeder
- Department of Immunology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Keith L. Knutson
- Department of Immunology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Nicole R. Murray
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| | - Alan P. Fields
- Department of Cancer Biology, Mayo Clinic School of Medicine, Jacksonville, FL 32224, USA
| |
Collapse
|
37
|
Fortunato O, Huber V, Segale M, Cova A, Vallacchi V, Squarcina P, Rivoltini L, Suatoni P, Sozzi G, Pastorino U, Boeri M. Development of a Molecular Blood-Based Immune Signature Classifier as Biomarker for Risks Assessment in Lung Cancer Screening. Cancer Epidemiol Biomarkers Prev 2022; 31:2020-2029. [PMID: 36112827 PMCID: PMC9627262 DOI: 10.1158/1055-9965.epi-22-0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Low-dose CT (LDCT) screening trials have shown that lung cancer early detection saves lives. However, a better stratification of the screening population is still needed. In this respect, we generated and prospectively validated a plasma miRNA signature classifier (MSC) able to categorize screening participants according to lung cancer risk. Here, we aimed to deeply characterize the peripheral immune profile and develop a diagnostic immune signature classifier to further implement blood testing in lung cancer screening. METHODS Peripheral blood mononuclear cell (PBMC) samples collected from 20 patients with LDCT-detected lung cancer and 20 matched cancer-free screening volunteers were analyzed by flow cytometry using multiplex panels characterizing both lymphoid and myeloid immune subsets. Data were validated in PBMC from 40 patients with lung cancer and 40 matched controls and in a lung cancer specificity set including 27 subjects with suspicious lung nodules. A qPCR-based gene expression signature was generated resembling selected immune subsets. RESULTS Monocytic myeloid-derived suppressor cell (MDSC), polymorphonuclear MDSC, intermediate monocytes and CD8+PD-1+ T cells distinguished patients with lung cancer from controls with AUCs values of 0.94/0.72/0.88 in the training, validation, and lung cancer specificity set, respectively. AUCs raised up to 1.00/0.84/0.92 in subgroup analysis considering only MSC-negative subjects. A 14-immune genes expression signature distinguished patients from controls with AUC values of 0.76 in the validation set and 0.83 in MSC-negative subjects. CONCLUSIONS An immune-based classifier can enhance the accuracy of blood testing, thus supporting the contribution of systemic immunity to lung carcinogenesis. IMPACT Implementing LDCT screening trials with minimally invasive blood tests could help reduce unnecessary procedures and optimize cost-effectiveness.
Collapse
Affiliation(s)
- Orazio Fortunato
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Miriam Segale
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Agata Cova
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Squarcina
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Suatoni
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Corresponding Author: Gabriella Sozzi, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, Milan 20133, Italy. Phone: 223-903-775; E-mail:
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mattia Boeri
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
38
|
Hazard Function Analysis of Recurrence in Patients with Curatively Resected Lung Cancer: Results from the Japanese Lung Cancer Registry in 2010. Cancers (Basel) 2022; 14:cancers14205119. [PMID: 36291903 PMCID: PMC9600058 DOI: 10.3390/cancers14205119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary To optimize postoperative surveillance of lung cancer patients, we investigated the hazard function of tumor recurrence in patients with completely resected lung cancer. Using the records of the 2010 Japanese Joint Committee of Lung Cancer Registry, the risk of postoperative recurrence was analyzed using a cause-specific hazard function in patients who underwent lobectomy to completely resect pathological stage I–III lung cancer. The hazard function for recurrence exhibited a peak at approximately 9 months after surgery, followed by a tapered plateau-like tail extending to 60 months. The peak risk for intrathoracic recurrence was approximately two-fold higher compared with that of extrathoracic recurrence. When considered together with the results of the subgroup analysis, the characteristics of the postoperative tumor recurrence hazard in a large cohort of lung cancer patients may be useful for improving stage-related management of postoperative surveillance. Abstract To optimize postoperative surveillance of lung cancer patients, we investigated the hazard function of tumor recurrence in patients with completely resected lung cancer. We analyzed the records of 12,897 patients in the 2010 Japanese Joint Committee of Lung Cancer Registry who underwent lobectomy to completely resect pathological stage I–III lung cancer. The risk of postoperative recurrence was determined using a cause-specific hazard function. The hazard function for recurrence exhibited a peak at approximately 9 months after surgery, followed by a tapered plateau-like tail extending to 60 months. The peak risk for intrathoracic recurrence was approximately two-fold higher compared with that of extrathoracic recurrence. Subgroup analysis showed that patients with stage IIIA adenocarcinoma had a continuously higher risk of recurrence compared with patients with earlier-stage disease. However, the risk of recurrence in patients with squamous cell carcinoma was not significantly different compared with that more than 24 months after surgery, regardless of pathological stage. In conclusion, the characteristics of postoperative tumor recurrence hazard in a large cohort of lung cancer patients may be useful for determining the time after surgery at which patients are at the highest risk of tumor recurrence. This information may improve stage-related management of postoperative surveillance.
Collapse
|
39
|
Hagiwara T, Numano T, Hara T, Sugiyama T, Mera Y, Tamano S, Miyata H. Chemical-induced lung tumor in Tg-rasH2 mice: a novel mouse tumor model to assess immune checkpoint inhibitors combined with a chemotherapy drug. J Toxicol Pathol 2022; 35:321-331. [PMID: 36406167 PMCID: PMC9647217 DOI: 10.1293/tox.2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 09/08/2024] Open
Abstract
In subcutaneous tumor models, changes in the tumor microenvironment can lead to differences in therapeutic treatment responses between the subcutaneous and parent tumors. Accordingly, we generated a lung carcinogenesis model that combines genetically modified mice (Tg-rasH2 mice) with two-stage chemical carcinogenesis as an alternative to the subcutaneous tumor model. In this model, Tg-rasH2 mice were treated with 1-ethyl-1-nitrosourea, followed by butylhydroxytoluene. Mice developed lung adenomas five weeks after treatment initiation. Subsequently, anti-mouse PD-1 antibody (α-mPD-1) or isotype control was administered intraperitoneally twice a week for 4 weeks. Tumor growth was examined by measuring the relative tumor area in serially sliced lung histopathological specimens. No statistically significant differences were observed in the relative lung tumor areas between treated and control groups. A second experiment then examined the antitumor efficacy of α-mPD-1 combined with gemcitabine in a mouse model. Mice were treated identically as in Experiment 1, except that the treated group received once-weekly intraperitoneal injections of 10 mg/kg gemcitabine. In contrast to Experiment 1, the combined treatment significantly reduced the relative tumor areas in the lungs. This result also resembles that of a phase III clinical trial (ORIENT-12), showing that patients with non-small-cell lung carcinoma benefited from combination treatment with gemcitabine and the anti-human PD-1 antibody sintilimab. Thus, this mouse model could be a feasible means to preclinically evaluate the antitumor efficacy of different immunotherapy and chemotherapy drug combinations.
Collapse
Affiliation(s)
- Teruaki Hagiwara
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Takamasa Numano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Tomomi Hara
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Taiki Sugiyama
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Yukinori Mera
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Seiko Tamano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Hiroto Miyata
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| |
Collapse
|
40
|
Liu Z, Zhou Z, Dang Q, Xu H, Lv J, Li H, Han X. Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Am J Cancer Res 2022; 12:6273-6290. [PMID: 36168626 PMCID: PMC9475465 DOI: 10.7150/thno.76854] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents a landmark advance in personalized cancer treatment. CAR-T strategy generally engineers T cells from a specific patient with a new antigen-specificity, which has achieved considerable success in hematological malignancies, but scarce benefits in solid tumors. Recent studies have demonstrated that tumor immune microenvironment (TIME) cast a profound impact on the immunotherapeutic response. The immunosuppressive landscape of TIME is a critical obstacle to the effector activity of CAR-T cells. Nevertheless, every cloud has a silver lining. The immunosuppressive components also shed new inspiration on reshaping a friendly TIME by targeting them with engineered CARs. Herein, we summarize recent advances in disincentives of TIME and discuss approaches and technologies to enhance CAR-T cell efficacy via addressing current hindrances. Simultaneously, we firmly believe that by parsing the immunosuppressive components of TIME, rationally manipulating the complex interactions of immunosuppressive components, and optimizing CAR-T cell therapy for each patient, the CAR-T cell immunotherapy responsiveness for solid malignancies will be substantially enhanced, and novel therapeutic targets will be revealed.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huanyun Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
41
|
Shi X, Pang S, Zhou J, Yan G, Sun J, Tan W. Feedback loop between fatty acid transport protein 2 and receptor interacting protein 3 pathways promotes polymorphonuclear neutrophil myeloid-derived suppressor cells-potentiated suppressive immunity in bladder cancer. Mol Biol Rep 2022; 49:11643-11652. [PMID: 36169895 DOI: 10.1007/s11033-022-07924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) promote tumor immune tolerance and cause tumor immunotherapy failure. In this study, we found that high PMN-MDSCs infiltration, overexpressed fatty acid transporter protein 2 (FATP2) and underexpressed receptor-interacting protein kinase 3 (RIPK3) existed in the mouse and human bladder cancer tissues. However, the related mechanisms remain largely unknown. METHODS AND RESULTS Both FATP2 and RIPK3 expressions were associated with clinical stage. FATP2 knockout or up-regulating RIPK3 reduced the synthesis of prostaglandin E2 (PGE2) in PMN-MDSCs, attenuated the suppressive activity of PMN-MDSCs on CD8+ T cells functions and inhibited the tumor growth. There was a PGE2-mediated feedback loop between FATP2 and RIPK3 pathways, which markedly promoted the immunosuppressive activity of PMN-MDSCs. Combination therapy with inhibition of FATP2 and activation of RIPK3 can effectively inhibit tumor growth. CONCLUSIONS This study demonstrated that a feedback loop between FATP2 and RIPK3 pathways in PMN-MDSCs significantly promoted the synthesis of PGE2, which severely impaired the CD8+ T cell functions. This study may provide new ideas for immunotherapy of human bladder cancer.
Collapse
Affiliation(s)
- Xiaojun Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Jie Sun
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| |
Collapse
|
42
|
Ya G, Ren W, Qin R, He J, Zhao S. Role of myeloid-derived suppressor cells in the formation of pre-metastatic niche. Front Oncol 2022; 12:975261. [PMID: 36237333 PMCID: PMC9552826 DOI: 10.3389/fonc.2022.975261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is a complex process, which depends on the interaction between tumor cells and host organs. Driven by the primary tumor, the host organ will establish an environment suitable for the growth of tumor cells before their arrival, which is called the pre-metastasis niche. The formation of pre-metastasis niche requires the participation of a variety of cells, in which myeloid-derived suppressor cells play a very important role. They reach the host organ before the tumor cells, and promote the establishment of the pre-metastasis niche by influencing immunosuppression, vascular leakage, extracellular matrix remodeling, angiogenesis and so on. In this article, we introduced the formation of the pre-metastasis niche and discussed the important role of myeloid-derived suppressor cells. In addition, this paper also emphasized the targeting of myeloid-derived suppressor cells as a therapeutic strategy to inhibit the formation of pre-metastasis niche, which provided a research idea for curbing tumor metastasis.
Collapse
Affiliation(s)
- Guoqi Ya
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Weihong Ren,
| | - Rui Qin
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
43
|
Metformin modulate immune fitness in hepatocellular carcinoma: Molecular and cellular approach. Int Immunopharmacol 2022; 109:108889. [DOI: 10.1016/j.intimp.2022.108889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022]
|
44
|
[Neutrophil plasticity: A new key in the understanding of onco-immunology]. Rev Mal Respir 2022; 39:587-594. [PMID: 35871052 DOI: 10.1016/j.rmr.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 01/07/2023]
Abstract
Lung cancer remains the leading cause of cancer mortality in France. Research has shown that immune cells play a major role in tumor growth, angiogenesis and promotion of metastasis. While the density of intra-tumoral adaptive immune cell infiltrate is associated with a favorable prognosis, the presence of polynuclear neutrophils (innate immune cells) is associated in different types of cancer with a poor prognosis. The reviewed studies underline the abundance of intra-tumoral neutrophils involved in tumor progression by their immunosuppressive activity. More specifically, it has been shown that the neutrophil/lymphocyte (N/L) ratio is a prognostic marker. Different mechanisms promoting tumor progression have been identified, particularly the pro-angiogenic and immunosuppressive activities of neutrophils. However, under certain conditions, they can also exert effective anti-tumor activity through their interactions with the adaptive immune system. The complexity of the role of neutrophils in oncology resides in the diversity of subpopulations and their plasticity under the influence of the tumor environment. In this review, we will discuss the different properties of neutrophils not only as pro- and anti-tumor effector cells, but also as immunomodulatory cells, and we will conclude by considering therapeutic perspectives in lung cancer.
Collapse
|
45
|
Alfranca YL, García MEO, Rueda AG, Ballesteros PÁ, Rodríguez DR, Velasco MT. Blood Biomarkers of Response to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. J Clin Med 2022; 11:jcm11113245. [PMID: 35683629 PMCID: PMC9181575 DOI: 10.3390/jcm11113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment landscape of non-small cell lung cancer (NSCLC), either used in monotherapy or in combination with chemotherapy. While some patients achieve durable responses, some will not get benefit from this treatment. Early identification of non- responder patients could avoid unnecessary treatment, potentially serious immune-related adverse events and reduce treatment costs. PD-L1 expression using immunohistochemistry is the only approved biomarker for the selection of patients that can benefit from immunotherapy. However, application of PD-L1 as a biomarker of treatment efficacy shows many deficiencies probably due to the complexity of the tumor microenvironment and the technical limitations of the samples. Thus, there is an urgent need to find other biomarkers, ideally blood biomarkers to help us to identify different subgroups of patients in a minimal invasive way. In this review, we summarize the emerging blood-based markers that could help to predict the response to ICIs in NSCLC.
Collapse
|
46
|
Grassi G, Notari S, Gili S, Bordoni V, Casetti R, Cimini E, Tartaglia E, Mariotti D, Agrati C, Sacchi A. Myeloid-Derived Suppressor Cells in COVID-19: The Paradox of Good. Front Immunol 2022; 13:842949. [PMID: 35572540 PMCID: PMC9092297 DOI: 10.3389/fimmu.2022.842949] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/25/2022] [Indexed: 12/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Viral replication in the respiratory tract induces the death of infected cells and the release of pathogen- associated molecular patterns (PAMPs). PAMPs give rise to local inflammation, increasing the secretion of pro- inflammatory cytokines and chemokines, which attract immune cells from the blood into the infected lung. In most individuals, lung-recruited cells clear the infection, and the immune response retreats. However, in some cases, a dysfunctional immune response occurs, which triggers a cytokine storm in the lung, leading to acute respiratory distress syndrome (ARDS). Severe COVID-19 is characterized by an impaired innate and adaptive immune response and by a massive expansion of myeloid-derived suppressor cells (MDSCs). MDSCs function as protective regulators of the immune response, protecting the host from over-immunoreactivity and hyper-inflammation. However, under certain conditions, such as chronic inflammation and cancer, MDSCs could exert a detrimental role. Accordingly, the early expansion of MDSCs in COVID-19 is able to predict the fatal outcome of the infection. Here, we review recent data on MDSCs during COVID-19, discussing how they can influence the course of the disease and whether they could be considered as biomarker and possible targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Germana Grassi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Simona Gili
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Eleonora Tartaglia
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Davide Mariotti
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Alessandra Sacchi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for infectious Diseases "Lazzaro Spallanzani"-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
47
|
Gudd CLC, Possamai LA. The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers (Basel) 2022; 14:1913. [PMID: 35454819 PMCID: PMC9027811 DOI: 10.3390/cancers14081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drug-related hepatotoxicity is an emerging clinical challenge with the widening use of immunotherapeutic agents in the field of oncology. This is an important complication to consider as more immune oncological targets are being identified to show promising results in clinical trials. The application of these therapeutics may be complicated by the development of immune-related adverse events (irAEs), a serious limitation often requiring high-dose immunosuppression and discontinuation of cancer therapy. Hepatoxicity presents one of the most frequently encountered irAEs and a better understanding of the underlying mechanism is crucial for the development of alternative therapeutic interventions. As a novel drug side effect, the immunopathogenesis of the condition is not completely understood. In the liver, myeloid cells play a central role in the maintenance of homeostasis and promotion of inflammation. Recent research has identified myeloid cells to be associated with hepatic adverse events of various immune modulatory monoclonal antibodies. In this review article, we provide an overview of the role of myeloid cells in the immune pathogenesis during hepatoxicity related to cancer immunotherapies and highlight potential treatment options.
Collapse
Affiliation(s)
- Cathrin L. C. Gudd
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Lucia A. Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
48
|
Fatima S, Ma Y, Safrachi A, Haider S, Spring KJ, Vafaee F, Scott KF, Roberts TL, Becker TM, de Souza P. Harnessing Liquid Biopsies to Guide Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2022; 14:1669. [PMID: 35406441 PMCID: PMC8997025 DOI: 10.3390/cancers14071669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy (IO), involving the use of immune checkpoint inhibition, achieves improved response-rates and significant disease-free survival for some cancer patients. Despite these beneficial effects, there is poor predictability of response and substantial rates of innate or acquired resistance, resulting in heterogeneous responses among patients. In addition, patients can develop life-threatening adverse events, and while these generally occur in patients that also show a tumor response, these outcomes are not always congruent. Therefore, predicting a response to IO is of paramount importance. Traditionally, tumor tissue analysis has been used for this purpose. However, minimally invasive liquid biopsies that monitor changes in blood or other bodily fluid markers are emerging as a promising cost-effective alternative. Traditional biomarkers have limitations mainly due to difficulty in repeatedly obtaining tumor tissue confounded also by the spatial and temporal heterogeneity of tumours. Liquid biopsy has the potential to circumvent tumor heterogeneity and to help identifying patients who may respond to IO, to monitor the treatment dynamically, as well as to unravel the mechanisms of relapse. We present here a review of the current status of molecular markers for the prediction and monitoring of IO response, focusing on the detection of these markers in liquid biopsies. With the emerging improvements in the field of liquid biopsy, this approach has the capacity to identify IO-eligible patients and provide clinically relevant information to assist with their ongoing disease management.
Collapse
Affiliation(s)
- Shadma Fatima
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Yafeng Ma
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
- Centre for Circulating Tumor Cell Diagnosis and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Azadeh Safrachi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
| | - Sana Haider
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kevin J. Spring
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2031, Australia
| | - Kieran F. Scott
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Tara L. Roberts
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
| | - Therese M. Becker
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
- Centre for Circulating Tumor Cell Diagnosis and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Paul de Souza
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
| |
Collapse
|
49
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Clinical Application Perspectives of Lung Cancers 3D Tumor Microenvironment Models for In Vitro Cultures. Int J Mol Sci 2022; 23:ijms23042261. [PMID: 35216378 PMCID: PMC8876687 DOI: 10.3390/ijms23042261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the enormous progress and development of modern therapies, lung cancer remains one of the most common causes of death among men and women. The key element in the development of new anti-cancer drugs is proper planning of the preclinical research phase. The most adequate basic research exemplary for cancer study are 3D tumor microenvironment in vitro models, which allow us to avoid the use of animal models and ensure replicable culture condition. However, the question tormenting the scientist is how to choose the best tool for tumor microenvironment research, especially for extremely heterogenous lung cancer cases. In the presented review we are focused to explain the key factors of lung cancer biology, its microenvironment, and clinical gaps related to different therapies. The review summarized the most important strategies for in vitro culture models mimicking the tumor–tumor microenvironmental interaction, as well as all advantages and disadvantages were depicted. This knowledge could facilitate the right decision to designate proper pre-clinical in vitro study, based on available analytical tools and technical capabilities, to obtain more reliable and personalized results for faster introduction them into the future clinical trials.
Collapse
|
50
|
Bayik D, Lee J, Lathia JD. The Role of Myeloid-Derived Suppressor Cells in Tumor Growth and Metastasis. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:189-217. [PMID: 35165865 DOI: 10.1007/978-3-030-91311-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature bone marrow-derived suppressive cells that are an important component of the pathological immune response associated with cancer. Expansion of MDSCs has been linked to poor disease outcome and therapeutic resistance in patients with various malignancies, making these cells potential targets for next-generation treatment strategies. MDSCs are classified into monocytic (M-MDSC) and polymorphonuclear/granulocytic (PMN-MDSC) subtypes that undertake distinct and numerous roles in the tumor microenvironment or systemically to drive disease progression. In this chapter, we will discuss how MDSC subsets contribute to the growth of primary tumors and induce metastatic spread by suppressing the antitumor immune response, supporting cancer stem cell (CSC)/epithelial-to-mesenchymal transition (EMT) phenotypes and promoting angiogenesis. We will also summarize the signaling networks involved in the crosstalk between cancer cells and MDSCs that could represent putative immunotherapy targets.
Collapse
Affiliation(s)
- Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Euclid, OH, USA
| | - Juyeun Lee
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Euclid, OH, USA.
| |
Collapse
|